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It was proved by H

i∂ t u -∆u = 0 u |t=0 = u 0 can be explicitly written with a convolution kernel for t = 0

(1.1) u(t, •) = u 0 e -i |•| 2 4t (-4πit) n 2

•

The proof of this explicit representation stems by a combination of Fourier and complex analysis arguments, from the expression of the heat kernel on R n . More precisely, taking the partial Fourier transform of (S) with respect to the variable x and integrating in time the resulting ODE, we get u(t, ξ) = e it|ξ| 2 u 0 (ξ) , Date: December 11, 2020.

where for any function g ∈ L 1 (R n ) we have defined

g(ξ) def = F(g)(ξ) def =
R n e -i x,ξ g(x) dx .

The heart of the matter to prove (1.1) then consists in computing in the sense of distributions the inverse Fourier transform of the complex Gaussian

(1.2) (F -1 e it|•| 2 )(x) = e -i |x| 2 4t (-4πit) n 2
•

The proof of Formula (1.2) is based on two observations: first, that for any x in R n , the two maps

z ∈ C -→ H 1 (z) def = 1 (2π) n R n e i x,ξ e -z|ξ| 2 dξ and z ∈ C -→ H 2 (z) def = 1 4πz n 2 e -|x| 2 4z
are holomorphic on the domain D of complex numbers with positive real part. Accordingly with the expression of the heat kernel, these two functions coincide on the intersection of the real line with D, and thus they coincide on the whole domain D. Second, if (z p ) p∈N denotes a sequence of elements of D which converges to -it for t = 0, the use of the Lebesgue dominated convergence theorem ensures that H 1 (z p ) and H 2 (z p ) converge in S (R n ), as p tends to infinity, which achieves the proof of (1.2).

Formula (1.1) implies by Young's inequality the following dispersive estimate:

(1.3) ∀t = 0 , u(t, •) L ∞ (R n ) ≤ 1 (4π|t|) n 2 u 0 L 1 (R n ) •
Such estimate plays a key role in the study of semilinear and quasilinear equations which appear in numerous physical applications. Combined with an abstract functional analysis argument known as the T T * -argument, it yields a range of inequalities involving spacetime Lebesgue norms, known as Strichartz estimates 1 . When u 0 is for instance in L 2 (R n ), the above dispersive estimate (1.3) gives rise to the following Strichartz estimate for the solution to the free Schrödinger equation (1.4) u L q (R;L p (R n )) ≤ C(p, q) u 0 L 2 (R n ) ,

where (p, q) satisfies the scaling admissibility condition (1.5) 2 q + n p = n 2 with q ≥ 2 and (n, q, p) = (2, 2, ∞) .

The interest for this issue has soared in the last decades. We refer for instance to the monographs [START_REF] Bahouri | Fourier analysis and applications to nonlinear partial differential equations[END_REF][START_REF] Tao | Nonlinear dispersive equations. Local and global analysis[END_REF] and the references therein for an overview on this topic in the euclidean framework.

In the present work, we aim at investigating this phenomenon for the Schrödinger equation on the Heisenberg group H d involving the sublaplacian. Recall that in [START_REF] Bahouri | Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg[END_REF], the first author along with P. Gérard and C.-J. Xu proved that no dispersion occurs for this equation, and in particular exhibited an example for which the Schrödinger operator on H d behaves as a transport equation with respect to one direction, known as the vertical direction. More precisely they established the following result which shows that a global dispersive estimate of the type (1.3) cannot be expected on H d . We refer to the coming paragraph for the notation.

Proposition 1.1 ([9]

). There exists a function u 0 in the Schwartz class S(H d ) such that the solution to the free Schrödinger equation on H d satisfies (1.6) ∀t ∈ R , ∀(Y, s) ∈ H d , u(t, Y, s) = u 0 (Y, s + 4td) . 1 For further details, one can consult the papers of Ginibre-Velo [START_REF] Ginibre | Generalized Strichartz inequalities for the wave equations[END_REF], Keel-Tao [START_REF] Keel | Endpoint Strichartz estimates[END_REF] and Strichartz [START_REF] Strichartz | Restriction Fourier transform of quadratic surfaces and decay of solutions of the wave equations[END_REF].

This result rules out an estimate of the type (1.3) in the setting of the Heisenberg group but does not exclude a degraded estimate: for instance in the case when u 0 is compactly supported, then the solution remains compactly supported, in a set transported along the vertical line, so a local L ∞ norm decays to zero with time. Inspired by the euclidean strategy displayed above, we shall indeed be able to establish local decay in the spirit of (1.3). The precise result is stated in the next paragraph. As in the euclidean case, such a local dispersive estimate stems from the explicit expression of the Schrödinger kernel S t on H d , which turns out to be of type (1.2) in a horizontal strip of H d (see Theorem 2).

Note also that a lack of dispersion was highlighted for the Schrödinger propagator (associated with the sublaplacian) in the framework of H-type groups ( [START_REF] Hierro | Dispersive and Strichartz estimates on H-type groups[END_REF]) or more generally in the case of 2-step stratified Lie groups ( [START_REF] Bahouri | Dispersive estimates for the Schrödinger operator on step 2 stratified Lie groups[END_REF]). More precisely, if p denotes the dimension of the center of the H-type group, M. Del Hierro proved in [START_REF] Hierro | Dispersive and Strichartz estimates on H-type groups[END_REF] sharp dispersive inequalities for the Schrödinger equation solution (with a |t| -(p-1)/2 decay). Concerning the more general case of 2-step stratified Lie groups, the authors along with C. Fermanian-Kammerer [START_REF] Bahouri | Dispersive estimates for the Schrödinger operator on step 2 stratified Lie groups[END_REF] emphasized the key role played by the canonical skew-symmetric form in determining the rate of decay of the solutions of the Schrödinger equation: they established that if p denotes the dimension of the center of a 2-step stratified Lie group G and k the dimension of the radical of its canonical skew-symmetric form, then the solutions of the Schrödinger equation on G satisfy dispersive estimates with a rate of decay at most of order |t| -k+p-1 2 . 1.2. Basic facts about the Heisenberg group. Recall that the d-dimensional Heisenberg group H d can be defined as T R d × R where T R d is the cotangent bundle, endowed with the noncommutative product law 2

(1.7) (Y, s) • (Y , s ) def = Y + Y , s + s + 2 η, y -2 η , y ,
where w = (Y, s) = (y, η, s) and w = (Y , s ) = (y , η , s ) are elements of H d . The variable Y is called the horizontal variable, while the variable s is known as the vertical variable.

The space H d is provided with a smooth left invariant measure, the Haar measure, which in the coordinate system (Y, s) is simply the Lebesgue measure. In particular, one can define the following (noncommutative) convolution product for any two integrable functions f and g:

(1.8) f g(w) def = H d f (w • v -1 )g(v) dv = H d f (v)g(v -1 • w) dv ,
and the usual Young inequalities are valid:

(1.9) f g L r (H d ) ≤ f L p (H d ) g L q (H d ) , whenever 1 ≤ p, q, r ≤ ∞ and 1 r = 1 p + 1 q -1 .
The dilation on H d is defined for all a > 0 by

(1.10) δ a (Y, s) def = (aY, a 2 s) .
Since, for all a > 0 and any f ∈ L 1 (H d ),

H d f δ a (w) dw = a -(2d+2) H d f (w)dw , the homogeneous dimension of H d is Q def = 2d + 2.
The natural distance on H d compatible with the product law (1.7) is called the Korányi distance and is defined by

(1.11) d H (w, w ) def = ρ H (w -1 • w ) ,
for all w, w in H d , where ρ H stands for the distance to the origin

(1.12) ρ H (w) = ρ H (Y, s) def = |Y | 4 + s 2 1 4 .
In the following B H (w 0 , R) denotes the Heisenberg ball centered at w 0 and of radius R for the distance d H defined by (1.11), namely

B H (w 0 , R) def = w ∈ H d / d H (w, w 0 ) < R .
Observing that the distance d H is invariant by left translation, that is to say

∀(w, w , w 0 ) ∈ (H d ) 3 , d H τ w 0 (w), τ w 0 (w ) = d H (w, w )
where τ w 0 denotes the left translation defined by

(1.13) τ w 0 (w) def = w 0 • w , one can readily check that τ w 0 B H (0, R) = B H (w 0 , R).
Most classical analysis tools of R n can be adapted to H d , resorting to the following left invariant vector fields

X j def = ∂ y j + 2η j ∂ s and Ξ j def = ∂ η j -2y j ∂ s with j ∈ {1, . . . , d} ,
known as the horizontal left invariant vector fields. In particular, the sublaplacian is given by

∆ H def = d j=1 (X 2 j + Ξ 2 j ) .
For instance the Schwartz space S(H d ), which is nothing else than S(R 2d+1 ), can be characterized by means of ∆ H and ρ H .

Main results.

The main goal of this article is to establish local dispersive estimates for the free linear Schrödinger equation on H d associated with the sublaplacian

(S H ) i∂ t u -∆ H u = 0 u |t=0 = u 0 .
As in the euclidean case, one can readily establish that the Cauchy problem (S H ) admits a unique, global in time solution if u 0 ∈ L 2 (H d ), by resorting to Fourier-Heisenberg analysis tools or to functional calculus of the self-adjoint operator -∆ H (see Section 4 for further details). Denoting by (U(t)) t∈R the solution operator, namely U(t)u 0 is the solution of (S H ) at time t associated with the data u 0 , then similarly to the euclidean case (U(t)) t∈R is a one-parameter group of unitary operators on L 2 (H d ).

The first result we establish states as follows.

Theorem 1. Given w 0 ∈ H d , let u 0 be a function in D(B H (w 0 , R 0 )). Then the solution to the Cauchy problem (S H ) associated to u 0 disperses locally for large |t|, in the sense that, for any positive constant κ < √ 4d, the following estimate holds for all 2 ≤ p ≤ ∞:

(1.14) u(t, •) L p (B H (w 0 ,κ|t| 1 2 )) ≤ M κ |t| Q 2 1-2 p u 0 L p (H d ) ,
for all |t| ≥ T κ,R 0 , where

(1.15) T κ,R 0 def = R 0 √ 4d -κ 2 and M κ def = 1 (4π) Q 2 R 2τ sinh 2τ d exp κ 2 τ 2 dτ ,
and p is the conjugate exponent to p.

Remark 1.2. The counterexample (1.6) due to Bahouri, Gérard and Xu in [START_REF] Bahouri | Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg[END_REF] is given by

(1.16) u(t, Y, s) = R e i(s+4dt)λ e -λ|Y | 2 g(λ) λ d dλ with g in D(]0, ∞[).
Although u 0 does not belong to D(H d ), one can easily check that for any δ > 0, as soon as |s + 4dt| > δ|t| then for any integer N there is a positive constant C depending on N and u 0 such that

(1.17) |u(t, w)| ≤ C |s + 4dt| N ≤ C (δ|t|) N •
On the other hand Estimate (1.17) fails, for any integer N ≥ 1, in the case when s = -4td. This shows the sharpness of the bound on the constant κ appearing in Theorem 1. More generally it was established in [START_REF] Bahouri | Strichartz estimates and Fourier Restriction Theorems on the Heisenberg group[END_REF] that for any integer , denoting by L (d-1) the Laguerre polynomial of order and type d -1 (see for instance [START_REF] Erdélyi | Higher Transcendental functions[END_REF][START_REF] Gradshteyn | Table of integrals, series and products[END_REF][START_REF] Olver | Asymptotics and special functions[END_REF]), then As in the euclidean case outlined above, the (local) dispersive estimate (1.14) stems from Young inequalities (1.9) using an explicit formula of the type (1.1) for the Schrödinger kernel on H d . However, the study of the kernel S t of the Schrödinger operator on H d is more involved than in the euclidean case, because on the one hand the Fourier transform on H d is an intricate tool and on the other hand S t does not enjoy a formulation of type (1.2) globally on H d . In fact, as will be seen in Section 4 (see Proposition 4.1), one can compute S t in the sense of distributions, using the Fourier-Heisenberg analysis tools developed in [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF], and also it turns out (see Theorem 4) 

u ( ) (t, Y, s) = R e i(s+4t(2 +d))λ e -|λ||Y | 2 L (d-1) (2|λ||Y | 2 )g(λ) λ d dλ
A def = (p, q) / 2 q + Q p = Q 2 with 2 ≤ p ≤ ∞ ,
there exists a positive constant C(q, κ) such that, for all u 0 ∈ L 2 (H d ) supported in the ball B H (w 0 , R 0 ), for some w 0 ∈ H d , the solution to the Cauchy problem (S H ) satisfies the following local Strichartz estimate

(1.20) u L q (]-∞,-CκR 2 0 ]∪[CκR 2 0 ,+∞[;L p (B H (0,κ √ |t|))) ≤ C(q, κ) u 0 L 2 (B H (w 0 ,R 0 )) ,
where

C κ = ( √ 4d -κ) -2 .
Note that the Strichartz estimate (1.20) is invariant by scaling (through the scaling u(t, w) → u(λ 2 t, δ λ w)). Let us underline that there is a duality between the size of the support of u 0 and the time for which the Strichartz estimates holds. Indeed, letting R 0 go to zero, we find that for an initial data concentrated around some w 0 ∈ H d , the Strichartz estimate is almost global in time. Conversely, letting R 0 go to infinity, the time from which (1.20) occurs is close to infinity. Let us also emphasize that the counterexamples introduced in Remark 1.2 show somehow the optimality of our result, since for these counterexamples a global integrability both with respect to t and s independently is excluded.

1.4. Refined study of the Schrödinger kernel on H d . Theorem 2 asserts that S t , for t = 0, is a decaying smooth function on the strip |s| < 4d|t| (with a decay rate of order |t| -Q/2 ). One may wonder if S t (t = 0) which, according to Proposition 4.1, belongs to S (H d ) can be identified with a function on the horizontal hyperplanes s = ±4d|t|. The answer to this question is negative as asserted by the following result. The above result shows the optimality of the bound 4d|t| in Theorem 2. However, we are able to improve this bound when we restrict (S H ) to some subspaces of Cauchy data as in the next statement.

±, 0 ∈ S(H d ) such that u ±, (t, •) def = U(t)u ±, 0 satisfies (1.21) u ±, (t, ±w ) = u ±, 0 (0) = δ 0 , u ±, 0 S (H d )×S(H d ) .

Theorem 5. There exists an orthogonal decomposition of

L 2 (H d ) (1.22) L 2 (H d ) = ⊕ m∈N d L 2 m (H d )
such that the restriction S ( )

t of S t to the subspace V (H d ) def = ⊕ |m|≥ L 2 m (H d
) is well defined as soon as |s| < 4(2 + d)|t|, and satisfies for any positive constant κ < 4(d + 2 ), sup

|s|≤κ 2 |t| sup Y ∈T * R d 1 |t| Q 2 |S ( ) t (Y, s)| ≤ C( , κ) .
Remark 1.5. Decomposition (1.22) is strongly tied to the spectral representation of the sublaplacian -∆ H . In order to give a flavor of the above result, let us point out that, as we shall see in Section 2, the Fourier-Heisenberg transform exchanges -∆ H with the harmonic oscillator. Then in some sense, (1.22) consists in a decomposition of L 2 (H d ) along Hermite-type functions, via the Fourier-Heisenberg transform.

Main steps of the proof of the main results and layout of the paper.

Since the Schrödinger equation on H d is invariant under left translations, one can assume without loss of generality in the proof of Theorem 1 that w 0 = 0. By Young inequalities (1.9), Theorem 1 readily follows from Theorem 2 (reducing the assumption |s| < 4d|t| to the fact that ρ H (w) < 4d|t|). To prove Theorem 1, we are thus reduced to establishing Theorem 2. Roughly speaking the proof of Theorem 2 is achieved in three steps. In the first step, using the Fourier-Heisenberg analysis on tempered distributions developed in [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF] (see also Section 2.2 in this paper), we establish that the kernel S t of the Schrödinger operator on H d belongs to S (H d ) (Proposition 4.1). It is well-known since the paper of B. Gaveau [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents[END_REF], that the solution to the heat equation on H d associated with the sublaplacian writes for all t > 0

u(t, •) = 1 t Q 2 u 0 (h • δ √ t ) ,
where δ √ t is the dilation operator defined in (1.10) and h is the function in the Schwartz class S(H d ) given by

(1.23) h(Y, s) def = 1 (4π) Q 2 R 2τ sinh 2τ d exp i τ s 2 - |Y | 2 τ 2 tanh 2τ dτ .
Then the second step is devoted to the proof of the fact that the fundamental solution of the heat equation on H d coming from Fourier analysis on H d coincides with the explicit formula (1.23) established by B. Gaveau [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents[END_REF] (see Proposition 3.1). This step uses Melher's formula, along with the Fourier approach developed in [START_REF] Bahouri | A frequency space for the Heisenberg group[END_REF][START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF]. The last step concludes the proof following the general method of the euclidean case via complex analysis, described above (see Section 4.2). It is in this final step that the restriction |s| < 4d|t| appears.

As usual, the proof of the local Strichartz estimates stated in Theorem 3 is straightforward from the local dispersive estimate (1.14) thanks to standard functional analysis arguments.

Finally, the refined study of the Schrödinger kernel on H d (through Theorems 4 and 5) is derived by a combination of Fourier-Heisenberg tools and the spectral analysis of the harmonic oscillator.

Let us describe the organization of the paper. Section 2 is dedicated to a brief description of the Fourier transform F H on H d and the space of frequencies H d , as well as the extension of F H to tempered distributions -which is at the heart of the matter in this paper. In Section 3, we recover the explicit formula of the heat kernel on H d established by B.

Gaveau in [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents[END_REF], using Fourier analysis on H d . In Section 4, we investigate the kernel of the Schrödinger operator on H d and prove Theorem 2, while Section 5 is devoted to the proof of Theorem 1 thanks to Theorem 2. Then, we establish the local Strichartz estimates (Theorem 3). In Section 6, we undertake a refined study of S t and establish Theorems 4 and 5 making use of the Fourier-Heisenberg approach developed in [START_REF] Bahouri | A frequency space for the Heisenberg group[END_REF][START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF].

To avoid heaviness, all along this article C will denote a positive constant which may vary from line to line. We also use A B to denote an estimate of the form A ≤ CB.

Acknowledgements. The authors thank Nicolas Lerner and Jacques Faraut very warmly for their help and input concerning the proof of Theorem 5.

Fourier analysis on H d

2.1. The Fourier transform on H d . The Fourier transform on H d is defined using irreducible unitary representations of H d . It is thus not a complex-valued function on some "frequency space" as in the euclidean case, but a family of bounded operators on L 2 (R d ) (see for instance [START_REF] Astengo | Fourier transform of Schwartz functions on the Heisenberg group[END_REF][START_REF] Corwin | Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples[END_REF][START_REF] Faraut | Deux cours d'analyse harmonique, École d' Été d'analyse harmonique de Tunis[END_REF][START_REF] Fermanian-Kammerer | Defect measures on graded lie groups[END_REF][START_REF] Stein | Harnomic Analysis[END_REF][START_REF] Taylor | Noncommutative Harmonic Analysis[END_REF][START_REF] Thangavelu | Harmonic Analysis on the Heisenberg group[END_REF] for further details). Recently, in [START_REF] Bahouri | A frequency space for the Heisenberg group[END_REF] and [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF] the authors introduced an equivalent, intrinsic definition of the Fourier transform on H d in terms of functions acting on a frequency set denoted H d def = N 2d ×R \ {0}. More precisely, denoting the elements of this set by w def = (n, m, λ), the Fourier transform of an integrable function on H d is defined in the following way:

(2.1) ∀ w ∈ H d , F H f ( w) def = H d e isλ W( w, Y ) f (Y, s) dY ds ,
with W the Wigner transform of the (renormalized) Hermite functions

(2.2) W( w, Y ) def = R d e 2iλ η,z H n,λ (y + z)H m,λ (-y + z) dz , H m,λ (x) def = |λ| d 4 H m (|λ| 1 2 x) ,
with (H m ) m∈N d the Hermite orthonormal basis of L 2 (R d ) given by the eigenfunctions of the harmonic oscillator:

-(∆ -|x| 2 )H m = (2|m| + d)H m .
We recall that

(2.3) H m (x) def = 1 2 |m| m! 1 2 d j=1 -∂ j H 0 (x) + x j H 0 (x) m j , with H 0 (x) def = π -d 4 e -|x| 2 2 , m! def = m 1 ! • • • m d ! and |m| def = m 1 + • • • + m d .
In [START_REF] Bahouri | A frequency space for the Heisenberg group[END_REF], the authors show that the completion of the set H d for the distance

d( w, w ) def = λ(n + m) -λ (n + m ) 1 (N d ) + (n -m) -(n -m )| 1 (N d ) + d|λ -λ |
is the set

H d def = H d ∪ H d 0 with H d 0 def = R d ∓ × Z d and R d ∓ def = (R -) d ∪ (R + ) d .
In this setting, the classical statements of Fourier analysis hold in a similar way to the euclidean case. In particular, the inversion and Fourier-Plancherel formulae read:

(2.4)

f (w) = 2 d-1 π d+1 H d e isλ W( w, Y )F H f ( w) d w and (2.5) (F H f |F H g) L 2 ( H d ) = π d+1 2 d-1 (f |g) L 2 (H d ) ,
where the measure d w is defined in the following way 3 : for any function θ on H d ,

H d θ( w) d w def = R (n,m)∈N 2d θ(n, m, λ)|λ| d dλ .
Straightforward computations give

(2.6) F H (-∆ H f )( w) = 4|λ|(2|m| + d)F H (f )( w) .
According to (2.4)-(2.5), one can easily check that 3 As shown in [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF], the measure d w can be extended by 0 on

(2.7) L 2 (H d ) = ⊕ m∈N d L 2 m (H d ) , in the following way: any function f ∈ L 2 (H d ) can be split as (2.8) f = m∈N d f m with f m (Y, s) = 2 d-1 π d+1 n∈N d R e isλ W((n, m, λ), Y )F H f (n, m, λ)|λ| d dλ,
H d 0 .
and

f 2 L 2 (H d ) = m∈N d f m 2 L 2 (H d ) .
Let us also note that if f and g are two functions of L 1 (H d ) then for any w = (n, m, λ) in H d , there holds (2.9)

F H (f g)( w) = (F H f • F H g)( w) def = p∈N d F H f (n, p, λ)F H g(p, m, λ) .
As we shall see, the heat and Schrödinger kernels on H d are radial, in the sense that they are invariant under the action of the unitary group of T R d . In addition, being functions of -∆ H they are even. In fact, the Fourier transform of radial functions turns out to be simpler than in the general case: if

f is a radial function in L 1 (H d ), then for any (n, m, λ) ∈ H d , (2.10) F H (f )(n, m, λ) = F H (f )(n, m, λ)δ n,m = F H (f )(|n|, |n|, λ)δ n,m ,
with, for all ∈ N,

(2.11) F H (f )( , , λ) = + d -1 -1 H d e -isλ e -|λ||Y | 2 L (d-1) (2|λ||Y | 2 )f (Y, s) dY ds ,
where L (d-1) stands for the Laguerre polynomial4 of order and type d -1.

Obviously the inversion formula writes in that case (2.12)

f (w) = 2 d-1 π d+1 ∈N R e isλ W( , λ, Y )F H (f )( , , λ) |λ| d dλ ,
where

(2.13) W( , λ, Y ) def = n∈N d |n|= W(n, n, λ, Y ) = e -|λ||Y | 2 L (d-1) (2|λ||Y | 2 ) .

The Fourier transform on S (H d

). The new approach of the Fourier-Heisenberg transform developed in [START_REF] Bahouri | A frequency space for the Heisenberg group[END_REF] enabled the authors in [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF] to extend F H to S (H d ), the set of tempered distributions: note that since the Schwartz class S(H d ) coincides with S(R 2d+1 ) then similarly S (H d ) is nothing else than S (R 2d+1 ). Roughly speaking, the first step to achieve this extension consists in characterizing S( H d ), the range of S(H d ), by F H . It will be useful to recall in the following that according to [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF], the space S( H d ) can be equipped

with semi-norms • N,S( H d )
and that in particular, for all θ ∈ S( H d ) and N ∈ N, there

exists C N such that for all ŵ = (n, m, λ) ∈ H d (2.14) |θ( ŵ)| ≤ C N (1 + 4|λ|(2|m| + d)) -N θ N,S( H d )
.

We refer to [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF] for the definition of S( H d ) and further details. Then the result follows by duality, as in the euclidean case, once shown that the Fourier transform F H is a bicontinuous isomorphism between the spaces S(H d ) and S( H d ) 5 .

goes back to the pioneering works by D. Geller in [START_REF] Geller | Fourier analysis on the Heisenberg groups[END_REF][START_REF] Geller | Fourier analysis on the Heisenberg group I, the Schwartz space[END_REF], where asymptotic series are used. One can also consult the paper of F. Astengo, B. Di Blasio and F. Ricci [START_REF] Astengo | Fourier transform of Schwartz functions on the Heisenberg group[END_REF].

The map F H can thus be continuously extended from S (H d ) into S ( H d ) in the following way:

(2.15)

F H :    S (H d ) -→ S ( H d ) T -→ θ → F H T, θ S (H d )×S(H d ) = T, t F H θ S (H d )×S(H d ) ,
where, according to (2.4),

(2.16) t F H θ(y, η, s) -η, -s) . In particular one can compute the Fourier transform of the Dirac mass:

def = π d+1 2 d-1 (F -1 H θ)(y,
F H (δ 0 ) = 1 {(n,m,λ) / n=m} , that is to say, for any θ in S( H d ) (2.17) F H (δ 0 ), θ S ( H d )×S( H d ) = n∈N d R θ(n, n, λ)|λ| d dλ .
It will be useful later on to notice that S ( H d ) contains (after suitable identification) all functions with moderate growth, that are defined as the locally integrable functions θ on H d such that for some large enough integer N, the map

(2.18) (n, m, λ) -→ 1 + |λ|(n + m| + d) + |n -m| -N θ(n, m, λ) belongs to L ∞ ( H d ).
It is proved in [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF] that any such function can be identified with a tempered distribution on H d .

Let us end this introduction on Fourier analysis on the Heisenberg group by recalling that if T is a tempered distribution on H d , then for all f in S(H d ) and all w in H d ,

(T f )(w) = T, f • τ w -1 S (H d )×S(H d ) ,
and

(2.19) (f T )(w) = T, f • τ r w S (H d )×S(H d ) , where (2.20) f (w) def = f (w -1 ) ,
and τ w denotes the left translation operator by w defined in (1.13) while τ r w is the right translation operator by w defined by

(2.21) τ r w (w ) def = w • w .

On the kernel of the heat operator on H d

A striking consequence of Fourier analysis on H d developed in [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF] is that it provides another proof of the fact that the fundamental solution of the heat equation on H d coincides with the explicit formula established by B. Gaveau in [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents[END_REF]. First note the following representation coming from Fourier-Heisenberg analysis.

Proposition 3.1. If u denotes the solution to the free heat equation on H

d (H H ) ∂ t u -∆ H u = 0 u |t=0 = u 0 ,
where u 0 is a given integrable function on H d , then for all t > 0 there holds

u(t, •) = u 0 h t ,
where h t is defined by

h t (Y, s) def = 2 d-1 π d+1 n∈N d R e isλ W (n, n, λ), Y e -4t|λ|(2|n|+d) |λ| d dλ .
Proof. Applying F H to the heat equation and taking advantage of (2.6), we get for

all (n, m, λ) in H d ,    d u H dt (t, n, m, λ) = -4|λ|(2|m| + d) u H (t, n, m, λ) u H|t=0 = F H u 0 .
By time integration, this implies that for all (n, m, λ) in H d ,

(3.1) u H (t, n, m, λ) = e -4t|λ|(2|m|+d) F H u 0 (n, m, λ) .
According to (2.9), we deduce that

u H (t, n, m, λ) = (F H u 0 • θ t )(n, m, λ) with θ t (n, m, λ) def = e -4t|λ|(2|n|+d) δ n,m ,
where δ n,m denotes the Kronecker symbol, which implies that

u(t, •) = u 0 h t with (F H h t )(n, m, λ) def = e -4t|λ|(2|n|+d) δ n,m .
This concludes the proof of the proposition thanks to the inversion formula (2.4).

Remark 3.2.

Performing the change of variable tλ → λ in the heat kernel given by Proposition 3.1 readily implies that for all t > 0

h t (Y, s) = 1 t Q 2 h Y √ t , s t , with (3.2) h(Y, s) def = 2 d-1 π d+1 m∈N d R e isλ W (n, n, λ), Y e -4|λ|(2|m|+d) δ n,m |λ| d dλ .
The following remarkable result due to B. Gaveau ([20]) asserts that the heat operator on H d has a convolution kernel in S(H d ).

Theorem 6 ([20]

). There exists a function h in S(H d ) such that for any u 0 ∈ L 1 (H d ), the solution to (H H ) writes for all t > 0

u(t, •) = u 0 h t ,
where h t is defined by

(3.3) h t (Y, s) = 1 t Q 2 h Y √ t , s t
and the function h is given by the formula

(3.4) h(Y, s) def = 1 (4π) Q 2 R 2τ sinh 2τ d exp i τ s 2 - |Y | 2 τ 2 tanh 2τ dτ .
Proof. Our purpose here is to establish that the formula coming from Fourier analysis given by (3.2), namely

h(y, η, s) = 2 d-1 π d+1 m∈N d R×R d
e isλ+2iλ η,z e -4|λ|(2|m|+d) H m,λ (y + z)H m,λ (-y + z) dz|λ| d dλ coincides with the explicit expression of the heat kernel (3.4) given by Theorem 6. The proof relies on Melher's formula (see [START_REF] Feynman | Quantum mechanics and path integrals[END_REF])

(3.5) m∈N P m (x) P m ( x) r m = 1 √ 1 -r 2 exp 2x xr -(x 2 + x 2 )r 2 1 -r 2 ,
that holds true for all x, x in R and r in ]-1, 1[, where P m denotes the Hermite polynomial of order m defined by

P m (x) def = π 1 4 H m (x)e |x| 2 
2 , with H m the Hermite function introduced in (2.3).

To this end, we shall use the following lemma. Lemma 3.3. Under the above notations, there holds for all (y, z) ∈ R 2 and all positive real numbers λ and t, 

m∈N e -2mtλ H m,λ (z -y) H m,λ (z + y) = 1 π 1 2 λ 1 -e -4tλ
e -2tmλ H m,λ (z -y) H m,λ (z + y) = 1 π 1 2 e -λ(z 2 +y 2 ) λ 1 -e -4tλ 1 2 × exp 1 1 -e -4tλ 2λ(z 2 -y 2 )e -2tλ -2λ(z 2 + y 2 )e -4tλ .
The result follows from the following identities:

-λ(z 2 + y 2 ) + 1 1 -e -4tλ 2λ(z 2 -y 2 )e -2tλ -2λ(z 2 + y 2 )e -4tλ = - λ 1 -e -4tλ z 2 (1 -e -2tλ ) 2 + y 2 (1 + e -2tλ ) 2 ,
(1 -e -2tλ ) 2 1 -e -4tλ = (e tλe -tλ ) 2 e 2tλ -e -2tλ = e tλe -tλ e tλ + e -tλ = tanh(tλ) , and

(1 + e -2tλ ) 2 1 -e -4tλ = (e tλ + e -tλ ) 2 e 2tλ -e -2tλ = e tλ + e -tλ e tλe -tλ = 1 tanh(tλ)

•

The lemma is proved.

Let us return to the proof of Theorem 6. In order to establish that the two formulae (3.2) and (3.4) coincide, it suffices to consider the case when d = 1: (3.2) becomes (3.6) h(y,η,s

) = 1 π 2 m∈N R 2 e isλ+2iληz e -4|λ|(2m+1) H m,λ (y + z)H m,λ (-y + z) dz|λ|dλ .
Then applying Lemma 3.3 with t = 4|λ|, we find that

h(y, η, s) = 1 π 5 2 R 2 e isλ+2iληz-4|λ| |λ| 1 -e -16|λ| 1 2 × exp -|λ|z 2 tanh(4|λ|) - |λ|y 2 tanh(4|λ|) |λ|dλdz .
Performing the change of variables |λ|

1 2 z → z, this gives rise to h(y, η, s) = 1 π 5 2 R e isλ-4|λ|- |λ|y 2 tanh(4|λ|) F e -tanh(4|λ|) |•| 2 2|λ| 1 2 η |λ| 1 -e -16|λ| 1 2 |λ| 1 2 dλ . Since F e -tanh(4|λ|) |•| 2 2|λ| 1 2 η = π tanh(4|λ|) e - |λ|η 2 tanh(4|λ|) ,
we discover that

h(y, η, s) = 1 π 2 R e isλ-4|λ|- |λ|(y 2 +η 2 ) tanh(4|λ|) tanh(4|λ|)(1 -e -16|λ| ) -1 2 |λ| dλ .
But tanh(4|λ|)(1 -e -16|λ| ) = 4 e -8|λ| sinh 2 (4|λ|) , which ends the proof of Theorem 6. 

(S H ) i∂ t u -∆ H u = 0 u |t=0 = u 0 ,
reads for all t = 0 and all

u 0 ∈ S(H d ) (4.1) u(t, •) = u 0 S t ,
where S t denotes the tempered distribution on H d defined for all ϕ in S(H d ) by

S t , ϕ S (H d )×S(H d ) = e 4it|λ|(2|n|+d) δ n,m , θ S ( H d )×S( H d ) ,
with ϕ = t F H θ, according to Notation (2.16).

Proof. Arguing as for the proof of Proposition 3.1, we start by applying F H to (S H ), which thanks to (2.6) implies that

   i d u H dt (t, n, m, λ) = -4|λ|(2|m| + d) u H (t, n, m, λ) u H|t=0 = F H u 0 ,
and leads by integration to

(4.2) u H (t, n, m, λ) = e 4it|λ|(2|m|+d) F H u 0 (n, m, λ) ,
for all (n, m, λ) in H d . Then taking advantage of (2.9), we find that

u H (t, n, m, λ) = (F H u 0 • Θ t )(n, m, λ) with Θ t (n, m, λ) def = e 4it|λ|(2|n|+d) δ n,m .
One can easily check that Θ t is a function with moderate growth in the sense of (2.18), and thus as it was proved in [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF], it is a tempered distribution on H d . This ensures that the Schrödinger kernel S t belongs to S (H d ).

Finally combining (2.16) together with (2.19), we readily gather that for all u 0 in S(H d ) and all w in H d ,

(4.3) (u 0 S t )(w) = S t , ǔ0 • τ r w S (H d )×S(H d ) = e 4it|λ|(2|n|+d) δ n,m , θ S ( H d )×S( H d ) = n∈N d R e 4it|λ|(2|n|+d) θ(n, n, λ)|λ| d dλ ,
where ǔ0 • τ r w = t F H θ, which completes the proof of the proposition.

Computation of the Schrödinger kernel on Heisenberg strips.

Our goal now is to establish Theorem 2. As already mentioned, the proof of Formula (1.18) goes along the same lines as the euclidean proof, though more involved. Thanks to Theorem 6, the solution to the heat equation (H H ) writes

f (t, •) = f 0 h t ,
where h t is given for all t > 0 by

h t (Y, s) = 1 (4πt) Q 2 R 2τ sinh 2τ d exp i τ s 2t - |Y | 2 τ 2t tanh 2τ dτ = 2 d-1 π d+1 m∈N d R
e isλ e -4t|λ|(2|m|+d) W (m, m, λ), Y |λ| d dλ .

To achieve our goal, the first step consists in observing that the maps

z -→ H 1 z (Y, s) and z -→ H 2 z (Y, s) with (4.4) H 1 z (Y, s) def = 2 d-1 π d+1 m∈N d R e isλ e -4z|λ|(2|m|+d) W (m, m, λ), Y |λ| d dλ and (4.5) H 2 z (Y, s) def = 1 (4πz) Q 2 R 2τ sinh 2τ d exp i τ s 2z - |Y | 2 τ 2z tanh 2τ dτ are, for all (Y, s) in H d , holomorphic on a suitable domain of C.
Actually on the one hand, performing the change of variables β = λ(2|m| + d) in each integral of the right-hand side of (4.4), we get

H 1 z (Y, s) = 2 d-1 π d+1 m∈N d 1 (2|m| + d) d+1 R e is β 2|m|+d e -4z|β| W m, m, β 2|m| + d , Y |β| d dβ ,
where obviously in each term of the above identity the integrated function is holomorphic on C. Moreover, using the fact that the modulus of the Wigner transform of the Hermite functions is bounded by 1, we obtain for all z in C satisfying Re(z)

≥ a > 0 R e is β 2|m|+d e -4z|β| W m, m, β 2|m| + d , Y |β| d dβ ≤ R e -4a|β| |β| d dβ < ∞ and R ∂ z e is β 2|m|+d e -4z|β| W m, m, β 2|m| + d , Y |β| d dβ ≤ 4 R e -4a|β| |β| d+1 dβ < ∞ ,
which by Lebesgue's derivation theorem ensures that the map z -→ H 1 z is holomorphic on the domain

D def = z ∈ C, Re(z) > 0 .
On the other hand, we have by definition for all z in C *

H 2 z (Y, s) = 1 (4πz) Q 2 R 2τ sinh 2τ d exp i τ s 2z - |Y | 2 τ 2z tanh 2τ dτ ,
where of course the integrated function is holomorphic on C * . Now our aim is to apply Lebesgue's derivation theorem to establish that H 2 z (Y, s) is holomorphic on some domain of C. 

Writing |Y | 2 τ 2z tanh 2τ = |Y | 2 τ 2|z| 2 tanh
∂ z exp i τ s 2z - |Y | 2 τ 2z tanh 2τ ≤ exp |τ ||s| 2|z| 1 a + |τ ||s| 2|z| 2 .
Fix 0 < C < 4d, then combining Formula (4.5) together with the Lebesgue derivation theorem, we deduce that the map z -→ H 

H 1 zp ,ϕ S (H d )×S(H d ) = F H H 1 zp ,θ S ( H d )×S( H d ) , with ϕ(y, η, s) = c d (F -1 H θ)(y, -η, -s), for some constant c d . But according to (4.4), F H H 1 zp , θ S ( H d )×S( H d ) = H d e -4zp|λ|(2|m|+d) δ n,m θ( ŵ)d w = m∈N d R e -4zp|λ|(2|m|+d) θ(m, m, λ)|λ| d dλ .
Besides since θ belongs to S( H d ), it stems from (2.14) that for any integer N there ex-

ists C N such that for all ŵ = (m, m, λ) ∈ H d |θ( ŵ)| ≤ C N (1 + 4|λ|(2|m| + d)) -N θ N,S( H d ) .
Then performing the change of variables β = λ(2|m| + d) in each integral of the right-hand side of the above identity and choosing N ≥ d + 2, we get

m∈N d R e -4zp|λ|(2|m|+d) θ(m, m, λ) |λ| d dλ ≤ C N θ N,S( H d ) m∈N d 1 (2|m| + d) d+1 R (1 + 4|β|) -N |β| d dβ < ∞ .
Applying Lebesgue's dominated convergence theorem, we infer that 6 (4.12) lim p→∞

H 1 zp ,ϕ S (H d )×S(H d ) = H 1 -it ,ϕ S (H d )×S(H d ) = S t ,ϕ S (H d )×S(H d ) .
In order to deal with H 2 zp , recall that by definition

H 2 zp (Y, s) = 1 (4πz p ) Q 2 R 2τ sinh 2τ d exp i τ s 2z p - |Y | 2 τ 2z p tanh 2τ dτ . By hypothesis, (z p ) p∈N is a sequence of D satisfying |z p | > |s| C
, with 0 < C < 4d, and this implies that

R 2τ sinh 2τ d exp i τ s 2z p - |Y | 2 τ 2z p tanh 2τ dτ ≤ R 2τ sinh 2τ d exp C|τ | 2 dτ < ∞ .
We deduce that for all w = (Y, s) satisfying |s| < 4d|t|, there holds

lim p→∞ H 2 zp (Y, s) = H 2 -it (Y, s) = 1 (-4iπt) Q 2 R 2τ sinh 2τ d exp - τ s 2t -i |Y | 2 τ 2t tanh 2τ dτ ,
which of course ensures that, for all ϕ in S(H d ), we have

lim p→∞ H 2 zp ,ϕ S (H d )×S(H d ) = H 2 -it ,ϕ S (H d )×S(H d ) .
This ends the proof of Theorem 2. 

S t (Y, s) = 1 (-4iπt) Q 2 R 2τ sinh 2τ d exp - τ s 2t -i |Y | 2 τ 2t tanh 2τ dτ on any Heisenberg ball B H (0, κ |t|), with κ < √ 4d, since ρ H (w) ≤ κ |t| =⇒ |s| ≤ κ 2 |t| < 4d|t| . Note that (5.3) S t L ∞ (B H (0,κ √ |t|)) ≤ 1 (4π|t|) Q 2 R 2τ sinh 2τ d exp κ 2 |τ | 2 dτ def = M κ |t| Q 2 •
But by definition of the convolution product on H d , we have 6 Let us underline that Formula (4.11) holds true for any sequence (zp) p∈N of D which converges to -it, with t ∈ R * .

(5.4) (u 0 S t )(w) =

H d u 0 (v)S t (v -1 • w) dv .
Thanks to the triangle inequality, we have for any w in B H (0, κ |t|) and any v in B H (0, R 0 )

ρ(v -1 • w) = d H (w, v) ≤ ρ(w) + ρ(v) ≤ κ |t| + R 0 < 4d|t| , provided that |t| > T κ,R 0 = R 0 √ 4d -κ 2 ,
which by Young's inequality completes the proof of Estimate (1.14) in the case p = ∞.

Furthermore by the conservation of the mass there holds

u(t, •) L 2 (B H (0,κ √ |t|)) ≤ u(t, •) L 2 (H d ) = u 0 L 2 (H d )
. So resorting to a real interpolation argument, we get for all 2 ≤ p ≤ ∞ and any |t| ≥ T R 0 ,κ

u(t, •) L p (B H (0,κ √ |t|)) ≤ M κ |t| Q 2 1-2 p u 0 L p (H d ) ,
where p denotes the conjugate exponent of p. This ends the proof of the result.

Proof of Theorem 3.

As already mentioned, the Strichartz estimates are straightforward from the dispersive estimates. Actually, Theorem 3 readily follows from the mass conservation and the following proposition, which can be seen as a corollary of Theorem 1.

Proposition 5.1. Under the assumptions of Theorem 1, the solution to the Cauchy problem (S H ) associated to u 0 satisfies, for all 2 ≤ p ≤ ∞ and all q such that 1 q

+ Q p < Q 2 , u L q (]-∞,-CκR 2 0 ]∪[CκR 2 0 ,∞[;L p (B H (w 0 ,κ √ |t|))) ≤ C(q, κ)R -Q( 1 2 -1 p )+ 2 q 0 u 0 L 2 (H d ) .
Proof. Since u 0 is in supported in B H (w 0 , R 0 ), combining the Hölder inequality with (1.14), we infer that, for all 2 ≤ p ≤ ∞,

(5.5) u(t, •) L p (B H (w 0 ,κ √ |t|)) ≤ C(κ) R Q( 1 2 -1 p ) 0 |t| Q 2 -Q p u 0 L 2 (H d ) ,
for all |t| ≥ T κ,R 0 . The proposition follows after time integration, and Theorem 3 is a direct consequence. Denote w t = (0, -4dt). Then, making use of Formula (4.3) and recalling that S t is even, we get, for any u 0 ∈ S(H d ),

(6.1) (u 0 S t )(w t ) = S t , u 0 • τ w -1 t S (H d )×S(H d ) = n∈N d R e 4it|λ|(2|n|+d) θ t (n, n, λ)|λ| d dλ ,
where τ w -1 t is the left translation operator by w -1 t defined by (1.13) and

(6.2) t F H θ t (y, η, s) = π d+1 2 d-1 (F -1 H θ t )(y, -η, -s) = u 0 • τ w -1 t .
Notice that, for all f ∈ L 1 (H d ) and all g 0 = (0, s 0 ), we have

F H (f • τ g -1 0 )(n, m, λ) = e -is 0 λ (F H f )(n, m, λ) .
It then follows that

F H (u 0 • τ w -1 t )(n, m, λ) = e 4idtλ F H (u 0 )(n, m, λ) .
Combining (2.1)-(2.2) together with (6.2), we deduce that

θ t (n, m, λ) = 2 d-1 π d+1 e -4idtλ F H (u 0 )(m, n, -λ) .
Consequently, we have

(u 0 S t )(w t ) = 2 d-1 π d+1 n∈N d R
e 4idtλ e 4it|λ|(2|n|+d) F H (u 0 )(n, n, λ)|λ| d dλ .

In particular, if we consider u 0 so that

F H (u 0 )(n, n, λ) = F H (u 0 )(n, n, λ)δ n,0 1 λ<0 ,
we obtain, thanks to (2.17),

(u 0 S t )(w t ) = δ 0 , u 0 S (H d )×S(H d ) .
Theorem 4 follows.

6.2. Proof of Theorem 5. Let ≥ 1 be a fixed integer. We revisit the proof of Theorem 2: recall that the restriction over s comes from the fact that the function H 2 z (Y, s) given by (4.5) is holomorphic only on the set |z| > |s|/(4d). Now let us define

V (H d ) def = ⊕ |m|≥ L 2 m (H d )
where L 2 m is defined in (2.7)-(2.8). In the case when the Cauchy data u 0 belongs to the set S(H d ) ∩ V (H d ), our goal is to write

u(t) = u 0 S ( ) t
where S ( ) t is a tempered distribution obtained, for |s| < 4(2 + d)|t|, by the same complex analysis argument as in the proof of Theorem 2, where the function to be analyzed, arising from the heat equation, is now h

( ) t (Y, s) def = 2 d-1 π d+1 |m|≥ R×R d e isλ+2iλ η,z e -4|λ|(2|m|+d)t H m,λ (y + z)H m,λ (-y + z) dz|λ| d dλ .
According to Gaveau's resulted recalled in Theorem 6, the function h

( ) t also reads h ( ) t (Y, s) = 1 (4πt) Q 2 R 2τ sinh 2τ d e i τ s 2t - |Y | 2 τ 2t tanh 2τ dτ - 2 d-1 π d+1 |m|≤ -1 R×R d e isλ+2iλ η,z e -4|λ|(2|m|+d)t H m,λ (y + z)H m,λ (-y + z) dz|λ| d dλ .
But in view of (2.13), we have, for any integer k, 

2 d-1 π d+1 |m|=k R×R d e isλ+2iλ η,z e -4|λ|(2|m|+d)t H m,λ (y + z)H m,λ (-y + z) dz|λ| d dλ = 2 d-1 π d+1 R e isλ e -4|λ|(2k+d)t e -|λ||Y | 2 L (d-1) k (2|λ||Y | 2 )|λ| d dλ ,
t (Y, s) = 1 (4πt) Q 2 R 2τ sinh 2τ d e i τ s 2t - |Y | 2 τ 2t tanh 2τ dτ - 1 (4πt) Q 2 k≤ -1 R 4|τ | d e -2|τ |(2k+d) L (d-1) k |Y | 2 |τ | t e i τ s 2t - |Y | 2 |τ | 2t dτ .
Returning again to the strategy of the proof of Theorem 2, our first aim is therefore to prove that the maps

z -→ H ( ),1 z (Y, s) and z -→ H ( ),2 z (Y, s) with H ( ),1 z (Y, s) def = 2 d-1 π d+1 |m|≥ R
e isλ e -4z|λ|(2|m|+d) W (m, m, λ), Y |λ| d dλ and (6.3) Let us start by re-writing (6.3) in the following form: (6.5)

H ( ),2 z (Y, s) def = 1 (4πz) Q 2 R (2|τ |) d e i τ s 2z 1 (sinh 2|τ |) d e -|Y | 2 τ 2z tanh 2τ - k≤ -1 2 d e -2|τ |(2k+d) L (d-1) k |Y | 2 |τ | z e -|Y |
H ( ),2 z (Y, s) = 1 (4πz) Q 2 R (4|τ |) d e i τ s 2z -2|τ |d Φ |Y | 2 |τ | z , e -4|τ | dτ , with Φ (x, r) def = e -x 2 e -rx 1-r (1 -r) d - k≤ -1 r k L (d-1) k (x) .
From now on we set 7 (6.6)

x def = |Y | 2 |τ | z , r def = e -4|τ | .
Recalling that the generating function for the Laguerre polynomials is given by (see for instance [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF][START_REF] Erdélyi | Higher Transcendental functions[END_REF][START_REF] Faraut | Deux cours d'analyse harmonique, École d' Été d'analyse harmonique de Tunis[END_REF][START_REF] Gradshteyn | Table of integrals, series and products[END_REF][START_REF] Lebedev | Special functions and their applications[END_REF][START_REF] Olver | Asymptotics and special functions[END_REF])

(6.7) k≥0 r k L (d-1) k (x) = e -rx 1-r (1 -r) d , |r| < 1 ,
we notice that the e differently depending on whether r is close to 1 or not. So let us fix τ 0 > 0, and start by analyzing the case when |τ | ≥ τ 0 , since this implies that r ≤ r 0 def = e -4τ 0 < 1. The case |τ | ≤ τ 0 will be dealt with further down. Considering (6.8)

H ( ),2 z,τ 0 (Y, s) def = 1 (4πz) Q 2 |τ |≥τ 0 (4|τ |) d e i τ s 2z -2|τ |d Φ |Y | 2 |τ | z , e -4|τ | dτ ,
we are thus reduced to investigating, for |τ | ≥ τ 0 , the function

(6.9) 4|τ | d e -2|τ |d e i τ s 2z Φ |Y | 2 |τ | z , e -4|τ |
and its derivative with respect to z. We shall actually restrict z to the domain

D |s|,a,A def = z ∈ C , |z| > |s| κ(2 + d) ∩ Ω a,A , with Ω a,A def = z ∈ C, Re(z) > a , |z| ≤ A ,
where 0 < κ < 4 and a, A > 0 are arbitrary fixed constants.

Recalling f (x, r)

def = e -rx 1-r
(1 -r) d and applying Taylor's formula, it readily follows from (6.7) that

Φ (x, r) = e -x 2 r ( -1)! 1 0 (1 -s) -1 (∂ r f )(x, rs) ds .
After some computations we infer that there is a positive constant C( , τ 0 ) such that, for all r ≤ r 0 = e -4τ 0 , we have This ends the proof of Theorem 5.
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4 . 4 . 1 .Proposition 4 . 1 .

 44141 On the kernel of the Schrödinger operator on H d Representation of the free Schrödinger equation. Contrary to the heat equation (and as in the euclidean case recalled in the introduction), the kernel of the Schrödinger operator does not belong to the Schwartz class S(H d ). Nevertheless, one can solve explicitly the Schrödinger equation (S H ) by means of the Fourier-Heisenberg transform introduced in Section 2, in the following way. The solution to the free Schrödinger equation

5 . 5 . 1 .

 551 Proof of the local dispersive and Strichartz estimates Proof of Theorem 1. Since the linear Schrödinger equation on H d is invariant by left translation, it suffices to prove the result for w 0 = 0. Let u 0 be a function in D(B H (0, R 0 )). Then invoking Theorem 2, we infer that the solution to the Cauchy problem (S H ) assumes the form (5.1) u(t, •) = u 0 S t ,

6 . 6 . 1 .

 661 Concentration properties of the Schrödinger kernel on H d Proof of Theorem 4. The proof relies on Fourier-Heisenberg analysis recalled in Section 2.1.

  polynomial of order k and type d-1. Then, performing the change of variables λ = τ 2t , we readily gather that h ( )

  2 |τ | 2z dτ are, for all (Y, s) in H d , holomorphic on a suitable domain of C * . The same reasoning as in the proof of Theorem 2 enables to check that the function H ( ),1 z is holomorphic on the domain D = z ∈ C, Re(z) > 0 so now we concentrate on H

x 2 Φ

 2 (x, r) is nothing else than the remainder of the Taylor expansion of the function f (x, r) def = e -rx 1-r (1 -r) d at order -1, near r = 0. We shall therefore argue 7 It will be useful to point out that |x| = |Y | 2 |τ | |z| and Re(x) = |Y | 2 |τ | |z| cos(arg(z)).

( 6 . 2 ( 1 + 2 ( 1 +|Y | 2 2 .(2|τ |) d e i τ s 2z 1 ( 1 L|Y | 2 6 Q 2

 621212211262 10) Φ (x, r) ≤ C( , τ 0 ) r e -Re(x) |x|) and ∂ x Φ (x, r) ≤ C( , τ 0 ) r e -Re(x) |x|) . |τ | 2|z| cos(arg(z)) , with inf z∈Ω a,A cos(arg(z)) ≥ α(a, A) > 0, we deduce that there is a positive constant C( , τ 0 , a, A) such that, for all (Y, s) in H d , z ∈ D |s|,a,A and |τ | ≥ τ 0 , there holds(4|τ |) d e i τ s 2z -2|τ |d Φ |Y | 2 |τ | z , e -4|τ | ≤ C( , τ 0 , a, A)|τ | d e -(4-κ)(2 +d)|τ | 2and similarly∂ z 4|τ |) d e i τ s 2z -2|τ |d Φ |Y | 2 |τ | z , e -4|τ | ≤ C( , τ 0 , a, A)|τ | d e -(4-κ)(2 +d)|τ |This readily ensures that the functionH ( ),2z,τ 0 is holomorphic on the domain D |s| defined in (0 , let us first observe that according to (6.3), we haveH ( ),2 z,τ 0 (Y, s) sinh 2|τ |) d e -|Y | 2 τ 2z tanh 2τ -k≤ -1 2 d e -2|τ |(2k+d) L (d-1) k |Y | 2 |τ | z e -|Y | 2 |τ | 2z dτ .Then invoking (6.11), we infer that for any integer and all positive real numbers a and A, there exists a positive constant C( , a, A) such that supz∈Ω a,A k≤ -|τ | z e -|Y | 2 |τ | 2z ≤ C( , a, A) .We deduce that for all (Y, s) in H d , z ∈ D |s|,a,A and |τ | ≤ τ 0 , there holds(k≤ -1 |τ |≤τ 0 (4|τ |) d e i τ s 2z e -2|τ |(2k+d) L (d-1) k |Y | 2 |τ | z e -|Y | 2 |τ |2z dτ is holomorphic on the domain D |s|,a,A . 2z e -|Y | 2 τ 2z tanh 2τ can easily be dealt with, which achieves the proof of the fact that the function H ( ),2 z is holomorphic on D |s| . Finally, let (z p ) p∈N be a sequence in D |s| which converges to -it, with t ∈ R * . Then arguing as in the proof of Theorem

  Theorem 2 highlights the separate roles of the horizontal and vertical variables of H d . Note that in[START_REF] Müller | A restriction theorem for the Heisenberg group[END_REF], D. Müller already emphasized the distinguished role of the horizontal variable in the study of the Fourier restriction theorem on H d .

									that S t concentrates on quantized
	horizontal hyperplanes of H d . It follows that the explicit formula of the type (1.1) that
	we obtain here is only local. More precisely, our result states as follows. Its sharpness is
	discussed in Paragraph 1.4.									
	Theorem 2. The kernel associated with the free Schrödinger equation (S H ) reads for
	all t = 0											
	(1.18)	S t (Y, s) =	1 (-4iπt)	Q 2	R	2τ sinh 2τ	d	exp -	τ s 2t	-i	|Y | 2 τ 2t tanh 2τ	dτ ,
	provided that |s| < 4d|t|.									
	Remark 1.3. Even though the dispersive estimate (1.14) we establish for the Schrödinger operator
	on H d is only local, we are able to prove that the solutions of the Schrödinger equa-
	tion (S H ) enjoy locally Strichartz estimates in the spirit of (1.4). More precisely, we have
	the following result.										
	Theorem 3. Under the notations of Theorem 1, given κ <	√	4d and (p, q) belonging to
	the admissible set										
	(1.19)											

  Since by B. Gaveau's result (see Section 3), the maps H 1 z and H 2 z coincide on the intersection of the real line with D |s| , we conclude that they also coincide on the whole domain D |s| .Consider now (z p ) p∈N a sequence of elements of D |s| which converges to -it, with t ∈ R * , and let us investigate lim

			2 z is holomorphic on
	(4.10)	D |s|	def = z ∈ D, |z| >	|s| C	•
	Let us start with lim				

p→∞ H 1 zp ,ϕ S (H d )×S(H d ) and lim p→∞ H 2 zp ,ϕ S (H d )×S(H d ) , for ϕ in S(H d ). p→∞ H 1 zp ,ϕ S (H d )×S(H d ) . By (2.15), there holds (4.11)

  2, one can readily gather that for any function ϕ in S(H d ) ∩ V (H d ), we have lim S (H d )×S(H d ) = S t ,ϕ S (H d )×S(H d ) . . Let (z p ) p∈N be a sequence in D |s| which converges to -it, with t ∈ R * , and let us start by studying the part < κ < 4, and also that (1 -δ)|t| ≤ |z p | ≤ (1 + δ)|t| for some small δ. Then taking advantage of Estimate (6.10), we readily gather that ,ϕ S (H d )×S(H d ) = H -it,τ 0 ,ϕ S (H d )×S(H d ) . , let us first observe that it stems from (6.11) that | exp(-|Y | 2 |τ | 2zp | ≤ 1. Consequently, there exists a positive constant C( , δ, τ 0 ) such that, for all (Y, s) in H d and |τ | ≤ τ 0 , there holds ,ϕ S (H d )×S(H d ) = H -it,τ 0 ,ϕ S (H d )×S(H d ) .

	which implies that			
		lim p→∞	H ( ),2 zp,τ 0 ( ),2
	Now to study the part corresponding to H z ( ),2 z,τ 0 ϕ(Y, s) ( ),2 -H k≤ -1 4|τ | d e -2|τ |(2k+d) L (d-1) k |Y | 2 |τ | z p	e i τ s 2zp -	|Y | 2 |τ | 2zp
				≤ C( , δ, τ 0 ) ϕ(Y, s) 1 +	|Y | 2 |τ 0 | (1 -δ)|t|	e	κ(2 +d)τ 0 2	•
	Since the first part can be easily dealt, we readily gather that
	lim p→∞	H ( ),2 zp	-H ( ),2 zp,τ 0 ( ),2 -it -H	( ),2
	To show that				
		lim		
	( ),2 z,τ 0 and H z ( ),2 z,τ 0 corresponding to H ( ),2 -H ( ),2 z,τ 0 . One can assume without loss of generality that	|s| |z p |	≤ κ(2 + d),
	with 0 i τ s 2zp Φ	|Y | 2 |τ | z p	, e -4|τ |
						(κ-4)(2 +d)|τ | 2	,

p→∞ H ( ),1 zp ,ϕ S (H d )×S(H d ) = H ( ),1 -it ,ϕ S (H d )×S(H d ) = S ( ) t ,ϕ p→∞ H ( ),2 zp ,ϕ S (H d )×S(H d ) = H ( ),2 -it ,ϕ S (H d )×S(H d ) ,

we shall as above investigate separately

H ϕ(Y, s) 4|τ | d e -2|τ |d e ≤ C( , δ, τ 0 ) ϕ(Y, s) 1 + |Y | 2 (1 -δ)|t| |τ | d+ e

We refer to the monographs[7, 18, 19, 29, 

[START_REF] Taylor | Noncommutative Harmonic Analysis[END_REF][START_REF] Thangavelu | Harmonic Analysis on the Heisenberg group[END_REF] and the references therein for further details.

The interested reader can consult for instance[START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF][START_REF] Beals | Special functions and orthogonal polynomials[END_REF][START_REF] Erdélyi | Higher Transcendental functions[END_REF] and the references therein.

Note that a first attempt in the description of the range of S(H d ) by the Fourier-Heisenberg transform