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We prove that a harmonic quasi-isometric map between pinched Hadamard surfaces is a quasi-conformal diffeomorphism.

Introduction 1.Main result

The main result of this paper is the following. Theorem 1.1 Let h : S 1 → S 2 be a harmonic quasi-isometric map between pinched Hadamard surfaces. Then, h is a quasi-conformal diffeomorphism.

A pinched Hadamard manifold is a complete simply-connected Riemannian manifold whose curvature satisfies -b 2 ≤ K ≤ -a 2 for some positive constants 0 < a ≤ b. For instance, the hyperbolic disk D is a pinched Hadamard surface with constant curvature -1.

A map f : M 1 → M 2 between two metric spaces is quasi-isometric if there exists a constant c ≥ 1 such that, for every x, x ′ ∈ M 1 ,

c -1 d(x, x ′ ) -c ≤ d(f (x), f (x ′ )) ≤ c d(x, x ′ ) + c. (1.1) 
A smooth map h : M 1 → M 2 between Riemannian manifolds is harmonic if it is a critical point for the Dirichlet energy integral E(h) = |Dh| 2 dv M 1 with respect to variations with compact support.

A diffeomorphism h : M 1 → M 2 between n-dimensional Riemannian manifolds is quasi-conformal, if there exists a constant C > 0 such that Dh n ≤ C |Jac(h)| where Jac(h) := det(Dh) is the Jacobian of h.

A few comments

The special case of Theorem 1.1 where both S 1 and S 2 are the hyperbolic disk D, is due to Li-Tam [START_REF] Li | The heat equation and harmonic maps of complete manifolds[END_REF] and Markovic [START_REF] Markovic | Harmonic maps and the Schoen conjecture[END_REF].

The main issue in Theorem 1.1 is the injectivity of h. The quasi-conformality of h is but our way to prove injectivity.

In Theorem 1.1 we only deal with surfaces. Indeed the analog in higher dimension is not true. A counterexample due to Farrell, Ontaneda and Raghunathan is given in [START_REF] Farrell | Non-univalent harmonic maps homotopic to diffeomorphisms[END_REF].

Given two pinched Hadamard surfaces S 1 and S 2 , there exist many harmonic quasi-isometric maps from S 1 to S 2 (see [START_REF] Benoist | Harmonic quasi-isometric maps II: negatively curved manifolds[END_REF] or Theorem 2.2 below). Theorem 1.1 asserts that all these maps are injective. Theorem 1.1 extends the Schoen-Yau injectivity theorem in [START_REF] Schoen | On univalent harmonic maps between surfaces[END_REF] which says that a harmonic map between two compact Riemannian surfaces with negative curvature, when homotopic to a diffeomorphism, is also a diffeomorphism. This injectivity theorem is used in the parametrization due to J. Sampson and M. Wolf of the Teichmuller space by the Hopf quadratic differentials, see [START_REF] Wolf | The Teichmüller theory of harmonic maps[END_REF] and [START_REF] Jost | Compact Riemann surfaces[END_REF].

From a historical point of view, the first injectivity theorem for harmonic maps is due to Rado-Kneser-Choquet, almost 100 years ago. It states that, in the Euclidean plane, the harmonic extension of an homeomorphism of the unit circle is a diffeomorphism of the unit disk, see [START_REF] Hubbard | Teichmüller theory and applications to geometry[END_REF]Lemma 5.1.10]. The analog statement in dimension d ≥ 3 is not true. A counterexample is given by R. Laugesen in [START_REF] Laugesen | Injectivity can fail for higher-dimensional harmonic extensions[END_REF]. Later on, injective harmonic maps between surfaces were studied by H. Lewy in [START_REF] Lewy | On the non-vanishing of the Jacobian in certain one-to-one mappings[END_REF] who proved that their Jacobian does not vanish, by R. Heinz in [START_REF] Heinz | On certain nonlinear elliptic differential equations and univalent mappings[END_REF] and by J. Jost and H. Karcher in [START_REF] Jost | Harmonic maps between surfaces[END_REF]Chapter 7] who found a lower bound for their Jacobian. There is also an extension of the Schoen-Yau injectivity theorem by J. Jost and R. Schoen that allows some positive curvature in [START_REF] Jost | Harmonic maps between surfaces[END_REF]Chapter 11].

Structure of the paper

In Chapter 2, we recall classical facts concerning Hadamard surfaces, quasi-isometric maps and harmonic maps between surfaces. We will see that we can assume that the source S 1 is the hyperbolic disk D. Recall that the special case of Theorem 1.1 where the target S 2 is the hyperbolic disk D is due to Li-Tam and Markovic. In Chapter 3 we give an overview of the proof of Theorem 1.1. This proof uses a deformation (g t ) of the metric on S 2 , starting with the hyperbolic metric, and a deformation (h t ) of the harmonic map h. The key point will be to obtain a uniform upper bound for the norm of the differential of h t and a uniform lower bound for the Jacobian of h t .

In Chapter 4, we gather compactness results for Hadamard surfaces and harmonic maps.

In Chapter 5, we obtain a uniform lower bound for the Jacobian of harmonic quasi-conformal diffeomorphisms.

In Chapter 6, we prove that the family (h t ) varies continuously with t and we complete the proof of Theorem 1.1.

In Chapter 7, we include a short new proof of the special case of Theorem 1.1 where

S 1 = S 2 = D.
This paper is as self-contained as possible, the main tools being the Bland-Kalka uniformization theorem in [START_REF] Bland | Complete metrics conformal to the hyperbolic disc[END_REF], the Bochner equations for harmonic maps between surfaces in [START_REF] Jost | Compact Riemann surfaces[END_REF], the existence and uniqueness of quasiisometric harmonic maps in [START_REF] Benoist | Harmonic quasi-isometric maps II: negatively curved manifolds[END_REF], and the PDE elliptic regularity in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

Background

We recall well-known properties of pinched Hadamard surfaces, quasi-isometric maps and harmonic maps between surfaces.

Pinched Hadamard surfaces

The first example of a pinched Hadamard surface is the hyperbolic disk D = (D, g hyp ), where D = {|z| < 1} ⊂ C is the unit disk equipped with the hyperbolic metric g hyp = ρ 2 (z)|dz| 2 with conformal factor ρ 2 = 4(1-|z| 2 ) -2 . It is a Hadamard manifold with constant curvature -1.

Any pinched Hadamard surface is conformal to the disk, namely reads as (D, σ 2 (z)|dz| 2 ). Moreover the conformal factors ρ 2 and σ 2 are in a bounded ratio : if the curvature K of this surface satisfies -b 2 ≤ K ≤ -a 2 < 0, then

a 2 σ 2 ≤ ρ 2 ≤ b 2 σ 2 . See Proposition 3.1.
Also observe that, for maps defined on a Riemannian surface S 1 , the Dirichlet energy functional is invariant under a conformal change of metric on S 1 . Hence, the harmonicity of such a map depends only on the conformal class of the source surface.

We infer from this discussion that, to prove Theorem 1.1, we can assume that S 1 is the hyperbolic disk D.

Quasi-isometric maps

Let S = (D, σ 2 (z)|dz| 2 ) be a pinched Hadamard surface. It is a proper Gromov hyperbolic space (a general reference for Gromov hyperbolic spaces is [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF]). The boundary at infinity ∂ ∞ S of S is defined as the set of equivalence classes of geodesic rays, where two geodesic rays are identified whenever they remain within bounded distance from each other. The union S = S ∪ ∂ ∞ S provides a compactification of S (see [START_REF] Ballmann | Lectures on spaces of nonpositive curvature[END_REF]). A quasi-isometric map f : D → S admits a boundary value at infinity

∂ ∞ f : ∂ ∞ D → ∂ ∞ S,
that we read as ∂ ∞ f : S 1 → S 1 through the above identifications. Two quasi-isometric maps share the same boundary value at infinity if and only if they remain within bounded distance from each other. The maps ϕ : S 1 → S 1 that appear as boundary values at infinity of quasi-isometric maps f : D → S are exactly the quasi-symmetric homeomorphisms. For convenience, we identify S 1 with R/2πZ.

Definition 2.1 Let k ≥ 1. An homeomorphism ϕ : S 1 → S 1 is a k-quasi- symmetric map if 1 k ≤ ϕ(θ + α) -ϕ(θ) ϕ(θ) -ϕ(θ -α) ≤ k (2.1)
holds for every θ, α with 0 < α ≤ π.

Note that any quasi-isometric map f : D → S is actually a quasiisometry. Namely, there exists C > 0 such that d(y, f (D)) ≤ C holds for all y in S. Indeed, the inverse ϕ -1 of its boundary map is also a quasi-symmetric homeomorphism, hence ϕ -1 is the boundary map of a quasi-isometric map f ′ : S → D, and the map f • f ′ : S → S is within bounded distance from the identity map.

In a previous paper, we studied harmonic quasi-isometric maps between pinched Hadamard manifolds. Our result, when specialized to surfaces, asserts that any quasi-isometric map f : D → S has the same boundary value at infinity as a unique harmonic quasi-isometric map. In other words, the following holds. Theorem 2.2 [START_REF] Benoist | Harmonic quasi-isometric maps II: negatively curved manifolds[END_REF] Let S = (D, σ 2 (z)|dz| 2 ) be a pinched Hadamard surface and ϕ : S 1 → S 1 be a quasi-symmetric map. Then, there exists a unique harmonic quasi-isometric map h : D → S such that ∂ ∞ h = ϕ.

Harmonic maps between surfaces

We introduce some notation that will be used throughout the paper, and recall some classical results concerning harmonic maps between surfaces. A general reference for this section is Jost [START_REF] Jost | Compact Riemann surfaces[END_REF]. Let h : D → S be a smooth map from the hyperbolic disk D = (D, ρ 2 (z)|dz| 2 ) to a pinched Hadamard surface S = (D, σ 2 (z)|dz| 2 ) with pinching condition -b 2 ≤ K ≤ -a 2 < 0. Recall that the curvature K of S is given by

K = -σ -2 ∆ e log σ
where ∆ e = 4∂ z ∂ z is the Euclidean Laplacian. For such a map h, we introduce as usual the functions h z , h z : D → C defined by

h z = 1 2 (h x -ih y ), h z = 1 2 (h x + ih y )
where the conformal parameter reads as z = x + iy, and the subscript x or y indicates a directional derivative. The map h is holomorphic (or antiholomorphic) if h z = 0 (or h z = 0). It is worth noting that h z = hz .

Proposition 2.3 [15, Section 3.6] The map h : D → S is harmonic if and only if it satisfies

h z z + 2 ( σ z σ • h) h z h z = 0 .
If the map h is either holomorphic, or anti-holomorphic, then it is harmonic.

Introduce the square norms of the complex derivatives of h :

H = ∂h 2 := σ 2 • h ρ 2 |h z | 2 and L = ∂h 2 := σ 2 • h ρ 2 |h z | 2 ,
so that one has Dh 2 = H + L. Observe that h is a local diffeomorphism if the Jacobian J = H -L does not vanish, and is moreover orientation preserving if J > 0.

Lemma 2.4 [15, Section 3.10] Let h : D → S be a harmonic map. On the open subsets where they are non zero, the functions H and L satisfy the Bochner equations

(1/2) ∆ log H = (-K • h) J -1 , (2.2) 
(1/2) ∆ log L = ( K • h) J -1 . (2.3) 
Here ∆ = 4 ρ -2 ∂ z ∂ z is the Laplace operator relative to the hyperbolic metric. On the open set Ω := {h z = 0}, we introduce the conformal distortion µ : Ω → C by letting h z = µh z , so that one has the useful equalities

|µ| 2 = L/H , 1 -|µ| 2 = J/H and 1 -|µ| 2 1 + |µ| 2 = J Dh 2 .
(2.4)

A family of metrics and harmonic maps

In this section we explain the continuity method that will be used to prove Theorem 1.1.

Let S = (D, σ 2 (z)|dz| 2 ) be a pinched Hadamard surface, with curvature bounds -b 2 ≤ K ≤ -a 2 < 0. Choose an increasing quasi-symmetric homeomorphism ϕ : S 1 → S 1 , and let h : D → S be the unique harmonic quasi-isometric map with boundary value at infinity ∂ ∞ h = ϕ. We want to prove that h is a quasi-conformal diffeomorphism.

In case the surface S is the hyperbolic disk, that is for a harmonic quasiisometric map h : D → D, the result is due to Li-Tam and Markovic (see Chapter 7 for a proof). To prove it for a harmonic map h : D → S with values in a general pinched Hadamard surface S, we use the method of continuity, involving a family of pinched Hadamard surfaces S t = (D, e 2ut g hyp ), for 0 ≤ t ≤ 1, starting with S 0 = D and such that S 1 = S.

Construction of the metrics g t

We construct the metric g t by prescribing its curvature.

More specifically, we introduce for 0 ≤ t ≤ 1 the unique complete conformal metric g t = e 2ut g hyp on the unit disk D with curvature K t := -(1-t)+tK. Each function K t being pinched between two negative constants, the existence and uniqueness of such a metric is granted by the following. Proposition 3.1 [START_REF] Bland | Complete metrics conformal to the hyperbolic disc[END_REF] Let k be a smooth function on the unit disk D such that -β 2 ≤ k ≤ -α 2 for some constants 0 < α ≤ β. Then, there exists a unique complete conformal metric g = e 2u g hyp on D with curvature k. Moreover, the conformal factor e 2u is controlled, with β -2 ≤ e 2u ≤ α -2 .

We do not reproduce here the proof that is given in [START_REF] Bland | Complete metrics conformal to the hyperbolic disc[END_REF] and that relies on the sub-supersolution method for the curvature equation

∆u = (-k) e 2u -1 , (3.1) 
where, as above, ∆ is the Laplace operator for the hyperbolic metric g hyp . The proof also uses the generalized maximum principle of Yau in [START_REF] Yau | Harmonic functions on complete Riemannian manifolds[END_REF]. We will need later a light form of this principle that reads as follows.

Lemma 3.2 Let v : S → R be a smooth function defined on a pinched Hadamard surface S. Assume that v is bounded above.

Then, there exists a sequence

(x n ) in S such that v(x n ) → sup S v, |∇v|(x n ) → 0 and lim sup ∆v(x n ) ≤ 0. (3.2)
Proof We can assume that sup S v = 1. We fix a point x 0 ∈ S where this supremum is not achieved and we introduce the function v n on S given by v n (x) = v(x) e -d(x,x 0 )/n . This function is smooth, except maybe at x 0 , and it achieves its supremum at a point

x n = x 0 for n large. This sequence (x n ) satisfies (3.2) since v n (x n ) → 1, ∇v n (x n ) = 0 and ∆v n (x n ) ≤ 0.

Construction of the harmonic maps h t

We construct the harmonic map h t by prescribing its boundary map.

By construction, one has D = (D, g 0 ) and S = (D, g 1 ). For 0 ≤ t ≤ 1, we let h t : D → S t be the unique harmonic quasi-isometric map whose boundary value at infinity is ϕ : S 1 → S 1 . Recall that the existence and uniqueness of those h t are granted by Theorem 2.2.

Here are some basic information concerning these harmonic maps

h t . For 0 ≤ s, t ≤ 1, let d(h s , h t ) := sup z∈D d(h s (z), h t (z)
) denote the uniform distance between these two maps, where the distance is taken with respect to the hyperbolic metric g hyp on the target.

Lemma 3.3 There exists c * > 0 such that, for all t ∈ [0, 1], the map h t is c * -quasi-isometric, one has d(h t , h 0 ) ≤ c * , and the map h t is c * -Lipschitz.
Remark that, since the functions u t are uniformly bounded (Proposition 3.1), it was not really necessary to specify with respect to which one of the metrics g t the above distances were being estimated.

Proof As explained in Section 2.2, there exists a c-quasi-isometric map f : D → D whose boundary value at infinity is our quasi-symmetric map ∂ ∞ f = ϕ. By taking a larger constant c, we may assume that each map f : D → S t (that is, the same map f now seen with values in one of the Riemannian surfaces S t , with t ∈ [0, 1]) is c-quasi-isometric.

Thus the main result of [START_REF] Benoist | Harmonic quasi-isometric maps II: negatively curved manifolds[END_REF] asserts that there exists a constant C > 0 such that d(f, h t ) ≤ C. This constant C depends only on c and on the pinching constants a and b, hence it does not depend on t ∈ [0, 1]. Thus the first two claims hold if c * ≥ 2c + 2C.

The map f being c-quasi-isometric, each harmonic map h t : D → S t sends any ball B(z, 1) ⊂ D with radius 1 inside the ball B(h t (z), R) ⊂ S t with radius R = 2c + 2C. Now the uniform Lipschitz continuity of the maps h t follows from the Cheng lemma, that we recall below. Lemma 3.4 [START_REF] Cheng | Liouville theorem for harmonic maps[END_REF] Let S be a Hadamard surface with -b 2 ≤ K ≤ 0. There exists a constant κ, that depends only on b, such that if a harmonic map h : D → S satisfies h(B(z, 1)) ⊂ B(h(z), R) for some radius R, then Dh(z) ≤ κ R .

An injectivity criterion

The following lemma tells us that a uniform lower bound for the Jacobian J t = Jac(h t ) is enough to ensure that h t is a quasi-conformal diffeomorphism.

Lemma 3.5 If inf z∈D J t (z) > 0 then h t is a quasi-conformal diffeomorphism.
Proof By assumption the Jacobian J t does not vanish, hence the map h t : D → S t is a local diffeomorphism. By construction, the map h t is quasiisometric, hence it is a proper map. It thus follows that h t is a covering map. Hence, since S is simply connected, the map h t is a diffeomorphism. Since, by Lemma 3.4, h t is Lipschitz, the lower bound for its Jacobian J t ensures that h t is quasi-conformal.

Strategy of proof of Theorem 1.1

We will need the following two propositions. Proposition 3.6 There exists j * > 0 such that, for all t ∈ [0, 1] for which h t is a quasi-conformal diffeomorphism, one has J t ≥ j * . Proposition 3.6 is a straightforward consequence of Proposition 5.2 that will be proven in Chapter 5. Indeed Lemma 3.3 ensures that the maps h t are c * -Lipschitz.

Let C b (D, R) be the space of bounded continuous functions ψ endowed with the sup norm :

ψ ∞ = sup z∈D |ψ(z)|. Proposition 3.7 The map t ∈ [0, 1] → J t ∈ C b (D, R) is continuous.
Proposition 3.7 will be proven in Chapter 6 as part of Proposition 6.2 .

Proof of Theorem 1.1 using Propositions 3.6 and 3.7 Let A be the set of parameters t ∈ [0, 1] such that the harmonic map h t : D → S t is a quasi-conformal diffeomorphism. We want to prove that 1 ∈ A. We already know that 0 ∈ A (this is Theorem 7.1 due to Li-Tam and Markovic). It is enough to check that A is open and closed. Let j be the function on [0, 1] given by j(t) := inf

z∈D J t (z) ∈ R.
By Proposition 3.7 the function j is continuous. By Lemma 3.5 and Proposition 3.6, one has both

A = j -1 (]0, ∞[) and A = j -1 ([j * , ∞[).
Hence A is both open and closed.

Sequences of metrics and harmonic maps

In order to obtain the uniform lower bounds in Chapter 5, or the continuity properties in Chapter 6, we will have to consider sequences of conformal metrics on the unit disk D, and sequences of harmonic maps. In this chapter, we state compactness results for such sequences.

These compactness results also hold in higher dimension (see [START_REF] Petersen | Riemannian geometry[END_REF], or [START_REF] Benoist | Harmonic quasi-isometric maps II: negatively curved manifolds[END_REF]). Since we will only deal here with conformal metrics on the disk D, the complex parameter z ∈ D naturally provides a global harmonic chart for these metrics so that the statements and the proofs are more elementary.

Sequence of Hadamard surfaces

Let us begin with sequences of conformal Riemannian structures on the unit disk D.

Convergence in the following lemma is a special case of the Gromov-Hausdorff convergence for isometry classes of pointed proper metric spaces using the base point 0 ∈ D. See [4, §5.3] or [START_REF] Burago | A course in metric geometry[END_REF] for a short introduction to this notion.

Lemma 4.1 Let g n = e 2un g hyp be a sequence of complete conformal metrics on the unit disk D with curvature -b 2 ≤ K n ≤ -a 2 < 0. Then there is a subsequence of (u n ) that converges to a C 1 function u ∞ in the C 1 loc topology. The limit metric g ∞ = e 2u∞ g hyp is a C 1 complete conformal metric on D, and S ∞ := (D, g ∞ ) is a CAT-space with curvature between -b 2 and -a 2 .

Proof Proposition 3.1 ensures that the logarithms u n : D → R of the conformal factors are uniformly bounded. The curvature equation

∆u n = (-K n ) e 2un -1 (3.1 n )
for g n ensures that the Laplacians ∆u n are also uniformly bounded. Pick 0 ≤ α < 1. We may now apply to the sequence (u n ) the following first Schauder estimates (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 3.9] or [START_REF] Petersen | Riemannian geometry[END_REF]Theorem 70]). These estimates state that there exists a constant c such that, for any smooth function v : D → R on the hyperbolic disk, the inequality

v C 1,α (B 1 ) ≤ c α ( ∆v C 0 (B 2 ) + v C 0 (B 2 ) ) (4.1)
holds for any pair of concentric hyperbolic balls B 1 ⊂ B 2 ⊂ D with respective radii 1 and 2. This provides a uniform local bound for the norms u n C 1,α .

Going if necessary to a subsequence, we may thus assume that the sequence (u n ) converges in the C 1 loc topology. Let u ∞ = lim u n and g ∞ = e 2u∞ g hyp and introduce S ∞ = (D, g ∞ ). As a limit of such, the length space S ∞ is a CAT-space with curvature between -b 2 and -a 2 (see [6, Corollary II.3.10] and [7, Theorem 10.7.1]).

Remark Under the hypothesis of Lemma 4.1, after extraction, the sequence of bounded functions K n : D → R converges weakly to a bounded measurable function

K ∞ : D → R with -b 2 ≤ K ∞ ≤ -a 2 , and the C 1 function u ∞ is a weak solution of ∆u ∞ = (-K ∞ ) e 2u∞ -1 . (3.1 ∞ )

Sequence of harmonic maps

Now turn to sequences of maps between such Riemannian surfaces. Proof Observe that, on any fixed compact set, the maps h n : D → S ∞ are c n -Lipschitz for some constants c n converging to c. Indeed these are the initial maps h n , albeit with the limit metric on the target. Since we assumed that d n (h n (0), 0) ≤ c, these maps h n are locally uniformly bounded (this means locally in z and uniformly in n). It thus follows from the Ascoli lemma that we may assume the sequence (h n ) to converge uniformly on compact sets to a c-Lipschitz map h ∞ : D → S ∞ . a) If all h n : D → S n are C-quasi-isometric, then, on any fixed compact set, the maps

h n : D → S ∞ are C n -quasi-isometric for some constant C n converging to C, and so h ∞ is C-quasi-isometric. b) Now assume that each map h n : D → S n is harmonic, namely that each function h n : D → D ⊂ C satisfies the equation (h n ) z z + 2 ((u n ) z • h n ) (h n ) z (h n ) z = 0 . (4.2)
We want to prove that h ∞ is harmonic, namely that it is C 2 and satisfies

(h ∞ ) z z + 2 ((u ∞ ) z • h ∞ ) (h ∞ ) z (h ∞ ) z = 0 . (4.
3)

The maps h n : D → S n are c-Lipschitz, so that all the derivatives (h n ) z and (h n ) z are locally uniformly bounded. We have seen in the proof of Lemma 4.1 that the gradients ∇u n are locally uniformly bounded, hence (u n ) z • h n are locally uniformly bounded. Then (4.2) ensures that the functions ∆h n are also locally uniformly bounded. We apply the first Schauder estimates (4.1) to the functions v = h n . This implies that, for 0 < α < 1, the functions h n are uniformly bounded in the C 1,α loc topology. Plugging this information in (4.2), and remembering from the proof of Lemma 4.1 that the gradients ∇u n are also uniformly bounded in the C α loc topology, we see that the functions ∆h n are uniformly bounded in the C α loc topology. We will now apply the second Schauder estimates to the functions v = h n (see [START_REF] Petersen | Riemannian geometry[END_REF]Theorem 70]). With the same notation as (4.1), these estimates state

v C 2,α (B 1 ) ≤ c α ∆v C α (B 2 ) + v C 0 (B 2 ) . (4.4)
Hence the functions h n are uniformly bounded in the C 2,α loc topology.

Therefore (h n ) admits a subsequence which converges in the C 2 loc topology. This proves that h ∞ is C 2 and going to the limit in (4.2) ensures that the limit map h ∞ is harmonic, as claimed.

A lower bound for the Jacobian

In this section we provide a lower bound for the Jacobian J t of h t when h t is a quasi-conformal diffeomorphism (Proposition 3.6).

The notation are those of Section 2.3 : S is a pinched Hadamard surface and h : D → S is an harmonic map. We assume moreover that h is an orientation preserving diffeomorphism. The Jacobian of h, which is J = H -L with H := ∂h 2 and L := ∂h 2 , is positive. The function w := 1 2 log H satisfies Equation (2.2), that we may also write as

∆w = (-K • h) (1 -|µ| 2 ) e 2w -1 , (5.1) 
where µ := h z /h z is the conformal distortion. By (2.4) the diffeomorphism h is quasi-conformal if and only if there exists a δ < 1 such that |µ| ≤ δ.

Controlling the norm of the differential

The next lemma tells us that the norm of the differential Dh of a harmonic quasi-conformal diffeomorphism is uniformly bounded below (see also [START_REF] Wan | Constant mean curvature surface, harmonic maps, and universal Teichmüller space[END_REF]). Proof Introduce the conformal metric g = e 2w g hyp on D. We first prove that g is complete with pinched negative curvature. Proposition 3.1 will then provide the lower bound on w.

Let S = (D, σ 2 (z)|dz| 2 ). The map h : D → S being a diffeomorphism and S being complete, the pull back metric 2 and |µ| ≤ 1, one easily checks that G ≤ 4g. This ensures that the metric g is complete.

G = h * (σ 2 (z)|dz| 2 ) is complete. This pull-back metric reads as G = (σ 2 • h)|h z | 2 |dz +µdz| 2 . Since one has g = (σ 2 • h)|h z | 2 |dz|
Comparison of Equation (5.1) satisfied by w and the curvature equation (3.1) yields that the metric g has curvature K

= (K • h)(1 -|µ| 2 ). It follows that -b 2 ≤ K ≤ -a 2 (1 -δ 2 ) < 0, where δ := µ ∞ < 1. Proposition 3.1 thus ensures that w satisfies b -2 ≤ e 2w ≤ a -2 (1 -δ 2 ) -1 .

Controlling the Jacobian

The following proposition tells us that the Jacobian of a harmonic quasiconformal diffeomorphism is controlled by its Lipschitz constant. Proposition 5.2 Let 0 < a ≤ b. Then, for every c > 0, there exists j * = j * (a, b, c) > 0 such that, if S is a pinched Hadamard surface with curvature -b 2 ≤ K ≤ -a 2 , the Jacobian J of any c-Lipschitz quasi-conformal harmonic diffeomorphism h : D → S satisfies J ≥ j * .

Proof Assume by contradiction that there exist a sequence of pinched Hadamard surfaces S n = (D, e 2un g hyp ) with curvatures -b 2 ≤ K n ≤ -a 2 , a sequence h n : D → S n of c-Lipschitz harmonic quasi-conformal diffeomorphisms and a sequence (x n ) of points of D such that the Jacobian J n of h n satisfy J n (x n ) → 0.

Choosing sequences (γ n ) and (γ ′ n ) of isometries of the hyperbolic disk such that γ n (x n ) = 0 and γ ′ n (h n (x n )) = 0, and replacing u n by

u n • γ ′ n -1
and h n by γ ′ n h n γ -1 n , we can assume that x n = 0 and h n (x n ) = 0. By Lemmas 4.1 and 4.2, going to a subsequence, one may assume that : First step We claim that |µ ∞ | ≡ 1. Indeed, we introduce the non negative C 1 functions ℓ n := -log |µ n | 2 defined on Ω n := {µ n = 0} and their limit ℓ ∞ := -log |µ ∞ | 2 , which is defined on Ω ∞ := {µ ∞ = 0}. By assumption, the function ℓ ∞ is a non-negative function that achieves its minimum ℓ ∞ (0) = 0 at the origin. We will prove that the set {ℓ

-the sequence (u n ) converges to a C 1 function u ∞ in the C 1 loc topology. -the sequence (h n ) converges to a C 2 map h ∞ in the C 2 loc topology. Recall from (2.4) that J n = (1 -|µ n | 2 )e 2wn where µ n = (h n ) z /(h n ) z
∞ = 0} is open in Ω ∞ , so that ℓ ∞ ≡ 0 as claimed.
The function ℓ n satisfies the equation on Ω n , difference of (2.2) and (2.3):

∆ℓ n = 4 (-K n • h n ) (1 -e -ℓn ) e 2wn . (5.3) Since |K n | ≤ b 2 ,
1-e -ℓn ≤ ℓ n and e 2wn ≤ c 2 , we infer that

∆ℓ n ≤ 4b 2 c 2 ℓ n .
Hence ℓ ∞ is a C 1 function on Ω ∞ that satisfies in the weak sense

∆ℓ ∞ ≤ 4b 2 c 2 ℓ ∞ .
In particular, one has bounds ∆ e ℓ ∞ ≤ C K ℓ ∞ on compact sets K of Ω ∞ and, by Lemma 5.3 below, the set {ℓ ∞ = 0} is open. This proves |µ ∞ | ≡ 1.

Second step

We reach a contradiction. We recall that the functions w n satisfy (5.1), namely

∆w n = (-K n • h n ) (1 -|µ n | 2 ) e 2wn -1 .
Since the functions (-K n • h n ) and e 2wn are uniformly bounded and since lim n→∞ |µ n | = 1, the limit function w ∞ = lim w n satisfies ∆w ∞ = -1 in the weak sense. In particular w ∞ is smooth. Note also that (5.2) yields the lower bound w ∞ ≥ log b -2 .

In conclusion, w ∞ is a smooth function on D which is bounded below and satisfies ∆w ∞ = -1. By the generalized maximum principle of Lemma 3.2, such a function w ∞ does not exist. Contradiction.

In the previous proof we have used the following lemma as in [START_REF] Heinz | On certain nonlinear elliptic differential equations and univalent mappings[END_REF]. Proof We can assume that ℓ(0) = 0. By a standard convolution argument, in a small ball B(0, R) ⊂ Ω, we can write ℓ as a uniform limit of non-negative C 2 -functions ℓ n that also satisfy ∆ e ℓ n ≤ Cℓ n .

( The Green representation formula (see Hörmander [13, p.119]) gives

ℓ n (0) = M n (r) - 1 2π B(0,r) ∆ e ℓ n (y) log r |y| dy .
Since ℓ n converges uniformly to ℓ and ℓ(0) = 0 we infer, using (5.4), that

M (r) ≤ C 2π B(0,r) ℓ(y) log r |y| dy , so that, for every r ≤ R, M (r) ≤ C R 2 4 sup [0,R] M (t) .
Choosing R 2 < 4/C, we obtain that ℓ ≡ 0 on the ball B(0, R).

Continuity of the Jacobian

In this section we prove that the metrics g t , the harmonic maps h t and their Jacobians J t depend continuously on t, thus proving Proposition 3.7.

A continuous family of metric

In Chapter 3, we introduced pinched Hadamard surfaces S t = (D, e 2ut g hyp ) with curvature

K t = (t -1) + tK, where -b 2 ≤ K ≤ -a 2 < 0 (t ∈ [0, 1]).
In particular, S 0 = D. We have seen that all the metrics g t are uniformly bi-Lipschitz to each other. This means that the functions u t : D → R are uniformly bounded. Lemma 6.1 tells us that they are uniformly bounded in norm C 1 and that the map t ∈ [0, 1] → u t ∈ C 1 is continuous. Here the gradients ∇, as well as their norms, are taken with respect to the hyperbolic metric g hyp . Lemma 6.1 There exists a constant c such that, for every 0 ≤ t ≤ 1

u t ∞ + ∇u t ∞ ≤ c (6.1) 
u t -u s ∞ + ∇(u t -u s ) ∞ ≤ c |t -s| . (6.2) 
Proof We argue as in the proof of Lemma 4.1. Let us first prove (6.1). Each conformal factor e 2ut is solution of the curvature equation (3.1), here

∆u t = (-K t ) e 2ut -1 . (6.3) 
Since the metrics g t are complete, and the K t satisfy a uniform pinching condition -B 2 ≤ K t ≤ -A 2 < 0 for all 0 ≤ t ≤ 1, Proposition 3.1 ensures that the functions u t are uniformly bounded. Plugging into (6.3), we infer that the Laplacians ∆u t are also uniformly bounded. Hence the Schauder estimates (4.1) with α = 0 and v = u t yield the uniform bound (6.1).

We now prove (6.2). Using the curvature equations (6.3) satisfied by u s and u t (0 ≤ s < t ≤ 1), we obtain

∆(u t -u s ) = (K s -K t )e 2ut + K s (e 2us -e 2ut )
that we rewrite as :

∆(u t -u s ) = (s -t)(1 + K)e 2ut + (-K s ) (e 2ut -e 2us ) . (6.4) 
Since the functions u t are uniformly bounded, there exists a constant m 0 > 0, such that one has

|u t -u s | ≤ m 0 |e 2ut -e 2us | for all s, t in [0, 1].
The generalized maximum principle applied to u t -u s combined with (6.4) ensures the existence of a constant c such that u t -u s ∞ ≤ c |t -s| for every s, t in [0, 1].

Plugging this information into (6.4) yields a similar bound for ∆(u t -u s ), and (6.2) follows from the Schauder estimates (4.1) with v = u t -u s .

Remark Since the curvature function K is smooth, one could improve Lemma 6.1 and prove that all u t are smooth and that, for all p ≥ 2 the maps t ∈ [0, 1] → u t ∈ C p loc is continuous. But the p th derivatives of u t might not be bounded.

A continuous family of harmonic maps

Recall that we have natural identifications ∂ ∞ S t ≃ S 1 . We fix an increasing quasi-symmetric homeomorphism ϕ : S 1 → S 1 . In Chapter 3, we introduced the unique harmonic quasi-isometric map h t : D → S t with boundary value at infinity

∂ ∞ h t = ϕ.
Here are the continuity properties of this family of maps h t that we used in the proof of Theorem 1.1.

Proposition 6.2 (a) The map t ∈ [0, 1] → h t ∈ C(D, D) is continuous. (b) The map t ∈ [0, 1] → J t ∈ C b (D, R) is continuous. This means that lim s→t d(h s , h t ) = 0 and lim s→t J s -J t ∞ = 0, for all t ∈ [0, 1].
Proof Assume this is not the case. Then there exist a sequence (t n ) in [0, 1] and a sequence (x n ) of points in D such that

lim n→∞ d(h tn (x n ), h t (x n )) > 0 or lim n→∞ |J tn (x n ) -J t (x n )| > 0 . (6.5)
We want to get a contradiction by applying Lemmas 4.1 and 4.2 to recentered surfaces and recentered harmonic maps. We thus choose sequences (γ n ) and (γ ′ n ) of isometries of the hyperbolic disk D such that γ n (x n ) = 0 and γ ′ n (h t (x n )) = 0. Let S n = (D, g n ) and S ′ n = (D, g ′ n ) be the conformal surfaces where g n = e 2un g hyp and g ′ n = e 2u ′ n g hyp with

u n := u t • γ ′ n -1 and u ′ n := u tn • γ ′ n -1 .
By Lemma 4.1 we may assume, after extraction, that the sequence (u n ) converges to a C 1 function u ∞ in the C 1 loc topology, and that the limit

C 1 metric space S ∞ := (D, e 2u∞ ) is a CAT space with pinched curvature -b 2 ≤ K ∞ ≤ -a 2 < 0.
By Lemma 6.1, one has

lim n→∞ u ′ n -u n ∞ + ∇u ′ n -∇u n ∞ = 0 .
Hence the sequence (u ′ n ) also converges in the C 1 loc topology to the function u ∞ . We now introduce the sequence of maps

h n := γ ′ n • h t • γ -1 n : D → S n , (6.6) 
h ′ n := γ ′ n • h tn • γ -1 n : D → S ′ n . (6.7) 
These maps h n and h ′ n are harmonic and (6.5) can be rewritten as lim

n→∞ d(h n (0), h ′ n (0)) > 0 or lim n→∞ |J n (0) -J ′ n (0)| > 0 , (6.8) 
where J n is the Jacobian of h n and J ′ n the Jacobian of h ′ n . By Lemma 3.3, all these maps h n and h ′ n are uniformly Lipschitz and uniformly quasiisometric. Hence Lemma 4.2 ensures that, after extraction, the sequences (h n ) and (h ′ n ) converge respectively, in the C 2 loc topology, to harmonic quasiisometric maps h ∞ , h ′ ∞ : D → S ∞ . Since Lemma 3.3 also asserts that d(h n , h ′ n ) ≤ 2 c * for all n, the limit harmonic quasi-isometric maps h ∞ , h ′ ∞ : D → S ∞ are within bounded distance from each other. Then the uniqueness theorem for quasi-isometric harmonic maps in [4, §5] ensures that h ∞ = h ′ ∞ . This contradicts (6.8). This also ends the proof of both Proposition 3.7 and Theorem 1.1.

The injectivity theorem in constant curvature

This chapter is an appendix in which we prove the injectivity theorem 7.1 that we used as a starting point in the proof of our main theorem 1.1. This theorem is an output of Markovic solution of the Schoen conjecture in [START_REF] Markovic | Harmonic maps and the Schoen conjecture[END_REF]. It relies on a previous injectivity result of Li-Tam in [START_REF] Li | The heat equation and harmonic maps of complete manifolds[END_REF] when the boundary map of h is smooth, which is Proposition 7.4 below. The proof of Li-Tam itself relies on the Schoen-Yau injectivity theorem in [START_REF] Schoen | On univalent harmonic maps between surfaces[END_REF].

The Li-Tam-Markovic injectivity theorem

We would like to give in this appendix a short new proof of Theorem 7.1 that does not rely on this Schoen-Yau theorem and that uses instead a continuity method combined with a simple topological fact (Lemma 7.8).

Proof The proof will last till the end of this appendix. We know (see Section 2.2) that the boundary value ϕ

= ∂ ∞ h : S 1 → S 1 is a k-quasi- symmetric homeomorphism of S 1 = ∂ ∞ D,
where k depends only on the constant c of quasi-isometry of h. For k ≥ 1, we introduce the set

M k = { k-quasi-symmetric homeomorphism ϕ : S 1 → S 1 } equipped with the uniform distance d(ϕ 1 , ϕ 2 ) = sup ξ∈S 1 |ϕ 1 (ξ) -ϕ 2 (ξ)|.
We also know that, for all ϕ in M k , there exists a unique harmonic quasi-isometric map h ϕ : D → D whose boundary map is ϕ. We want to prove that all these maps h ϕ are quasiconformal diffeomorphisms. This will follow from the next Lemma 7.2, Proposition 7.3 and Proposition 7.4.

for n ∈ N ∪ {∞}. Since D is δ-hyperbolic for a constant δ > 0, each Gromov product (ϕ n (ξ), ϕ ∞ (ξ)) 0 is bounded below by min[ (ϕ n (ξ), f n (x t ξ )) 0 , (f n (x t ξ ), f ∞ (x t ξ )) 0 , (f ∞ (x t ξ ), ϕ ∞ (ξ)) 0 ] -2δ
for every ξ ∈ S 1 and n ∈ N (see [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF]Chap. 2]). The sequence (f n ) converging uniformly to f ∞ on compact sets there exists, for all t > 0, an integer n t ≥ 1 such that one has, for n ≥ n t and ξ ∈ S 1 ,

d(f n (x t ξ ), f ∞ (x t ξ )) ≤ 1 , and hence (ϕ n (ξ), ϕ ∞ (ξ)) 0 ≥ min[t/λ -λ ; t/c -c -R -1/2] -2δ .
This proves that the sequence (ϕ n ) converges uniformly to ϕ ∞ .

A continuous inverse to the boundary map

The following lemma is a variation of Lemma 3.3. Fix k ≥ 1.

Lemma 7.6 There exist a compact subset L k ⊂ D and a constants c k such that the harmonic quasi-isometric extension

h ϕ of any ϕ ∈ M k is c k -quasi- isometric, the point h ϕ (0) is in L k , and the map h ϕ is c k -Lipschitz.
Proof We introduce the Douady-Earle extension f ϕ : D → D of ϕ and we recall some of their properties that can be found in J. Hubbard's book [14, §5.1]. By definition, the image f ϕ (z) of z ∈ D is the barycenter of the measure ϕ * (m z ) where m z is the visual measure on S 1 seen from z. This map f ϕ is smooth, and is C k -quasi-isometric for some constant that depends only on k (it is even δ k -quasi-conformal or some constant that depends only on k). The map ϕ → f ϕ is continuous hence, since M k is compact, the points f ϕ (0) belong to a fixed compact set of D.

By the main result of [START_REF] Markovic | Harmonic maps and the Schoen conjecture[END_REF] or [START_REF] Benoist | Harmonic quasi-isometric maps between rank one symmetric spaces[END_REF], the distance d(h ϕ , f ϕ ) is bounded by a constant M k that depends only on C k . The first two claims follow. The Lipschitz continuity of h ϕ then follows from the Cheng lemma 3.4.

Corollary 7.7 The map ϕ ∈ M

k → h ϕ ∈ C 2 (D, D) is continuous in the C 2 loc topology.
Proof Let (ϕ n ) be a sequence in M k converging to ϕ. By Lemma 7.6, the harmonic maps h n := h ϕn are uniformly locally bounded and uniformly Lipschitz. By Lemma 4.2, after extraction, the sequence (h n ) converges in the C 2 loc topology to a harmonic quasi-isometric map h ∞ : D → D. To reach the conclusion, we need to prove that such a limit h ∞ is always equal to h ϕ . Since the maps h n are uniformly quasi-isometric, the continuity lemma 7.5 yields that the limit ϕ of the boundary maps ϕ n of h n must be the boundary map of h ∞ . This proves that h ∞ = h ϕ .

Therefore we can write for all n ≥ 1 and all x ∈ R with |x| ≤ s n Hence one has ψ ∞ (x) = α ′ ∞ + β ′ ∞ x for all x ∈ R, and ψ ∞ belongs to G. Remark -As can be seen in the proof, the assumption on ψ n can be weakened: it is sufficient to assume that there are three points ξ 0 , ξ 1 , ξ ∞ in S 1 whose images ψ n (ξ 0 ), ψ n (ξ 1 ), ψ n (ξ ∞ ) converge to three distinct points. This ensures that the sequence ψ n converges uniformly to an element ψ ∞ of G.

ψ n (x) = s ′ n α n + (β n + r n ( x sn )) s ′ n sn x with lim n→∞ |r n ( x sn )| = 0 . ( 7 
-However, it is important to assume that the limit ϕ ∞ is of class C 1 and that the convergence ϕ n → ϕ ∞ is in the C 1 topology.

Here is a direct corollary of Lemma 7.8 in the spirit of [START_REF] Benoist | Conformal autosimilarity[END_REF]. Corollary 7.9 For all C 1 diffeomorphism ϕ of S 1 , one has the equality GϕG ∩ Homeo(S 1 ) = GϕG ∪ G.

When the boundary map is a C 1 diffeomorphism

We now conclude the proof of Theorem 7.1 by giving the last argument:

Proof of Proposition 7.4 Let ϕ be a C 1 diffeomorphism of S 1 . We want to prove that the harmonic quasi-isometric extension h ϕ of ϕ is a quasi-conformal diffeomorphism. For convenience we identify here S 1 with R/2πZ. For t ∈ [0, 1], we introduce the C 1 diffeomorphism ϕ t given by ϕ t (ξ) = ξ + (ϕ(ξ) -ξ) t for all ξ in S 1 . This is well defined since the map ξ → ϕ(ξ) -ξ lifts as a map from S 1 to R. We argue as in Section 3.4. For t ∈ [0, 1] we introduce the harmonic quasi-isometric extension h t = h ϕt : D → D of ϕ t . Let A be the set of parameters t ∈ [0, 1] for which h t is a quasi-conformal diffeomorphism. By the injectivity criterion of Lemma 3.5, one has

A = {t ∈ [0, 1] | inf z∈D J t (z) > 0}
where J t is the Jacobian of h t . We want to prove that 1 ∈ A. We already know that 0 ∈ A because h 0 is the identity. Since the maps ϕ t are uniformly quasi-symmetric, Proposition 7.3 tells us that A is closed. Therefore it is enough to check that A is open.

Assume by contradiction that there exists a sequence t n ∈ A converging to t ∞ ∈ A. By assumption there exists a sequence (z n ) in D such that lim inf n→∞ J tn (z n ) ≤ 0. After extraction we are in one of the two cases:

First case The sequence (z n ) converges to a point z ∞ ∈ D. Since the maps ϕ t are uniformly quasi-symmetric, Corollary 7.7 ensures that the map t ∈ [0, 1] → h t ∈ C 2 (D, D) is continuous in the C 2 loc topology. Therefore, one has J t∞ (z ∞ ) = lim n→∞ J tn (z n ) ≤ 0, and t ∞ is not in A. Contradiction.

Second case

The sequence (z n ) goes to infinity. To simplify we set ϕ n = ϕ tn and h n = h tn for all n ∈ N ∪ {∞}. By Lemma 7.6, the sequence h n (z n ) goes to infinity. We choose sequences (γ n ) and (γ ′ n ) in G with γ n (z n ) = 0 and γ ′ n (h n (z n )) = 0. We introduce the harmonic maps where J ′ n is the Jacobian of h ′ n . Moreover by Lemma 7.6, these maps h ′ n are uniformly Lipschitz. Therefore, after extraction, they converge in the C 2 loc topology to a harmonic quasi-isometric map h ′ ∞ . By the continuity lemma 7.5, the sequence of boundary maps ψ n converge to the boundary map ψ ∞ of h ′ ∞ . Now, by Lemma 7.8, this limit ψ ∞ belongs to G. Therefore the harmonic map h ′ ∞ is an isometry and its Jacobian is J ′ ∞ ≡ 1. This contradicts (7.5).

h ′ n := γ ′ n • h n • γ -

  The boundary at infinity ∂ ∞ D naturally identifies with the boundary S 1 = {z ∈ C , |z| = 1} of D. Since the identity map Id : D → D is a quasiisometry between the hyperbolic disk D = (D, ρ 2 (z)|dz| 2 ) and the surface S = (D, σ 2 (z)|dz| 2 ), the boundary at infinity ∂ ∞ S also identifies canonically with ∂ ∞ D = S 1 .

Lemma 4 . 2

 42 Let S n = (D, g n ) be a sequence converging to S ∞ = (D, g ∞ ) as in Lemma 4.1. Let c > 0, and let h n : D → S n be c-Lipschitz maps satisfying d n (h n (0), 0) ≤ c. Then there is a subsequence of (h n ) that converges locally uniformly to a c-Lipschitz map h ∞ : D → S ∞ . a) If all the maps h n are C-quasi-isometric, then h ∞ is C-quasi-isometric. b) If all the maps h n are harmonic, then h ∞ is C 2 and is harmonic too.

Lemma 5 . 1

 51 Let h : D → S be a quasi-conformal harmonic diffeomorphism, where S is a pinched Hadamard surface with curvature -b 2 ≤ K ≤ -a 2 < 0. Then one has e 2w ≥ b -2 .

  is the conformal distorsion and where e 2wn = ∂h n 2 . Lemma 5.1 ensures that e 2w∞ = lim n→∞ e 2wn ≥ b -2 . (5.2) Thus (h ∞ ) z does not vanish. Hence the functions µ n also converge to a C 1 functions µ ∞ in the C 1 loc topology, and one has µ ∞ ∞ = 1 and |µ ∞ (0)| = 1.

Lemma 5 . 3

 53 Let C > 0 and ℓ be a non-negative continuous function on an open set U ⊂ R 2 such that ∆ e ℓ ≤ Cℓ weakly. Then the set {ℓ = 0} is open.

. 4 )

 4 We introduce the mean values of ℓ n and ℓ on circles of radius r ≤ R, M n (r) := 1 2π 2π 0 ℓ n (r e iθ ) dθ and M (r) := 1 2π 2π 0 ℓ(r e iθ ) dθ.

Theorem 7 . 1

 71 Let D be the hyperbolic disk. Any harmonic quasi-isometric map h : D → D is a quasi-conformal harmonic diffeomorphism.

. 3 )

 3 Since the sequences ψ n (0) and ψ n (1) converge, the following limits existα ′ ∞ := lim n→∞ s ′ n α n ∈ R and β ′ ∞

1 n:

 1 D → D and their boundary valuesψ n := γ ′ n • ϕ n • γ -1 n . By construction, one has h ′ n (0) = 0 and lim inf n→∞ J ′ n (0) ≤ 0 ,(7.5)

 Lemma 7.2The k-quasi-symmetric C 1 diffeomorphisms are dense in M k .

Proof Choose a smooth approximation of unity (α n ) on S 1 . For ϕ in M k , each function α n * ϕ is a k-quasi-symmetric C 1 diffeomorphism while the sequence (α n * ϕ) converges uniformly to ϕ. Proposition 7.3 Let F k be the set of those ϕ ∈ M k such that h ϕ is a quasi-conformal diffeomorphism. Then F k is a closed subset of M k .

The proof of Proposition 7.3 will be given in Section 7.3. It relies on continuity properties of the boundary map h → ∂ ∞ h proven in Section 7.2.

The proof of Proposition 7.4 will be given in Section 7.5. It uses a deformation ϕ t of ϕ starting with the identity. Let G be the group of isometries of D acting on S 1 . The proof relies on the fact that the only homeomorphisms which are limits of elements of Gϕ t G belong to G. This is Lemma 7.8 which will be proven in Section 7.4.

Continuity of the boundary map

Let c > 1. Endow the space Q c of c-quasi-isometric maps f : D → D with the topology of uniform convergence on compact sets, and the space C of continuous maps ϕ : S 1 → S 1 with the topology of uniform convergence.

Proof We use the quasi-invariance of the Gromov product under quasiisometric maps. We fix a point 0 in D. For n ∈ N ∪ {∞}, let f n ∈ Q c be c-quasi-isometric maps, with boundary values at infinity ϕ n . Assume that the sequence (f n ) converges uniformly to f ∞ on compact sets. In particular, the quantity R := sup n d(f n (0), 0) is finite. We want to prove that the sequence (ϕ n ) converges uniformly to the boundary map ϕ ∞ of f ∞ .

For ξ ∈ S 1 , denote by t ∈ [0, ∞[ → x t ξ ∈ D the geodesic ray with origin 0 and endpoint ξ. By [10, Proposition 5.15], there exists a constant λ > 1 such that the following lower bound for the Gromov product seen from 0

Proof of Proposition 7.3 Let (ϕ n ) be a sequence in M k converging to ϕ such that all the harmonic quasi-isometric extensions h ϕn are quasiconformal diffeomorphisms. We want to prove that the harmonic map h ϕ is also a quasiconformal diffeomorphism. Corollary 7.7 ensures that the sequence (h ϕn ) converges to h ϕ in the C 2 loc topology. Lemma 7.6 ensures that these maps h ϕn are uniformly Lipschitz. Hence, by Proposition 5.2, there exists a uniform lower bound j * > 0 for the Jacobians of all these harmonic quasi-isometric diffeomorphisms h ϕn . Therefore h ϕ is also a Lipschitz harmonic map whose Jacobian is bounded below by j * . Hence, by the injectivity criterion in Lemma 3.5, the harmonic map h ϕ is also a quasiconformal diffeomorphism.

Orbit closure in the group of homeomorphisms of S 1

Recall that D is the hyperbolic disk and S 1 is its boundary at infinity. Let G be the group of isometries of D acting on S 1 . It is isomorphic to PGL(2, R).

In order to prove Proposition 7.4 in the next section we will need the following lemma.

n converges to an homeomorphism ψ ∞ of S 1 . Then this limit ψ ∞ belongs to G.

Proof We recall the Cartan decomposition G = KA + K of G where K is the group P O(2, R) and A + = {diag(s, s -1 ) with s ≥ 1}. Since K is compact, we can assume that both γ n and γ ′ n are in A + . We write

with both s n and s ′ n converging to ∞. Here it will be convenient to use the identification S 1 ≃ R ∪ {∞} given by the upper half-plane model of D, so that, for x in R, one has γ n (x) = s n x and γ ′ n (x) = s ′ n x. We notice that ϕ ∞ (0) = 0. Indeed if this were not the case, we would have ψ ∞ (x) = ∞ for all x ∈ R, contradicting the injectivity of ψ ∞ .

Similarly we have ψ ∞ (∞) = ∞. Indeed if this were not the case, we would have ϕ ∞ (x) = 0 for all x ∈ R, contradicting the injectivity of ϕ ∞ .

Since the sequence ϕ n converges in the C 1 topology to ϕ ∞ , we can write for all n ≥ 1 and all x ∈ R with |x| ≤ 1