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Abstract

Analyzing the dynamical properties of mobile objects requires to extract trajectories from

recordings, which is often done by tracking movies. We compiled a database of two-dimen-

sional movies for very different biological and physical systems spanning a wide range of

length scales and developed a general-purpose, optimized, open-source, cross-platform,

easy to install and use, self-updating software called FastTrack. It can handle a changing

number of deformable objects in a region of interest, and is particularly suitable for animal

and cell tracking in two-dimensions. Furthermore, we introduce the probability of incursions

as a new measure of a movie’s trackability that doesn’t require the knowledge of ground

truth trajectories, since it is resilient to small amounts of errors and can be computed on the

basis of an ad hoc tracking. We also leveraged the versatility and speed of FastTrack to

implement an iterative algorithm determining a set of nearly-optimized tracking parameters

—yet further reducing the amount of human intervention—and demonstrate that FastTrack

can be used to explore the space of tracking parameters to optimize the number of swaps

for a batch of similar movies. A benchmark shows that FastTrack is orders of magnitude

faster than state-of-the-art tracking algorithms, with a comparable tracking accuracy. The

source code is available under the GNU GPLv3 at https://github.com/FastTrackOrg/

FastTrack and pre-compiled binaries for Windows, Mac and Linux are available at http://

www.fasttrack.sh.

Author summary

Many researchers and engineers face the challenge of tracking objects from very different

systems across several fields of research. We observed that despite this diversity the core of

the tracking task is very general and can be formalized. We thus introduce the notion of

incursions—i.e. to what extent an object can enter a neighbor’s space—which can be

defined on a statistical basis and captures the interplay between the acquisition rate, the

objects’ dynamics and the geometrical characteristics of the scene, including density. To

validate this approach, we compiled a dataset from various fields of Physics, Biology and

human activities to serve as a benchmark for general-purpose tracking softwares. This
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dataset is open and accepts new submissions. We also developped a software called Fast-
Track that is able to track most of the movies in the dataset by proposing standard image

processing tools and state-of-the-art implementation of the matching algorithm, which is

at the core of the tracking task. Besides, it is open-source, simple to install and use and has

an ergonomic interface to obtain fast and reliable results. FastTrack is particularly conve-

nient for small-scale research projects, typically when the development of a dedicated soft-

ware is overkill.

This is a PLOS Computational Biology Software paper.

Introduction

Tracking objects moving in two dimensions is a demanded ability in computer vision, with

applications in various fields of Biology ranging from the monitoring of cellular motion [1, 2]

to behavioral assays [3, 4], but also in many other fields of Science—like microfluidics [5],

active matter [6], social sciences [7] or robotics [8] to name a few—and in industrial processes

[9]. There has been countless libraries and softwares designed for the purpose of tracking spe-

cific systems in specific conditions, but to date none has emerged as a general tool that could

track virtually any type of object in a large panel of imaging conditions.

This owes for a large part to the many issues arising during the detection phase, i.e. the defi-

nition of the objects that are present on each frame. In order to lower the error rate of the

whole tracking process, many softwares focus on adaptating the details of object detection to

the system of interest [4]. Yet, in various situations the objects are allowed to partly overlap

(quasi two-dimensional systems), making proper detection extremely challenging. In particu-

lar, this is very common among biological systems since a strict planar confinment is often dif-

ficult to achieve and may bias the object’s dynamics [10–12]. A few algorithms have been

developed to manage these situations by defining a unique identifier for each object that allows

to recombine the trajectory fragments before and after occlusions [13, 14]. This approach is

however computationally heavy and limited to a small number of well-defined, non-saturated

objects.

Here we take a different approach and provide a software designed to be as general as possi-

ble. First, we created an open dataset comprising 41 movies of very different systems in order

to test and benchmark general tracking softwares. Then, we created the FastTrack software

that implements standard image processing techniques and a performant matching procedure.

FastTrack can handle deformable objects as long as they keep a constant area and manages

flawlessly a variable number of objects. For the end user, all these features allow to obtain

excellent trackings in minutes for a very large panel of systems. To achieve perfect trackings,

FastTrack also has a manual post-processing tool that displaces the workload from the fine-

tuning of complex detection algorithms to the manual correction of a few remaining errors, if

any. This strategy does not require programming skills and with an ergonomic interface it is

time-saving for small size datasets or when there is a very low tolerance for errors.

Furthermore, we propose a new quantifier called the probability of incursions, that can be

computed based on a statistical analysis of the dynamical and geometric properties of each

movie. We show that this probability displays a remarkable scaling with the logarithm of the
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sampling timescale, and that one can easily derive a robust and practical ad hoc characteriza-

tion of virtually any movie. Finally, we implemented an algorithm to determine nearly-opti-

mized tracking parameters automatically. FastTrack has already been used in a few

publications [15, 16] and is currently used for several research projects in Physics and Biology.

The raw data for all plots can be found in S1 Data.

Dataset

We compiled various video recordings to form a large dataset called the Two-Dimentional

Tracking Dataset (TD2). It is open to new contributions and available for download at http://

data.ljp.upmc.fr/datasets/TD2/. All videos have been either previously published [13, 15–26]

or have been kindly provided by their authors and are licenced under the Non-Commercial,

Share-Alike Creative Commons licence (CC BY-NC-SA). Each movie has an unique identifier

composed of three letters and three digits (e.g. ACT_001), that we use in the sequel anytime

we need to refer to the data.

The dataset comprises 41 sequences involving different types of objects at various scales:

bacteria, paramecia, cells in a dense tissue, 7 animal species (including some whose behavior is

commonly studied: fruit flies, medaka, zebrafish and mice), self-propelled particles, passive

hard particles, droplets in microfluidic channels, centimetric robots, macroscopic objects on a

conveyor belt, humans playing sports and traffic. A summary of the key features of each movie

in the dataset is presented in S1 Table, thumbnails of the dataset are show in S1 Fig and S1

Video is a footage of the movies with the trajectories overlaid.

The number of objects is constant in about half of the movies (22), while in the other half

some objects appear or disappear at various locations in the field of view. Independantly, in

about half the movies (20) the objects are moving in a strict two-dimensional space, while for

the other half the objects evolve in a quasi-2D space and can at least partly overlap on some

frames.

Software design and implementation

FastTrack is written in C++ and respects the object-oriented programming paradigm. We use

the OpenCV library for image processing and the Qt framework for the graphical user inter-

face. The software wokflow is depicted in Fig 1, and can be broken down in three main phases:

detection, matching and post-process.

As an entry point, the user defines data sources as video files (all formats supported by

FFmpeg) or sequences of frames (�.bmp, �.dib, �.jpeg, �.jpg, �.jpe, �.jp2, �.png,
�.pbm, �.pgm, �.ppm, �.sr, �.ras, �.tiff or �.tif) in a folder; in the latter case the

images must have a naming convention with left-padded zeros to ensure a correct ordering of

the frames (e.g. frame_000001.pgm). The whole process described below can be applied

on a movie-per-movie basis or for a batch of movies. In the latter case, the user can define dif-

ferent sets of parameters and background images, either manually or via a configuration file,

and select subsets of movies for which the software will use those sets.

Detection

This phase aims at extracting a collection of kinematic parameters (e.g. positions, direction,

area) for each object in a frame. FastTrack includes a collection of standard image processing

techniques to let the user adjust and perform object detection within the graphical interface

for simple movies, without the need of an external pre-processing.

Image registration. It is common to have translational and rotational drifts in movies,

and several registration options are available to compensate for it [27]. FastTrack implements
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three different approaches: phase correlation, enhanced correlation coefficient and feature-

based. All methods are implemented in a pyramidal way, i.e. registration is first performed on

downsampled images to correct for large drifts and then minute corrections are computed

from full resolution images.

The phase correlation method detects translational drifts between two images by using the

Fourier shift theorem in the frequency domain. This method is resilient to noise and artifacts

but can misestimate large shifts. The enhanced correlation coefficient (ECC) registration

method consists in maximizing the ECC function to find the best transformation between two

images [28]. In FastTrack, the ECC registration is restraint to Euclidian motion (translation

Fig 1. FastTrack flow chart. The workflow divides in three mains parts: detection, matching and post-process. The

few steps that require user input are indicated by a . Sample dataset: ZFJ_001.

https://doi.org/10.1371/journal.pcbi.1008697.g001
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and rotation). This method has several assets, as it is invariant with respect to photometric dis-

tortion, performs well in noisy conditions and the solving time is linear, leading to an accept-

able computation time with respect to other optimization algorithms [28] even though it is

slower than the other two methods implemented here. Feature-based registration consists in

finding key points and their descriptors in a pair of images and compute a homography. Then,

the corresponding transformation is applied to all the pixels of one image to perform the regis-

tration. FastTrack uses the automatic ORB feature detector [29] to find approximately 500 key

points in each image. The key points are matched pairwise between the two images using the

Hamming distance. The homography is computed between the matching key points by using

the Random Sample Consensus RANSAC [30] estimation method to minimize errors.

Fig 2 provides a rough comparison of the performance of the three methods. Using two

recordings of the dataset, we benchmarked both the accuracy—with the root mean squared

difference (RMSD) of pixel intensities between the reference and the corrected image—and

the relative computation time. Choosing the right method to obtain the best accuracy depends

on each movie’s characteristics, but one can use the rule of thumb that if the objects to track

occupy a large fraction of the total area then the best accuracy is more likely to be obtained by

using ECC, and by using the features-based method otherwise. However, as shown in Fig 2C

the ECC method is generally slower by an order of magnitude, so we recommend to use the

features-based method in the general case, and a fortiori for long movies.

Fig 2. Image registration. Two recordings with severe drift are used for benchmarking (top: DRO_001, bottom: ULT_001). (A) Comparison of a frame (magenta)

with the first frame (green) and magnification of details in the scene. (B) Root mean square deviation (RMSD) of pixel intensities after registration onto the first image,

averaged over all time frames and normalized by the RMSD without registration, for three registration methods. Error bars: standard deviation across time frames. (C)

Relative average computation time of the three registration methods, normalized by the total number of pixels in the movie (arbitrary units). Error bars: standard

deviation across time frames. Raw data are available in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008697.g002
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Object detection. Object detection is performed by binarizing the difference between the

frames and a background, and filtering the result. At each step, the display is live-updated as

the user changes the parameters to provide a direct visual feedback.

In case the scene can be imaged without objects, or when specific computation are neces-

sary, the background can be provided as a separate image file. Otherwise FastTrack can esti-

mate the background by taking the minimum, maximum or average value of pixels on a subset

of images taken at regular intervals. The user has then to specify the region of interest (ROI) in

the images (default: full image), whether the background is lighter or darker than the objects

to detect and provide a threshold to finalize the binarization.

A collection of standard operations is implemented to filter the binary images: morphologi-

cal operations (erosion, dilatation, closing, opening, gradient, top hat, black hat and hit miss)

with rectangle, cross-shaped or elliptical kernels, and a filter based on the area of the remaining

connex shapes can be used to remove both small artifacts (shapes below the minimal area

threshold) and overlapping objects (shapes above the maximal area threshold). Finally, the

objects’ contours are extracted from the remaining binary shapes by using the algorithm

described in [31].

Kinematic parameters extraction. Kinematic parameters are a collection of scalars that

are extracted from the images in order to feed the matching algorithm. This step is at the core

of any tracking procedure, and a large panel of parameters have been employed previously,

ranging from basic measurements (e.g. position of the center of mass) to more complicated

quantities aimed at identifying uniquely the object to track [13, 32].

Here, to improve speed the matching algorithm is based on quantities that are straightfor-

ward to obtain, namely the position of the center of mass, the angle of the binary object’s main

axis, the area and the perimeter. To extract the position and angle, FastTrack computes the

equivalent ellipse of each object by using the second order image moments as in [33], but for

an even faster implementation we derived it from the contours using the Green’s formula [34].

The object’s orientation is given by the ellipse’s major axis and is only defined in the interval

[0; π[. We determined the directions in the interval [0; 2π[ by projecting the pixels of each

object on the major axis of the equivalent ellipse and calculating the skewness of the distribu-

tion of distances of these projected points to the center of mass. The sign of the skewness is a

robust indicator of the asymmetry of the object along its principal axis.

However, for non-rigid objects this direction can significantly deviate from the direction of

motion. For instance, swimming fish bend their body and the instantaneous direction of

motion is closer to the head’s direction than to the whole body’s (e.g. MED_001, ZFJ_001,

ZFA_001). We thus added as an option the method developed in [35–37] to decompose the

objects in two ellipses—corresponding to the head and tail in the case of fish—and let the user

determine which ellipse is more representative of the direction of motion (S2 Fig).

Matching

In this step, objects on different frames are paired up based on the similarity of their kinematic

parameters. FastTrack uses 4 kinematic parameters (position, direction, area and perimeter) in

a method inspired by [38], which relies on the fact that objects usually change very little in

position or direction between successive frames, as compared to their relative distances and

angular difference.

For each pair of objects (i, j) belonging to distinct time frames, and for each kinematic

parameter, FastTrack computes a cost which is the product of a soft and a hard term (see S3

Fig). This terminology is brought from statistical physics, where particles can have soft, long-

ranged interactions or hard, binary contacts. For instance, with position as kinematic
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parameter the hard term hi;j
r is set to 1 when the distance between i and j is smaller than a given

threshold hr and set to +1 otherwise. The soft term si;j
r is simply computed as the distance dri,j

normalized by a factor sr. Altogether, the complete cost function for a pair (i, j) writes:

ci;j ¼ hi;j
r

dri;j

sr
þ hi;j

a

dai;j

sa
þ hi;j

A

dAi;j

sA
þ hi;j

p

dpi;j

sp
ð1Þ

where dri,j is the distance between i and j, dαi,j is the absolute angular difference between the

directions of i and j defined in the interval [0; π] and dAi,j and dpi,j are the absolute difference

of area and perimeter. If any of the hard thresholds is passed, then ci,j = +1 and the association

is impossible. The soft factors sr, sα, sA and sp are normalization coefficients which represent

the typical changes that an object undergoes between the two frames. In case one would like to

discard a kinematic parameter from the computation, both the hard threshold and the soft fac-

tor have to be set to +1.

The cost matrix can be rectangular if the number of objects is not constant, typically when

there are occlusions, object loss during the detection phase or entries and exits at the bound-

aries of the ROI. Finding the best matching amounts to define the set of pairs that minimizes

the sum of costs for all retained pairs. This problem, sometimes called the rectangular assign-
ment problem, falls into the category of linear assignment problems [39] and can be exactly

solved using the Kuhn-Munkres algorithm [40], also called the Hungarian algorithm. Fast-

Track uses a fast C++ implementation [41] of this algorithm to perform the matching

automatically.

The Kuhn-Munkres algorithm operates only between two time frames, so in strict imple-

mentations when an object disappears the trajectory stops, and if it reappears later on a new

trajectory is created. In order to deal with brief object disappearances we introduce a temporal

hard parameter ht, which is the maximal acceptable time during which an object can be lost. In

practice, all the objects that have not been assigned in the few previous frames (below ht) are

also integrated in the cost matrix for the matching between t and t + 1. They are treated as

pseudo-occurences at time t, though the resulting trajectories are generated such that they

appear at the correct time frame, which is before t. This allows the algorithm to have a kind of

“short-term memory” and manage short disappearances due to detection issues or occlusions

for instance.

In the graphical interface of FastTrack, the user can set up the tracking parameters and pre-

view the tracked trajectories on a selected chunk of the image stack.

Post-processing

Output. FastTrack delivers the tracking result in a single, large text file with one row per

object per frame. This format is convenient since it can be parsed for subsequent analysis with

many external tools. The array contains 23 columns corresponding to the features tracked; the

main features are the position and direction of the object (xBody, yBody, tBody), the

object’s id (id) and the frame index (imageNumber). The other features are self-explanatory

and provided to the user for optional subsequent analysis.

Additionnally, a movie with the tracking overlaid can be created from the Replay panel and

saved in AVI format.

Manual post-processing. The Replay panel can be used to manually correct for errors in

the trajectories. The output text file can be loaded at any time and the display overlays tracking

information like the objects’ indices or short-term anterior trajectories onto the original

frames. Graphical controls as well as a set of keyboard shortcuts provide an efficient
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framework for spotting errors, remove fragments of trajectories and switch indices whenever

necessary.

Results

Processing of the dataset

Being able to track objects in virtually any movie is an overwhelming challenge, and achieving

this with one single software is, to date, utopic. This is primarily due to the versatility of the

imaging conditions which multiply the number of approaches that are needed to correctly per-

form the detection phase. Two main pitfals can be discerned: the variations due to illumination

(e.g. reflections as in GRA_001, shadows as in SOC_001 and TRA_001) and the partial over-

laps between objects (e.g. HXB_001, ZFA_001).

Still, many experimental setups in academia and production lines in industry are designed

to mitigate these issues and it is common to have a uniform, diffuse and constant illumination,

and either a compartimentation, strict two-dimensional confinment or low density of objects

to avoid overlaps. In the TD2 dataset, approximately half of the movies (23, see S1 Table) had

sufficiently good illumination conditions to be tracked directly with FastTrack. The other

movies required an additional pre-processing step, that was performed upstream with custom

Matlab scripts. Severe and frequent overlaps impeded the processing of two movies

(HXB_001 and ZFL_001), that were discarded for the remaining of the analysis.

Then, the workflow performed robustly and we could track the objects in the remaining 39

movies. The Kuhn-Munkres algorithm performs in O(n3) polynomial time [42] so the match-

ing phase is generally fast; on a modern workstation we observed processing peaks at 500

frames/s and it took at most a few minutes with up to more than 2,000 objects in the field of

view over 1,000 frames (GRA_001). We then used the post-processing tools of FastTrack to

manually correct for all remaining errors, and we could achieve a perfect tracking—within the

margin of a few human errors that we may have missed—for all the dataset (S1 Video) in a rea-

sonable time. In the following, we refer to these trajectories as the ground truth trajectories.

Classification of the dataset based on incursions

To characterize and classify the different movies of the dataset, we introduce the notion of

“incursions”. Incursions happen every time an object travels sufficiently between to time

points to exit its own Voronoï cell, defined at the initial time, thus entering one of it’s neigh-

bor’s cell. With this definition the Voronoï cells are static boundaries defined by the initial

frame, and the likelyhood of an incursion highly depends on the timescale τ over which the

displacement is observed (Fig 3A), with τ = 1 corresponding to the time between two succes-

sive frames. On a global scale, the amount of incursions depends on the distribution of dis-

placements but also on the density d (defined as the number of objects per unit area), the

complex statistical properties of the geometry of Voronoï cells and the degree of motion

alignment.

To account for the density, we use the dimensionless reduced displacement r ¼ r
ffiffiffi
d
p

. A

value of ρ = 1 represents the typical distance between two objects, while ρ = 1/2 is the typical

distance for an object to travel before entering a neighbor’s Voronoï cell. Then, for a given dis-

placement ρ we compute the geometric probability of incursion pinc(ρ) by determining the pro-

portion of angles for which incursions occur, on average over a representatively large set of

Voronoï cells. As illustrated in Fig 3B, pinc(ρ) always has a sigmoid shape with an inflection

point close to ρ = 1/2. The precise shape of this function is sensitive to the compacity of the

objects in the scene: if they are sparsely distributed (e.g. PAR_001, ROT_001) then the

PLOS COMPUTATIONAL BIOLOGY FastTrack: An open-source software for tracking varying numbers of deformable objects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008697 February 11, 2021 8 / 19

https://doi.org/10.1371/journal.pcbi.1008697


Voronoï cells are highly heteregeneous and pinc growns slowly, while for dense packings form-

ing an hexagonal pattern (e.g. ACT_002, DRP_001) the cells are stereotyped and pinc

increases steeply. The asymptotic value of pinc for ρ� 1 may not be 1 for systems with reflec-

tive walls and a low number of objects, as show in S4 Fig.

Assuming that the dynamics is uncorrelated with the geometric properties of the Voronoï
cells, the probability of incursion writes:

Pinc ¼

Z 1

0

RðrÞpincðrÞdr ð2Þ

where R(ρ) is the distribution of ρ at the timescale τ. The distribution R(ρ) is shown in Fig 3B

for three values of τ, and a graphical way of calculating Pinc is to take the intersection of the

areas under R(ρ) and pinc(ρ). In the regime where R(ρ) and pinc(ρ) are well-separated, the

resulting value of Pinc are low but also highly sensitive to the amount of swaps in the tracking;

indeed, the swaps create a bump in R at values of ρ close to one that can artificially increase

Pinc of orders of magnitude. So, unless the ground truth trajectories are accessible, in most

Fig 3. Characterization of the TD2 dataset. (A) Illustration of the dynamics at various timescales in ACT_002. The Voronoï cells

(dashed white) and the displacements of a particle at τ = 1, 10 and 100 are overlaid. (B) Geometric probability of incursion pinc (red)

and distribution of the reduced displacement ρ at three different timescales τ (black) in ACT_002. The probability of incursion Pinc
is the intersection of the areas under the two curves. (C) Pinc as a function of τ for the whole dataset (symbols). The solid lines are fits

with a logistic function (see text). (D) Scaling of the reduced quantities Pinc/L as a function of k:logð t
t0
Þ on the standard logistic

sigmoid function (solid black). (E) Classification of the movies in the dataset by increasing values of τ1 as defined by Eq (4), with

fitting parameters determined over a logarithmic scale for Pinc. Movies with τ1 < 1 are undersampled while movies with τ1 > 1 are

oversampled. (F) Comparison of Pinc(τ) for different levels of degradation δ (symbols) and corresponding logistic fits (solid curves)

in ACT_002. (G-I) Evolutions of the fitting parameters L, k and τ0 as a function of the degration δ in ACT_002.

https://doi.org/10.1371/journal.pcbi.1008697.g003
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cases the single value of Pinc at τ = 1 cannot be used as an ad hoc measure for the trackability of

a movie.

A timescale-varying analysis allowed us to extract more robust quantifiers. As pinc(ρ) does

not depend on τ and R(ρ) is shifted to the high values of ρ when τ increases, one can easily

expect that Pinc(τ) has a sigmoid-like shape. We thus computed Pinc for various values of τ: for

τ> 1 we tooks integer values (i.e. keep one frame every τ) while for τ< 1 we linearly interpo-

lated the displacements (i.e. multiplied ρ by τ). We represented the results in Fig 3C for the 39

movies that could be tracked in the dataset. Strikingly, all Pinc followed a logistic curve when τ
is log-scaled so we used fits of the form:

Pinc ¼
L

1þ e� kðlogðtÞ� x0Þ
ð3Þ

and, noting t0 ¼ ex0 , the fitting function can be rewritten as:

Pinc ¼
L

1þ
t0
t

� �k ð4Þ

The fits are shown in Fig 3C, and are valid for all the movies in the dataset. To make all data

collapse on a single master curve, we show in Fig 3D that Pinc/L plotted as a function of

k:logð t
t0
Þ follows the standard logistic sigmoid function f ðxÞ ¼ 1

1þe� x.

An interesting outcome of this approach is the ability to determine the framerate at which

experiments should be performed. It is indeed a recurent experimental question, as high tem-

poral resolution is preferable to reduce the number of incursions and ease the tracking, but

may not always be accessible (e.g. limited sensor rate, intense illumination required as the

exposure time drops) and generates large amounts of images to store and process. We com-

puted τ1, the timescale at which Pinc reaches the inverse of the total number of objects on all

frames Nobj, i.e. the probability of a single incursion in the whole movie. As τ1 defines the onset

of incursions and the possibility of swaps in the tracking procedure, it can be used as an indica-

tor of the sampling quality of each movie. Movies with τ1 < 1 already have incursions at the

current framerate and are thus undersampled, whereas for movies with τ1 > 1 the current fra-

merate can be degraded without triggering incursions, they are oversampled. In addition, τ1 is

directly the resampling factor that one should use to have the minimal movie size without gen-

erating incursions. Using Eq (4), it reads:

t1 ¼ t0ðLNobj � 1Þ
� 1

k ð5Þ

We ordered the values of τ1 in Fig 3E, and it appears that three quarters (30) of the movies

are oversampled; one should not expect any difficulty in the tracking of these movies with

respect to incursions. On the other hand, the 9 undersampled recordings were already known

to be difficult to track; three of them (ACT_003, ACT_004 and GRA_003) have required

specific algorithms for analysis [19, 20, 24] and two (BAC_001, ZFA_001) required dedi-

cated softwares [13, 43, 44].

Then, we tested to what extent this characterization is robust to swaps in the trajectories.

Starting from the ground truth trajectories of ACT_002, we degraded the trajectories by intro-

ducing random swaps between neighboring objects. This process is controlled by a degrada-

tion rate δ, which is the number of artificial swaps divided by the total number of objects on all

frames. Such a degradation affects the small timescales more severely, so the multi-scale

approach takes on its full interest: as depicted in Fig 3F to 3I, the fits of Pinc(τ) are insensitive

to degradation up to a remarkably high level of δ’ 10−3. This means that even a poor-quality
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tracking can be used as an input for this method: as long as the distribution of displacements is

only marginally affected, the output remains unchanged.

Automatic tracking parameters

In this section we detail the procedure used by FastTrack to determine automatically the soft

normalization factors (sr, sα, sA and sp) which, according to Eq (1), allow to compare terms of

very different nature and amplitude into a single cost function. It is therefore intuitive to use

the standard deviation of the increments of each kinematic parameter. However, as one needs

some trajectories in order to estimate the standard deviations, we set up an iterative, rapidly-

converging algorithm.

Let us use ZFJ_001, a movie that is slightly oversampled but with many occlusions and

objects of different sizes to illustrate the details of the algorithm. For the sake of simplicity let

us use here only the position, angle and area as kinematic parameters—it is straightforward to

add the perimeter to the method but there is no gain to expect as the objects shapes are very

similar. A snapshot of this movie is shown in Fig 4A.

Fig 4. Automatic tracking parameters. (A) Snapshot and blow-up of ZFJ_001, with definition of ~dr and dα (B) Scheme of the

algorithm for determining the tracking parameters automatically. (C-E) Distribution of displacements dr (in pixels), angular differences

dα (in radians) and area differences dA (in pixels) when the default parameters of the software are used on ZFJ_001, for τ = 1 (black).

The corresponding χ and Gaussian fits are displayed in red. Orange bars: resulting soft parameters. (F) Evolution of sr, sα and sA with

algorithm iterations for ZFJ_001. Left: iterations 1 and 2; right: iterations 2 and 3. A hundred runs with random initial values are

shown, the run with the software default parameters is highlighted in red. (G) Evolution of Pswap with algorithm iterations, same runs.

(H-J) Evolution of the converged parameters ŝ r , ŝa and ŝA as a function of the timescale τ for ZFJ_001. (K) Comparison between Pswap
(blue crosses) obtained with the converged parameters and Pinc (red dots) for ZFJ_001. The solid black line is the logistic fit of Pinc.

https://doi.org/10.1371/journal.pcbi.1008697.g004
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In order to evaluate the distributions of dr, dα and dA, we start by tracking the movie with

the default parameters of the software. The resulting distributions are shown in Fig 4C to 4E.

Then, for kinematic parameters whose differential values can be positive or negative the distri-

bution is fitted by a Gaussian function and the soft parameter is set at the standard deviation.

For instance with the angular difference dα the fit reads:

f ðdaÞ ¼
1

sa
ffiffiffiffiffiffi
2p
p e

� da2

2s2a ð6Þ

and sα (orange bar in Fig 4D) is stored as the soft parameter to use during the next iteration.

The computation of the soft parameter for displacement sr is different since distances can only

be positive. Assuming that the displacements along the x and y axes follow two independent

Gaussian processes, the resulting displacement follows a χ distribution with 2 degrees of free-

dom and the fit reads:

f ðdrÞ ¼
dr
s2

r

e
� dr2

2s2r ð7Þ

where sr (orange bar in Fig 4C) is stored as the soft parameter to use for the next iteration.

Once all tracking parameters have been derived fom the distributions, the software recom-

putes new trajectories and updates the distributions. This iterative process, depicted in Fig 4B,

is run until the tracking parameters converge. In practice, the convergence is very fast regard-

less of the initial position in the parameters space: we drawn 100 sets of seed parameters from

uniform distributions spanning large intervals and convergence has been attained in a very

few iterations for all parameters (Fig 4F). The convergence criterion implemented in the soft-

ware is that all parameters should vary that less than 10−3 of the corresponding soft parameter.

We then characterized the resulting trackings by computing the amount of swaps with

respect to the ground truth, captured by the probability of swaps:

Pswap ¼
Nswap

Nobj � nap
ð8Þ

with Nswap being the total number of swaps, Nobj the total number of objects on all frames and

nap the number of times a new object appears. If the number of objects is constant and noted

n, then nap = n and Nobj = nT, with T the number of frames in the recording, such that Pswap

simply reads:

Pswap ¼
Nswap

nðT � 1Þ
ð9Þ

Pswap also converges very fast, to a value that is nearly-optimal: for 77% of the parameter

sets Pswap is decreased or remain equal, with an average drop of 0.0119 (155% of the converged

value), while for 23% of the parameter sets Pswap is increased with an average rise of 0.0011

(14% of the converged value). The expected difference is thus −0.0090 (116% of the converged

value) for this movie. The automatic parameters are therefore a very good starting point in the

general case, over which the end user can fine-tune the weights given to the kinetic parameters

to take into account the specificities of each movie.

Then, we computed the converged soft parameters ŝr, ŝa and ŝA for several sampling rates of

τ> 1 (Fig 4H to 4J). We then used these parameters to track the ZFJ_001 movie at different

τ and compute Pswap. A comparison between Pswap and Pinc as a function of τ is shown in Fig

4K. This comparison illustrates that Pswap is a noisier measurement of a movie’s trackability
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than Pinc and confirms that the iterative algorithm produces trajectories with an amount of

errors that is close to the statistical limit.

Parameter optimization

One may also want to determine the tracking parameters that are really optimal with respect

to Pswap. In this case, provided that the ground truth is known (e.g. by a careful manual post-

processing) for at least one movie, it is possible to leverage the speed of FastTrack to explore

the parameters space and minimize Pswap; then the optimized parameters can be used to track

other similar movies with a minimal error rate. The workflow of the method is depicted in

S5(A) Fig. As the exploration of the whole parameters space requires to perform at least thou-

sands of trackings, such an approach is only made possible by the command-line interface

(CLI, see S2 Table) and the speed of execution of FastTrack.

Let us first apply this approach to gain insight into the influence of hr, the maximal distance

allowed for an object to travel before it is considered lost. S5(B) Fig displays how Pswap evolves

as a function of hr for three recordings in the dataset. For low values of hr, Pswap is essentially

imposed by the distribution of the objects’ displacements, since a high number of errors are

generated when the objects are not allowed to move sufficiently. For higher values of hr, the

distribution of the distances to the neighbors—as defined by the Voronoï tesselation—starts to

influence Pswap as the algorithm becomes sensitive to incursions. It can also be more easily

fooled by entries and exits at the boundaries of the region of interest when the number of

objects in the scene varies.

In between, for most recordings there is a gap yielding the minimal probability of error;

this is particularly true when the objects are densely packed, since the distribution of distances

to neighbors is sharper, like for DRP_001 where Pswap drops to zero on a range of hr. The

acquisition framerate also has an important role here: with highly-resolved movies the distri-

bution of displacements is shifted to the left, leading to a clear separation and low values of

Pswap, while for poorly-resolved movies like ZFJ_001 the two distributions overlap and Pswap

is always bound to high values.

Similar analysis can be performed on the other tracking parameters. S5(C) Fig represents

Pswap as a function of both hard parameters hr and ht for PAR_001, and a thin optimal seg-

ment appears. S5(D) Fig represents Pswap as a function of the two soft parameters sr and sα, and

an optimal ratio lies at sr=sa
’ 0:63. Altogether, a set of optimal parameters can be derived and

used for the processing of similar recordings.

Comparison with other softwares

To assess the performance of FastTrack, we ran a benchmark with two state-of-the art tracking

softwares that have been applied to various types of two-dimensional data: idtracker.ai [45]

and ToxTrac [46]. First, it is worth mentionning that these softwares are much more difficult

to install than FastTrack, and that they have strong intrinsic limitations as compared to Fast-

Track: both require a good framerate and image quality, with sufficient contrast and number

of pixels per object, and a constant number of objects in the scene.

The benchmark was thus performed on a dataset constituted of a selection of videos that

were provided with each software and some movies of the TD2 dataset that meet these require-

ments. idtrackerai_video_example and 100Zebra (S4 Video) are available on the

idtracker.ai website (https://idtrackerai.readthedocs.io/en/latest/data.html). Guppy2,

Waterlouse5, and Wingedant on the ToxTrac SourceForge (https://sourceforge.net/

projects/toxtrac/files/ScientificReports/). Movies that were provided in image sequence format

were converted losslessly to video format with FFmpeg since idtracker.ai and ToxTrac were
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not able to process directly image sequences. DRO_002 and ACT_002 were preprocessed

with a custom Matlab script to detect the objects before using the softwares. In addition, only

the first 100 images of DRO_002 were used to reduce the computing time.

The benchmark between idtracker.ai and FastTrack was performed on a workstation with

an Intel i7-6900K (16 cores), 4.0 GHz CPU, an NVIDIA GeForce GTX 1060 with 6GB or

RAM GPU, 32GB of RAM, and a NVMe SSD of 250GB running Arch Linux. The parameters

were set by trials and errors inside the graphical user interface of the two softwares. The track-

ing duration was recorded using the command line interface available for the two software.

The average tracking duration and the standard deviation were averaged over 5 runs except

for DRO_002 (2 runs) and ACT_002 (1 run) due to the very long processing time. Idtracker.

ai was evaluated with and without GPU capability except for 100Zebra, DRO_002, and

ACT_002 due to the very long processing time.

The benchmark between ToxTrac and FastTrack was performed on a computer with an

Intel i7-8565U (4 Cores), 1.99 GHz CPU, 16 GB of RAM, and a NVMe SSD of 1 TB running

Windows10. The parameters were set by trials and errors in the graphical user interface. The

average tracking duration and the standard deviation were averaged over 5 runs using the

built-in timer feature implemented in each software.

The accuracy was evaluated manually using the built-in review feature implemented in

each software. The number of swaps and the number of non-detected objects were counted in

each movie. Occlusion events were ignored in this counting. The accuracy was computed as:

A ¼
nobj � nimg � ð2 � Nswap þ NundetectedÞ

nobj � nimg
ð10Þ

with Nswap the number of swaps, Nundetected the number of non-detected objects, nobj the num-

ber of objects and nimg the number of images. For 100Zebra, the accuracy was computed

only over the 200 first images.

All the results are presented in Fig 5. In terms of speed FastTrack is orders of magnitude

faster than idtracker.ai and significanly faster than ToxTrac on all tested videos. In terms of

accuracy, all softwares performed extremely well, except idtracker.ai on ZFJ_001. FastTrack

had a perfect accuracy on 8 movies out of 11 and always had an accuracy above 99%. In order

to correct for the few errors, the ergonomic post-processing interface of FastTrack can be used

to reach a perfect tracking within a few more minutes. Altogether, FastTrack offers many assets

as compared to idtracker.ai and ToxTrac: it is more versatile and the total time spent to track a

movie is globally lower—in some cases by orders of magnitude—without sacrificing the track-

ing accuracy.

Availability and future directions

The source code of FastTrack is licensed under the GNU GPLv3 and can be downloaded at the

following Github repository: https://github.com/FastTrackOrg/FastTrack. Developers imple-

menting algorithmic improvements or new features are encouraged to submit their code via
Github’s pull request mechanism for inclusion in a forthcoming release.

Pre-built binaries (AppImages) for Windows, Mac and all versions linux can be down-

loaded on the FastTrack website (http://www.fasttrack.sh). We also provide a PPA for Ubuntu

18.04 that ensure proper system integration. The Windows and PPA versions incorporate an

automatic update manager such that users always stay up-to-date with the latest stable release.

For the Mac and Linux AppImages, updates have to be performed manually by downloading

the latest version.
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User’s and developer’s documentation are available on the FastTrack website. A video tuto-

rial for beginners illustrating the complete workflow is available in S2 Video. We also provide

an additional video presenting the post-processing panel in detail (S3 Video).

The FastTrack algorithm only uses past and current information and is relatively fast, so it

is in principle amenable to live tracking. Currenty the software doesn’t natively integrate a live

tracking feature, but it can be integrated inside any C++ project with minimal programming

skills as explained in the developer’s documentation (http://www.fasttrack.sh/API/index.

html).

In the future, we will continue the effort to make the TD2 dataset grow, and greatly encour-

age new submissions from all fields of science. It is a useful basis for the development of gen-

eral-purpose tracking softwares and a convenient material for benchmarking.

Though the software has been designed to process a broad range of systems, there is still

room for improvement both at the detection and matching levels to make it more universal.

For the detection phase, the need for an upstream custom preprocessing step could be greatly

reduced for many movies by the implementation of tools for shadow removal [47] and adapta-

tive thresholds [48]. The separation of the RGB channels for colored images could also be use-

ful in some cases. Then, for the matching phase we plan to allow for the integration of more

kinematic parameters in the computation of the cost matrix. Among the possible improve-

ments we can mention basic shape descriptors like eccentricity or the object’s velocity. In the

latter case, it may be useful to modulate the hard threshold for displacements hr by the previ-

ous values of speed. We also plan to integrate the average intensity level, which could be useful

for tracking fluorescent objects with different levels of expression.

Fig 5. Benchmark of FastTrack, idtracker.ai and ToxTrac. (A-B) Comparison of the computation time for the tracking of various movies with the same workstation.

Whenever possible, CPU and GPU variants of idtracker.ai have been run. Only the first 100 images of DRO_002 have been used. (C-D) Accuracies of the resulting

trackings. “perfect” means an accuracy of exactly 1. The trajectories computed by the CPU and GPU variants of idtracker.ai being rigourously similar, we only show the

results for the GPU. For 100Zebra, the accuracy was computed by taking into account only the first 200 images.

https://doi.org/10.1371/journal.pcbi.1008697.g005
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Finally, in order to overcome the problem of losing the objects when they are clipped by a

boundary or overlapping, we are currently working on an algorithm capable of resolving trun-

cated and overlapping shapes based on a model learned in an unsupervised manner. Ulti-

mately, this will make FastTrack a very complete tool for general tracking purpose.

Supporting information

S1 Table. Two-dimensional tracking dataset. Description and credentials of the data that

have been used for testing the FastTrack software. All movies in the dataset can be downloaded

at http://data.ljp.upmc.fr/datasets/TD2.

(PDF)

S2 Table. User-defined parameters. List of the parameters that can be set in FastTrack for

image processing and automatic tracking, as of version 5.1.7.

(PDF)

S1 Fig. Thumbnails of the TD2 dataset.

(TIF)

S2 Fig. Definition of the kinematic parameters. The raw image is binarized and the binary

shape is described by one or two ellipses. The position (center of mass) and direction (see text)

of the chosen ellipse are used as an input for the matching phase.

(TIF)

S3 Fig. General workflow of cost-based tracking. Depending on the system and recording

conditions, many kinematic parameters can be employed to define the cost matrix. For each

parameter a soft (normalized) and a hard (binarized) terms can be combined and summed to

form the General Cost Matrix. An assignment algorithm is then used to produce the trajecto-

ries.

(TIF)

S4 Fig. Effect of confinment on pinc. The geometric probability of incursion pinc is computed

for a system composed of n punctual objects uniformly distributed at random in a square of

size 1, as a function of the reduced displacement ρ for various values of n (plain). pinc(ρ) is also

shown for a system without walls (dashed); in this case the curve is independent of the density

d.

(TIF)

S5 Fig. Optimization of tracking parameters based on Pswap. (A) Scheme of the optimization

workflow: on top of the detection/matching/post-process flow chart, the ground truth is used

to compute Pswap and create a feedback loop on the tracking parameters. (B) Pswap (black) as a

function of the maximal distance parameter hr (in pixels) for three typical recordings. Vertical

lines for DRP_001 indicate that Pswap drops to 0. The distributions of displacements between

successive frames (blue) and of distances to the neighbors (orange) are also shown for compar-

ison. (C) Pswap as a function of the maximal distance parameter hr (in pixels) and the maximal

disappearance time ht (in frames) for PAR_001. Soft parameters are set to sr = 95 and sα = 60.

(D) Pswap as a function of the normalization distance parameter sr (in pixels) and the normali-

zation angle sα (in degrees) for PAR_001. Hard parameters are set to hr = 210 and ht = 90.

(TIF)

S1 Video. Result of the tracking with FastTrack. Compilation of short sequences extracted

from the 39 recordings of the TD2 dataset that could be tracked with FastTrack. The
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trajectories are overlaid over the original frames.

(MP4)

S2 Video. General usage of the FastTrack software.

(MP4)

S3 Video. Details of the post-processing panel.

(MP4)

S4 Video. Tracking of the 100Zebra movie by FastTrack.

(MP4)

S1 Data. Raw data.

(XLSX)
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Formal analysis: Raphaël Candelier.
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36. Olive R, Wolf S, Dubreuil A, Bormuth V, Debrégeas G, Candelier R. Rheotaxis of Larval Zebrafish:

Behavioral Study of a Multi-Sensory Process. Front Syst Neurosci. 2016; 10:14. https://doi.org/10.

3389/fnsys.2016.00014

37. Jouary A, Haudrechy M, Candelier R, Sumbre G. A 2D virtual reality system for visual goal-driven navi-

gation in zebrafish larvae. Scientific Reports. 2016; 6(34015). https://doi.org/10.1038/srep34015 PMID:

27659496

38. Qian ZM, Wang SH, Cheng XE, Chen YQ. An effective and robust method for tracking multiple fish in

video image based on fish head detection. BMC Bioinformatics. 2016; 17(1):251. https://doi.org/10.

1186/s12859-016-1138-y

39. Martello S, Toth P. Linear Assignment Problems. In: Martello S, Laporte G, Minoux M, Ribeiro C, edi-

tors. Surveys in Combinatorial Optimization. vol. 132 of North-Holland Mathematics Studies. North-Hol-

land; 1987. p. 259–282. Available from: http://www.sciencedirect.com/science/article/pii/

S0304020808732389.

40. Kuhn HW. The Hungarian method for the assignment problem. Naval research logistics quarterly.

1955; 2(1-2):83–97. https://doi.org/10.1002/nav.3800020109

41. Buehren M. Functions for the rectangular assignment problem; 2005. Available from: https://github.

com/mcximing/hungarian-algorithm-cpp.

42. Christos H Papadimitriou KS. Combinatorial Optimization: Algorithms and Complexity. vol. 1 of Mathe-

matical optimization. 2nd ed. Prentice Hall; 1998.

43. Young JW, Locke JCW, Altinok A, Rosenfeld N, Bacarian T, Swain PS, et al. Measuring single-cell

gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nature Protocols.

2012; 7(1). https://doi.org/10.1038/nprot.2012.113 PMID: 23018195
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