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ABSTRACT: An electrochemical intramolecular oxytrifluoromethylation of N-tethered alkenyl alcohols was developed providing 
straightforward access to CF3-containg morpholines derivatives. The method features mild reaction conditions with direct anodic 
oxidation of Langlois reagent as cheap and easy to handle trifluoromethylating reagent. Variously substituted 2-(2,2,2-trifluoro-
ethyl)morpholines were obtained in moderate to high yields under constant current electrolysis in an undivided cell. 

Tetrahydro-1,4-oxazines, namely morpholine derivatives, are 
privileged core skeletons that continually appear in numerous 
pharmaceuticals and agrochemicals.1,2 It belongs to the top 25 
most frequent N-heterocycles in US FDA approved drugs.3 Re-
cently, trifluoromethylated morpholines have received substan-
tial interest because the incorporation of a trifluoromethyl (CF3)
group can significantly improve their physical, biological and 
chemical properties.4 Therefore, several efficient methods have
been developed to construct trifluoromethylated morpholines
that rely on two main strategies (Scheme 1a). The first one in-
volves the construction of the morpholine core via either cy-
clization of trifluoromethylated linear compounds5 or the ring 
expansion of CF3-containing heterocycles.6 The second one is 
based on trifluoromethylation of existing morpholines.7 Alt-
hough both approaches have their own particular advantages,
exploring more efficient synthetic methodologies for valuable
trifluoromethylated morpholines is still highly desired.
Over past decades, the intramolecular difunctionalization of al-
kenes involving the simultaneous formation of C–CF3 and C–O
bonds has proven to be a powerful tool for synthesis of trifluo-
romethylated oxacycles.8 This approach involves the generation
of a CF3 radical via a single-electron transfer (SET) process
which reacts with an alkene to provide a β-CF3-substituted rad-
ical intermediate. The resulting radical then undergoes a step-
wise SET oxidation and subsequent intramolecular O-nucleo-
philic attack to produce oxygen-containing heterocycles
(Scheme 1b). Surprisingly, to the best of our knowledge, such 
an intramolecular oxytrifluorometylation has not been investi-
gated for the preparation of CF3-containing morpholines. The 
development of such a cyclization reaction would provide an 
efficient synthesis of novel family of trifluoromethylated mor-
pholines (Scheme 1c).

Scheme 1. Synthesis of CF3-containing Morpholines

 
In recent years, electrochemistry9 has emerged as a powerful 
tool to introduce a CF3 group into alkenes10 through the anodic 
oxidation of the cheap and easy to handle Langlois reagent
(CF3SO2Na).11,12 It has been applied for the construction of pyr-
rolidines,13 oxindoles,14 indoline or hydroisoquinoline-1,3-dio-
nes,14b quinolinones and lactones8n via intramolecular processes.
In this context and in line with our long-standing interest in rad-
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ical trifluoromethylation of alkenes,15,8l we speculated that elec-
trochemical trifluoromethylation/cyclization of N-tethered 
alken-6-ols is a worthwhile approach to accessing trifluoro-
methylated morpholines. Herein we report our preliminary ef-
forts toward the construction of new type of 2-(2,2,2-trifluoro-
ethyl)morpholine derivatives.
Our investigations began by studying the cyclization of alken-
6-ol 1a with Langlois reagent 2 in an undivided cell using 
graphite carbon cathode, a platinum cathode under constant cur-
rent electrolysis and a mixture of CH3CN and H2O (v/v 1:1)
(Table 1). With LiClO4 as the electrolyte, the desired morpho-
line 3a was isolated in 62% yield (entry 1). After testing other 
organic solvents such as acetone and THF (entries 2 and 3),
CH3CN was considered to be the best one. Replacing H2O by 
methanol had no significant effect. When the electrolysis was 
conducted in pure CH3CN to reduce the formation of intermo-
lecular oxytrifluoromethylated product,16 3a was isolated with 
an improved yield of 79%. Pleasingly, switching platinum
plated anode for cheap carbon graphite or nickel electrodes gave 
similar results (entries 6 and 7). Further experiments have 
shown that a change of the electrolyte or current intensity (from 
15 to 30 mA) leads to a significantly decrease of yield (entries 
8 and 9).17

Table 1. Optimization of Reaction Conditionsa

 
entry electrodes solvent yieldb (%)

1 C(+) Pt(-) CH3CN/H2O (10:1) 62

2 C(+) Pt(-) acetone/H2O (10:1) 48

3 C(+) Pt(-) THF/H2O (10:1) 39

4 C(+) Pt(-) CH3CN/MeOH (10:1) 63

5 C(+) Pt(-) CH3CN 79

6 C(+) C(-) CH3CN 78

7 C(+) Ni(-) CH3CN 81
8c C(+) Ni(-) CH3CN 50

9d C(+) Ni(-) CH3CN 69

10e C(+) Ni(-) CH3CN 0
aReaction conditions: undivided cell, 1a (0.25 mmol), 2 (0.5 
mmol), solvent (2.5 mL), LiClO4 (0.2 M), CCE (15 mA), 3.2 F.mol-

1, rt. bIsolated yield. cn-Bu4NBF4 instead of LiClO4. d30 mA instead 
of 15 Ma. eNo current.

With the best reaction conditions in hand, we next explored the 
scope of the electrolytic oxytrifluoromethylation (Scheme 2). A 
set of representative N-tethered alken-6-ols with various aryl 
groups on the alkene proved to be suitable substrates, generat-
ing the desired morpholines in good to high yields (3a-3f). In 
general, electron-poor aromatic rings with halogen substituents 
reacted smoothly whereas slightly lower yield was obtained 
with a para-tert-butyl substituent. This is mainly due to a com-
petitive trifluoromethylation of the arene ring. The N-2-nitro-
phenylsulfonyl substrates 1g and 1h underwent the oxytrifluo-

romethylation reaction with equal efficiency. Pleasingly sec-
ondary alcohol 1k was well tolerated furnishing the correspond-
ing 2,2,6-trisubstituted morpholine 3k in good yield as a mix-
ture of diastereoisomers. Moreover, enantioenriched alcohols 1i
and 1j were successfully engaged affording the corresponding 
morpholines 3i and 3j in 36% and 65% yield, respectively, as a 
mixture of diastereoisomers. The lower yield with 1i is presum-
ably due to overoxidation of the benzylic carbon. The polycy-
clic compounds 3l and 3m were produced in descent yields al-
beit with moderate diastereoselectivity. To our delight, this 
method can also be applied to the synthesis of a difluorometh-
ylated morpholine 3n under slightly modified reaction condi-
tions with 3 equivalents of CF2HSO2Na18 as a source of CF2H
radical19 in CH3CN/H2O (10:1). To evaluate the potential appli-
cation of this protocol, a 1 mmol scale reaction of 1a was per-
formed under the standard reaction conditions. Delightfully, the 
desired morpholine product (3a) was obtained in a comparable 
yield (79%).
Scheme 2. Intramolecular Trifluoromethylation of N-teth-
ered Alken-6-ols 1a

 
aReaction conditions: undivided cell, C(+) Ni(-), 1a (0.25 

mmol), 2 (0.5 mmol), CH3CN (2.5 mL), LiClO4 (0.2 M), CCE (15 
mA), 3.2 F.mol-1, rt. bdr were determined by 1H NMR analysis of 
the reaction mixtures. cReaction conducted on 1 mmol scale.

A further investigation revealed that the formation of seven-
membered oxacycle 5 by intramolecular oxytrifluoromethyla-
tion way of N-tethered alken-7-ol 4 was also possible (Scheme 
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3). This provide a rapid access to 1,4-benzoxazepine, an im-
portant class of seven-membered rings heterocycles featuring 
interesting biological properties and found in numerous drugs 
and preclinical leads.20

Scheme 3. Intramolecular Trifluoromethylation of N-teth-
ered Alken-7-ols 4a

 
aReaction conditions: undivided cell, C(+) Ni(-), 4 (0.25 mmol), 

2 (0.5 mmol), CH3CN (2.5 mL), LiClO4 (0.2 M), CCE (15 mA), 
3.2 F.mol-1, rt.

To gain more insight into the mechanism of the oxytrifluoro-
methylation of N-tethered alken-6-ols, some preliminary con-
trol experiments were performed. It is noteworthy that there is 
no reaction in the absence of electric current (Table 1, entry 10).
Cyclic voltammetry (CV) analysis of Langlois reagent (2) in 
CH3CN with LiClO4 as electrolyte showed irreversible anodic 
oxidation waves (See the Supporting Information, Figure S1) at
a potential much lower than that of substrate 1a (1.48 and 2.07
V vs Ag/AgCl respectively). On the basis of the above results 
as well as other reports,10 a plausible reaction mechanism is de-
picted in scheme 4. The SET anodic oxidation of CF3SO2Na 
would produce the CF3 radical through the release of SO2 from 
CF3SO2 radical. Subsequent regioselective addition of electro-
philic CF3 radical to alkene 1 would lead to the radical interme-
diate 6, which would be further oxidized into cation 7 by a sec-
ond SET anodic oxidation. Final intramolecular nucleophilic 
addition of the alcohol moiety would lead to the corresponding 
trifluoromethylated morpholine 3 along with the release of H+.
Reductions of H+ and residual trace of water would be the coun-
ter-reactions taking place at the cathode.
Scheme 4. Plausible Mechanism

 
To further demonstrate the usefulness of our method to access 
morpholine derivatives, the tosyl group of 3a was easily re-
moved under mild conditions by treatment with magnesium in 

a sonicated methanol solution affording unprotected morpho-
line 8 in high yield (Scheme 5).
Scheme 5. Deprotection of Morpholine 3a

 
To conclude, we have developed an intramolecular radical ox-
ytrifluoromethylation of N-tethered alken-6-ols by using envi-
ronmentally friendly electrochemical reaction conditions with 
Langlois reagent as cheap and easy to handle source of trifluo-
romethyl radical. The procedure is suitable for the synthesis of 
a wide variety of functionalized oxytrifluoromethylated mor-
pholine derivatives. This protocol was extended to a N-tethered 
alken-7-ol providing the synthesis of a CF3-containing benzox-
azepine. Extension of this method to the preparation of other 
trifluoromethylated heterocycles is currently underway in our 
laboratory and will be reported in due course.
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