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THE FOUR OPERATIONS ON PERVERSE MOTIVES

FLORIAN IVORRA AND SOPHIE MOREL

Abstract. Let k be a field of characteristic zero with a fixed embedding σ : k →֒ C into the field
of complex numbers. Given a k-variety X, we use the triangulated category of étale motives with

rational coefficients on X to construct an abelian category M (X) of perverse mixed motives. We
show that over Spec(k) the category obtained is canonically equivalent to the usual category of
Nori motives and that the derived categories Db(M (X)) are equipped with the four operations
of Grothendieck (for morphisms of quasi-projective k-varieties) as well as nearby and vanishing
cycles functors and a formalism of weights.

In particular, as an application, we show that many classical constructions done with perverse
sheaves, such as intersection cohomology groups or Leray spectral sequences, are motivic and
therefore compatible with Hodge theory. This recovers and strengthens work by Zucker, Saito,
Arapura and de Cataldo–Migliorini and provide an arithmetic proof of the pureness of intersection
cohomology with coefficients in a geometric variation of Hodge structures.
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Introduction

Let k be a field of characteristic zero with a fixed embedding σ : k →֒ C into the field of complex
numbers. A k-variety is a separated k-scheme of finite type. Unless otherwise specified, we will
only consider quasi-projective k-varieties.

In the present work, we construct the four operations on the derived categories of perverse Nori
motives. In order to combine the tools provided by Ayoub in [Ayo07a, Ayo07b] and Beilinson
in [Bei87a, Bei87c] in a most efficient way, we define the abelian category of perverse Nori motives
on a given k-variety as a byproduct of the triangulated category of constructible étale motives on
the same variety. Over the base field the category obtained still coincides with the usual category
of Nori motives but now, as we show, it is possible to equip the derived categories of these abelian
categories with the four operations of Grothendieck as well as nearby and vanishing cycles functors.
However, we leave the construction of the tensor product and internal Hom operations on these
categories to a later paper.

In particular, as an application, we show that many classical constructions done with perverse
sheaves, such as intersection cohomology groups or Leray spectral sequences, are motivic and
therefore compatible with Hodge theory. This recovers and strengthens works by Zucker [Zuc79],
Saito [Sai90b], Arapura [Ara05] and de Cataldo–Migliorini [dCM10]. Moreover it provides an arith-
metic proof via reduction to positive characteristic and the Weil conjectures of the pureness of the
Hodge structure on intersection cohomology with coefficients in a geometric variation of Hodge
structures.

Conjectural picture and some earlier works. Before going into more detail about the content of this
paper, let us discuss perverse motives from the perspective of perverse sheaves and recall parts of
the conjectural picture and related earlier works.

For someone interested in perverse sheaves, perverse motives can be thought of as perverse
sheaves of geometric origin. However, the classical definition of these perverse sheaves as a full
subcategory of the category of all perverse sheaves is not entirely satisfactory. Indeed, this category
contains too many morphisms and consequently, as we take kernels and cokernels of morphisms
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which shouldn’t be considered, too many objects. For example, perverse sheaves of geometric ori-
gin should define mixed Hodge modules and therefore any morphism between them should also
be a morphism of mixed Hodge modules. Therefore, one expects the category of perverse mo-
tives/perverse sheaves of geometric origin to be an abelian category endowed with a faithful – but
not full – exact functor into the category of perverse sheaves.

According to Grothendieck, there should exist a Q-linear abelian categoryMM(k) whose objects
are called mixed motives. Given an embedding σ : k →֒ C, the category MM(k) should come with
a faithful exact functor

MM(k)→MHS

to the category of (polarizable) mixed Q-Hodge structures MHS, called the realization functor.
The mixed Hodge structure on the i-th Betti cohomology group Hi(X) of a given k-variety X
should come via the realization functor from a mixed motive Hi

M
(X). The appealing beauty of

this picture lies in the expected properties of this category, in particular, the conjectural relations
between extension groups and algebraic cycles (see e.g. Jannsen’s [Jan94]), or the relation with
period rings and motivic Galois groups (see e.g. for a survey Ayoub’s [Ayo14d]).

As part of Grothendieck’s more general cohomological program, the category MM(k) should
underlie a system of coefficients. For any k-variety X , there should exist an abelian category
MM(X) of mixed motives along with a realization functor into the category of mixed Hodge
modules (or simply of sheaves of Q-vector spaces) on the associated analytic space Xan, and their
derived categories should satisfy a formalism of (adjoint) triangulated functors

Db(MM(X))
fM

∗

// Db(MM(Y ))
f∗
Moo f !

M //
Db(MM(X)),

fM

!

oo

a formalism which has been at the heart of Grothendieck’s approach to every cohomology theory.
Then, for a k-variety a : X → Spec k, the motive Hi

M
(X) would be given as the i-th cohomology of

the image under aM∗ of a complex of mixed motives QM

X that should realize to the standard constant
sheaf QX on Xan. Grothendieck was looking for abelian categories modeled after the categories of
constructible sheaves, but as pointed out by Bĕılinson and Deligne one could/should also look for
categories modeled after perverse sheaves (see e.g. Deligne’s [Del94]).

Many attempts have been made to carry out at least partially but unconditionally Grothendieck’s
program.

The most successful attempt in constructing the triangulated category of mixed motives (that
is, conjecturally, the derived category of MM(X)) stems from Morel–Voevodsky’s stable homo-
topy theory of schemes. The best candidate so far is the triangulated category DAct(X) of con-
structible étale motivic sheaves (with rational coefficients) extensively studied by Ayoub in [Ayo07a,
Ayo07b, Ayo14a]. The theory developed in [Ayo07a, Ayo07b] provides these categories with the
Grothendieck four operations and, as shown by Voevodsky in [Voe02], Chow groups of smooth
algebraic k-varieties can be computed as extension groups in the category DAct(k).

On the abelian side, Nori has constructed a candidate for the abelian category of mixed motives
over k. The construction of Nori’s abelian category HM(k) is tannakian in essence and, since it
is a category of comodules over some Hopf algebra, it comes with a built-in motivic Galois group.
Moreover any Nori motive has a canonical weight filtration and Arapura has shown in [Ara13,
Theorem 6.4.1] that the full subcategory of pure motives coincides with the semi-simple abelian
category defined by André in [And96] using motivated algebraic cycles (see also Theorem 10.2.5
in the book [HMS17] of Huber and Müller–Stach). More generally, attempts have been made to
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define Nori motives over k-varieties. Arapura has defined a constructible variant in [Ara13] and the
first author a perverse variant in [Ivo17]. However, the Grothendieck four operations have not been
constructed (at least in their full extent) in those contexts. For example in [Ara13], the direct image
functor is only available for structural morphisms or projective morphisms and no extraordinary
inverse image is defined.

Note that the two different attempts should not be unrelated. One expects the triangulated cate-
goryDAct(X) to possess a special t-structure (called the motivic t-structure) whose heart should be
the abelian category of mixed motives. This is a very deep conjecture, even for X = Spec k, which
implies for example the Lefschetz and Künneth type standard conjectures (see Beilinsons’s [Bei12]).
As of now, the extension groups in Nori’s abelian category of mixed motives are known to be related
with algebraic cycles only very poorly.

However, striking unconditional relations between the two different approaches have still been
obtained. In particular, in [CGAdS17], Gallauer–Choudhury have shown that the motivic Galois
group constructed by Ayoub in [Ayo14b, Ayo14c] using the triangulated category of étale motives
is isomorphic to the motivic Galois group obtained by Nori’s construction.

Content of this paper. Let us now describe more precisely the content of our paper. Given a k-variety
X , consider the bounded derived category Db

c (X,Q) of sheaves ofQ-vector spaces with algebraically
constructible cohomology on the analytic space Xan associated with the base change of X along σ
and the category of perverse sheaves P(X) which is the heart of the self-dual perverse t-structure
on Db

c (X,Q) introduced in the book [BBD82] by Beilinson–Bernstein–Deligne. Let DAct(X) be
the triangulated category of constructible étale motivic sheaves (with rational coefficients) which
is a full triangulated subcategory of the Q-linear counterpart of the stable homotopy category of
schemes SH(X) introduced by Morel and Voevodsky (see [MV99, Voe98] and Jardine’s [Jar00]).
This category has been extensively studied by Ayoub in [Ayo07a, Ayo07b, Ayo14a] and comes with
a realization functor

Bti∗X : DAct(X)→ Db
c (X,Q)

(see Ayoub’s [Ayo10]) and thus, by composing with the perverse cohomology functor, with a ho-
mological functor pH0

P
with values in P(X).

The category of perverse motives considered in the present paper is defined (see the first au-
thor’s 2) as the universal factorization

DAct(X)
pH0

M−−−→M (X)
ratMX−−−→P(X)

of pH0
P
, where M (X) is an abelian category, pH0

M
is a homological functor and ratMX is a faithful

exact functor. This kind of universal construction goes back to Freyd and is recalled in 1. As we
see in 6, ℓ-adic perverse sheaves can also be used to defined the category of perverse motives (see
6.3 and 6.11).

Given a morphism of k-varieties f : X → Y , the four functors

(0.1) Db
c (X,Q)

fP

∗

// Db
c (Y,Q)

f∗
Poo

f !
P

// Db
c (X,Q)

fP

!oo

where developed by Verdier [Ver95] (see also Kashiwara–Schapira’s book [KS94]) on the model of
the theory developed by Artin, Grothendieck et al. for étale and ℓ-adic sheaves in [AGV+73]. The
nearby and vanishing cycles functors

Ψg : Db
c (Xη,Q)→ Db

c (Xσ,Q) Φg : Db
c (X,Q)→ Db

c (Xσ,Q)
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associated with a morphism g : X → A1
k were constructed by Grothendieck in [DK73] (here

Xη denotes the generic fiber and Xσ the special fiber). By a theorem of Gabber, the functors
ψg := Ψg[−1] and φg := Φg[−1] are t-exact for the perverse t-structures and thus induce exact
functors

(0.2) ψg : P(Xη)→P(Xσ) φg : P(X)→P(Xσ).

In this work, we prove that M (k) is canonically equivalent to the abelian category HM(k) of Nori
motives (see 2.11) and that the four operations (0.1) (for morphisms of quasi-projective k-varieties)
and the functors (0.2) can be canonically lifted along the functors

Db(M (X))
ratMX−−−→ Db(P(X))

real
−−→ Db

c (X,Q),

where real is the realization functor of Section 3.1 of the book [BBD82] by Beilinson–Bernstein–
Deligne, which has been shown to be an equivalence in Beilinson’s [Bei87c], to (adjoint) triangulated
functors

Db(M (X))
fM

∗

// Db(M (Y ))
f∗

Moo

f !
M

// Db(M (X))
fM

!oo

and to exact functors

ψM
f : M (Xη)→M (Xσ) φM

f : M (X)→M (Xσ).

Relying on Ayoub’s [Ayo07a, Ayo07b] and on the compatibility of the Betti realization with
the four operations, our strategy consists in establishing enough of the formalism to show that the
categories Db(M (X)) underlie a stable homotopical 2-functor in the sense of [Ayo07a] (see 5.1), so
that the rest of the formalism is obtained from [Ayo07a, Ayo07b]. The existence of the direct image
by a closed immersion or the inverse image by a smooth morphism are obtained immediately via the
universal property (see 2). However, to construct the inverse image by a closed immersion (see 4),
we need to develop analogues, for étale motives, of the functors and gluing exact sequences obtained
by Bĕılinson in [Bei87a]. This is done in 3 and uses derivators, and the logarithmic specialization
system of Ayoub, see [Ayo07b, Ayo14a]. The proof of the main theorem is carried out in 5 and the
most important step is the proof of the existence of the direct image by the projection of the affine
line A1

X onto its base X (see 5.2). We conclude this section by the aforementioned applications to
intersection cohomology and Leray spectral sequences.

In 6, we show that perverse motives can also be defined using ℓ-adic perverse sheaves and that
they admit a notion of weights. We deduce the existence of the weight filtration from the properties
of Bondarko’s Chow weight structure and from the Weil conjectures (cf. Théorème 2 of Deligne’s
paper [Del80]). Then, using the strict support decomposition of pure objects to reduce to the case
of a point, we show that the category of pure objects of a given weight is semi-simple. As an
application, we get the existence of a weight structure on the derived category of M (X) and an
arithmetic proof of Zucker’s theorem [Zuc79, Theorem p.416] for geometric variations of Hodge
structures (see 6.28 and 6.29).
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1. Categorical preliminaries

Let us recall in this section a few universal constructions related to abelian and triangulated
categories. They date back to Freyd’s construction of the abelian hull of an additive category,
see his paper [Fre66] and have been considered in many different forms in various works (see e.g.
Verdier’s book [Ver96], Krause’s [Kra98], Prest’s [Pre11] and the paper [BVP18] by Barbieri-Viale
and Prest).

Let S be an additive category. Let Mod(S) be the category of right S-modules, that is, the
category of additive functors from Sop to the category Ab of abelian groups. The category Mod(S)
is abelian and a sequence of right S-modules

0→ F ′ → F → F ′′ → 0

is exact if and only if for every s ∈ S the sequence of abelian groups

0→ F ′(s)→ F (s)→ F ′′(s)→ 0

is exact.
A right S-module F is said to be of finite presentation if there exist objects s, t in S and an exact

sequence

S(−, s)→ S(−, t)→ F → 0

in Mod(S).

Definition 1.1. Let S be an additive category. We denote by R(S) the full subcategory of Mod(S)
consisting of right S-modules of finite presentation.

The category R(S) is an additive category with cokernels (the cokernel of a morphism of right
S-modules of finite presentation is of finite presentation) and the Yoneda functor

hS : S→ R(S)

is a fully faithful additive functor. Recall that, given a morphism t→ s in S, a morphism r → t is
called a pseudo-kernel if the sequence

S(−, r)→ S(−, t)→ S(−, s)

is exact in Mod(S). The category R(S) is abelian if and only if S has pseudo-kernels (see [Fre66,
Theorem 1.4] and [Kra98, Lemma 2.2]). It also satisfies the following universal property.
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Proposition 1.2. ([Kra98, 2.1 and Lemma 2.6]). Let S be an additive category. Let A be an
additive category with cokernels and F : S → A be an additive functor, then there exists, up to a
natural isomorphism, a unique right exact functor R(S) → A that extends F . Moreover, if S and
A admit pseudo-kernels, then this functor is exact if and only if F preserves pseudo-kernels.

Note that the construction can be dualized so that there is a universal way to add kernels to an
additive category. One simply set L(S) := R(Sop)op. The two constructions can be combined to
add both cokernels and kernels at the same time. Let S be an additive category and let

Aad(S) := L(R(S)).

Then the functor h : S → Aad(S) is a fully faithful additive functor and Aad(S) is an abelian
category which enjoys the following universal property (this is Freyd’s abelian hull).

Proposition 1.3. Let A be an abelian category and F : S → A be an additive functor, then there
exists, up to a natural isomorphism, a unique exact functor Aad(S)→ A that extends F .

Note also that the category Aad(S) is canonically equivalent to R(L(S)).
This construction can be used to provide an alternative description of Nori’s category (see the

paper [BVP18] by Barbieri-Viale and Prest). Let Q be a quiver, A be an abelian category and
T : Q → A be a representation. Let P(Q) be the path category and P(Q)⊕ be its additive
completion obtained by adding finite direct sums. Then, up to natural isomorphisms, we have a
commutative diagram

Q //

T
""❊

❊❊
❊❊

❊❊
❊❊

P(Q)⊕ //

̺T

��

Aad(P(Q)⊕) =: Aqv(Q)

ρT

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧

A

where ̺T is an additive functor and ρT an exact functor. The kernel of ρT is a thick subcategory of
Aqv(Q) and we define the abelian category Aqv(Q, T ) to be the quotient of Aqv(Q) by this kernel.
By construction, the functor ρT has a canonical factorization

Aqv(Q)
πT−−→ Aqv(Q, H)

rT−−→ A

where πT is an exact functor and rT is a faithful exact functor. If we denote by T the composition of
the representation Q→ Aqv(Q) and the functor πT : Aqv(Q)→ Aqv(Q, T ), it provides a canonical
factorization of T :

Q
T
−→ Aqv(Q, T )

rT−−→ A

where T is a representation and rT is a faithful exact functor. It is easy to see that the above
factorization is universal among all factorizations of T of the form

Q
R
−→ B

s
−→ A

where B is an abelian category, R is a representation and s is a faithful exact functor. In particular,
whenever Nori’s construction is available, e.g. if A is Noetherian, Artinian and has finite dimensional
Hom-groups over Q (see the paper [Ivo17] by the first author), then the category Aqv(Q, T ) is
equivalent to Nori’s abelian category associated with the quiver representation T .
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Let us consider the case when Q is an additive category and T is an additive functor. Then, up
to natural isomorphisms, we have a commutative diagram

Q //

T
""❋

❋❋
❋❋

❋❋
❋❋

❋ Aad(Q)

T∗

��
A

where T ∗ is an exact functor. The kernel of T ∗ is a thick subcategory of Aad(Q) and we define the
abelian category Aad(Q, T ) to be the quotient of Aad(Q) by this kernel.

Lemma 1.4. Let Q and A be additive categories. Then, for every additive functor T : Q→ A, the
categories Aqv(Q, T ) and Aad(Q, T ) are canonically equivalent.

Proof. To see this, it suffices to check that the factorization

Q→ Aad(Q, T )→ A

satisfies the universal property that definesAqv(Q, T ). Consider a factorization of the representation
T of the quiver Q

Q
R
−→ B

s
−→ A

where B is an abelian category, R is a representation and s is a faithful exact functor. Since s is
faithful, R must be an additive functor. Therefore, we get a commutative diagram (up to natural
isomorphisms)

Q

T

((

R
��❄

❄❄
❄❄

❄❄
❄

// Aad(Q)

exact

{{

T∗

uu

B

s

��
A.

The exactness and the faithfulness of s imply that the above diagram can be further completed into
a commutative diagram (up to natural isomorphisms)

Q

T

''

R
��❂

❂❂
❂❂

❂❂
❂

// Aad(Q)

exact

zz✈✈
✈✈
✈✈
✈✈
✈✈

T∗ll

��
B

s

��

Aad(Q, T )oo

zz✉✉✉
✉✉✉

✉✉✉
✉

A.

This shows the desired universal property. �

Let us finally consider the special case when S is a triangulated category. In that case the additive
category S has pseudo-kernels and pseudo-cokernels, in particular, the category Atr(S) := R(S) is
an abelian category.1 The Yoneda embedding hS : S → Atr(S) is a homological functor and is

1This is the abelian category denoted by A(S) in Chapter V of Neeman’s book [Nee01].
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universal for this property (see [Nee01, Theorem 5.1.18]). In particular, if A is an abelian category,
any homological functor H : S→ A admits a canonical factorization

S
hS // Atr(S)

ρH // A

where ρH is an exact functor. This factorization of H is universal among all such factorizations.
The kernel of ρH is a thick subcategory of Atr(S) and we define the abelian category Atr(S, H)

to be the quotient of Atr(S) by this kernel. By construction, the functor ρH has a canonical
factorization

Atr(S)
πH−−→ Atr(S, H)

rH−−→ A

where πH is an exact functor and rH is a faithful exact functor. Setting HS := πH ◦ hS, it provides
a canonical factorization of H :

S
HS−−→ Atr(S, H)

rH−−→ A

where HS is a homological functor and rH a faithful exact functor. It is easy to see that the above
factorization is universal among all factorizations of H of the form

S
L
−→ B

s
−→ A

where L is a homological functor and s is a faithful exact functor.
We can also see the triangulated category S simply as a quiver (resp. an additive category) and

the homological functor H : S → A simply as a representation (resp. an additive functor). In
particular, we have at our disposal the universal factorizations of the representation H :

S→ Aqv(S, H)→ A

and
S→ Aad(S, H)→ A

where the arrows on the right are exact and faithful functors.

Lemma 1.5. Let S be a triangulated category, A be an abelian category and H : S → A be a
homological functor. Then, the three abelian categories Aqv(S, H), Aad(S, H) and Atr(S, H) are
canonically equivalent.

Proof. We have seen in 1.4 that Aqv(S, H) and Aad(S, H) are canonically equivalent. Let us prove
that so do Aad(S, H) and Atr(S, H). It suffices to check that the factorization

S→ Atr(S, H)→ A

satisfies the universal property that defines Aad(S, H). Consider a factorization of the additive
functor H :

Q
R
−→ B

s
−→ A

where B is an abelian category, R is an additive functor and s is a faithful exact functor. Since
s is faithful, R must be homological. Therefore, we get a commutative diagram (up to natural
isomorphisms)

S

H

((

R
��❃

❃❃
❃❃

❃❃
❃

// Atr(S)

exact

||

uu

B

s

��
A.
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The exactness and the faithfulness of s imply that the above diagram can be further completed into
a commutative diagram (up to natural isomorphisms)

S

H

''

R
��❂

❂❂
❂❂

❂❂
❂

// Atr(S)

exact

{{✈✈
✈✈
✈✈
✈✈
✈✈

ll

��
B

s

��

Atr(S, T )oo

zz✉✉
✉✉
✉✉
✉✉
✉

A.

This shows the desired universal property. �

2. Perverse motives

We fix a field k that admits an embedding σ : k → C. Unless otherwise specified, we will only
consider quasi-projective k-varieties in this article.

2.1. Definition. Let X be a quasi-projective k-variety. We denote by Xan the complex analytic
space associated with the base change of X along σ, by Db

c (X,Q) the category of complexes of
sheaves of Q-vector spaces on Xan with bounded algebraically constructible cohomology, by P(X)
the heart of the perverse t-structure on Db

c (X,Q) introduced in Section 2 of the book [BBD82] of
Beilinson–Bernstein–Deligne for the self-dual perversity and by DAct(X) the triangulated category
of constructible étale motivic sheaves with rational coefficients (see for example Section 3 of Ayoub’s
paper [Ayo14a]). By [CD19, Theorem 16.2.18], this last category is equivalent to the category of
constructible Bĕılinson motives studied in Cisinski and Déglise’s book [CD19], and the equivalence
commutes with the operations we will consider later (direct and inverse images and tensor product).
So we will use reference to Ayoub’s articles or to the book [CD19], as convenient.

To construct the abelian category of perverse motives M (X) used in the present work, we take
S to be the triangulated category DAct(X) and H to be the homological functor pH0

P
obtained by

composing of the Betti realization

Bti∗X : DAct(X)→ Db
c (X,Q)

constructed by Ayoub in [Ayo10] and the perverse cohomology functor pH0 : Db
c (X,Q)→P(X).

Definition 2.1. Let X be a k-variety. The abelian category of perverse motives is the abelian
category

M (X) := Atr(S, H) = Atr(DAct(X), pH0
P).

By construction the functor pH0
P

has a factorization

DAct(X)
pH0

M−−−→M (X)
ratMX−−−→P(X)

where ratMX is a faithful exact functor and pH0
M

is a homological functor. Let us recall the two
consequences (denoted by P1 and P2 below) of the universal property of the factorization

DAct(X)
pH0

M //
66

pH0
P

✤✤ ✤✤
��ρX

M (X)
ratMX // P(X).
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The property P1 below is proved in [Ivo17, Proposition 6.6]. A proof of property P2 can be found
in Proposition 2.5 of the paper [IY18] by Ivorra–Yamazaki.

P1 For every commutative diagram

DAct(X)
pH0

P//

F��
✌✌✌✌�
 α

P(X)

G��
DAct(Y )

pH0
P

// P(Y )

where F is a triangulated functor, G is an exact functor and α is an invertible natural transformation,
there exists a commutative diagram

DAct(X)

✌✌✌✌�
 β

//

F��

M (X) //

E��
☛☛☛☛�	 γ

P(X)

G��
DAct(Y ) // M (Y ) // P(Y )

where E is an exact functor and β, γ are invertible natural transformations such that the diagram

DAct(X)

F

��

pH0
M((◗◗

rrrru}
β

❴❴❴❴ +3
ρX

DAct(X)
pH0

P

##❍
❍❍

❍❍
❍❍

❍

F

�� qqqqt|
α

M (X) ratMX''❖❖

E

��
♦♦♦♦s{
γ

P(X)

G

��

P(X)

G

��

DAct(Y ) pH0
M((◗◗

❴❴❴❴ +3
ρY

DAct(Y )
pH0

P

##
M (Y ) ratMY''❖❖

P(Y ) P(Y )

is commutative.
P2 Let

DAct(X)
pH0

P //
F1

((◗◗◗
◗◗ ✚✚ ✚✚	� α1

P(X)
G1

&&▲▲
▲▲

✤✤ ✤✤
�� λ
DAct(Y )

pH0
P //✤✤ ✤✤

�� µ
P(Y )

DAct(X)
F2

((◗◗◗
◗◗

pH0
P //
✚✚ ✚✚	� α2

P(X)
G2

&&
DAct(Y )

pH0
P // P(Y )

be a commutative diagram in which F1,F2 are triangulated functors, G1,G2 are exact functors,
α1, α2 are invertible natural transformations and λ, µ are natural transformations. Let

DAct(X)

✌✌✌✌�
 β1

//

F1��

M (X) //

E1��
☛☛☛☛�	 γ1

P(X)

G1��
DAct(Y ) // M (Y ) // P(Y )

DAct(X)

✌✌✌✌�
 β2

//

F2��

M (X) //

E2��
☛☛☛☛�	 γ2

P(X)

G2��
DAct(Y ) // M (Y ) // P(Y )
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be commutative diagrams given in the property P1, then there exists a unique natural transforma-
tion θ : E1 → E2 such that the diagram

DAct(X)
pH0

M //
F1

((◗◗◗
◗◗ ✚✚ ✚✚	� β1

M (X)
E1

&&▼▼
▼▼

ratMX //
✙✙ ✙✙�� γ1

P(X)
G1

&&▲▲
▲▲

✤✤ ✤✤
�� λ
DAct(Y )

pH0
M //✤✤ ✤✤

�� θ
M (Y )

ratMY //✤✤ ✤✤
�� µ

P(Y )

DAct(X)
F2

((◗◗◗
◗◗

pH0
M //
✚✚ ✚✚	� β2

M (X)
E2

&&

ratMX //
✙✙ ✙✙�� γ2

P(X)
G2

&&
DAct(Y )

pH0
M // M (Y )

ratMY // P(Y )

is commutative.

2.2. Lifting of 2-functors. As in [Ayo07a, §1.1], in this work, we only consider strict 2-categories.
However, as in loc.cit., 2-functors are not necessarily strict (see also Deligne’s [Del]).

Let (Sch/k) be the category of quasi-projective k-varieties and C be a subcategory of (Sch/k).
The properties P1 and P2 can be used to lift (covariant or contravariant) 2-functors. Indeed, let
F : C → TR be a 2-functor (let’s say covariant to fix the notation), where TR is the 2-category of
triangulated categories, such that F(X) = DAct(X) for every k-variety X in C. Similarly, let Ab

be the 2-category of abelian categories, and let G : C→ Ab be a 2-functor such that G(X) = P(X)
for every k-variety X in C and that G(f) is exact for every morphism f in C.

We have forgetful functors from TR and Ab to the 2-category of additive categories. Assume
that (Θ, α) : F → G is a 1-morphism of 2-functors, where we see F and G as 2-functors into the
2-category of additive categories via these forgetful functors, such that ΘX = pH0

P
for every X ∈ C

and that αf is invertible for every morphism f in C.
Let f : X → Y be a morphism in C. By applying P1 to the square

DAct(X)
pH0

P//

F(f)
��

✌✌✌✌�
 αf

P(X)

G(f)
��

DAct(Y )
pH0

P

// P(Y )

we get a commutative diagram

DAct(X)

✌✌✌✌�
 βf

//

F��

M (X) //

E(f)
��

☛☛☛☛�	 γf

P(X)

G(f)
��

DAct(Y ) // M (Y ) // P(Y )
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where E(f) is an exact functor and βf , γf are invertible natural transformations such that the
diagram

DAct(X)

F(f)

��

pH0
M((◗◗

rrrru}
βf

❴❴❴❴ +3
ρX

DAct(X)
pH0

P

##❍
❍❍

❍❍
❍❍

❍

F(f)

�� qqqqt| αf

M (X) ratMX''❖❖

E(f)

��
♦♦♦♦s{
γf

P(X)

G(f)

��

P(X)

G(f)

��

DAct(Y )pH0
M((◗◗

❴❴❴❴ +3
ρY

DAct(Y )
pH0

P

##
M (Y ) ratMY''❖❖

P(Y ) P(Y )

is commutative. Let X
f
−→ Y

g
−→ Z be morphisms in C. By applying P2 to the commutative diagram

DAct(X)
pH0

P //
F(g◦f)

**❱❱❱❱
❱❱❱❱

❱❱❱
❴❴❴❴ks

αg◦f

P(X)
G(g◦f)

))❙❙❙
❙❙❙❙

❙❙

✤✤ ✤✤
�� cF(f,g)

DAct(Z)
pH0

P //✤✤ ✤✤
�� cG(f,g)

P(X)

DAct(X)
pH0

P //
F(f)
))❙❙ ❴❴❴❴ks

αf

P(X) G(f)
''

DAct(Y )
pH0

P //
F(g)
))❘❘ ❴❴❴❴ks

αg

P(Y ) G(g)
''

DAct(Z)
pH0

P // P(Z)

there exists a unique natural transformation cE(f, g) : E(g ◦ f) → E(g) ◦ E(f) that fits into the
commutative diagram

DAct(X)
pH0

M //
F(g◦f)

**❱❱❱❱
❱❱❱❱

❱❱❱
❴❴❴❴ks

βg◦f

M (X)
ratMX //

E(g◦f)

))❙❙❙
❙❙❙❙

❙❙
❴❴❴❴ks

γg◦f

P(X)
G(g◦f)

))❙❙❙
❙❙❙❙

❙❙

✤✤ ✤✤
�� cF(f,g)

DAct(Z)
pH0

M //✤✤ ✤✤
�� cE(f,g)

M (Z)
ratMZ //✤✤ ✤✤

�� cG(f,g)

P(X)

DAct(X)
pH0

M //
F(f)
))❙❙ ❴❴❴❴ks

βf

M (X)
ratMX //

E(f)
'' ❴❴❴❴ks

γf

P(X) G(f)
''

DAct(Y )
pH0

M //
F(g)
))❘❘ ❴❴❴❴ks

βg

M (Y )
ratMY //

E(g)
'' ❴❴❴❴ks

γg

P(Y ) G(g)
''

DAct(Z)
pH0

M // M (Z)
ratMZ // P(Z).

Using the uniqueness and the fact that the functors ratMX , for X in C, are faithful it is easy to
see that the morphisms cE satisfy the cocycle condition. Hence E : C → Ab is a 2-functor and
(pH0

M
, β), (ratM , γ) are 1-morphisms of 2-functors, where again we see the 2-functors as functors

into the 2-category of additive categories. As 1- and 2-morphisms in Ab are the same as 1- and
2-morphisms in the 2-category of additive categories, the morphism (ratM , γ) is also a 1-morphism
of 2-functors C→ Ab.

2.3. Betti realization of étale motives. Let f : X → Y be a morphism of quasi-projective
k-varieties. Recall that the category Db

c (X,Q) is equivalent to the derived category of the abelian
category of perverse sheaves on X via the realization functor constructed in [BBD82, 3.1.9] (it is
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known to be an equivalence by [Bei87c, Theorem 1.3]). In particular, the four (adjoint) functors

Db
c (X,Q)

fP

∗

// Db
c (Y,Q)

f∗
Poo

f !
P

// Db
c (X,Q)

fP

!oo

can be seen as functors between the derived categories of perverse sheaves (for their construction
in terms of perverse sheaves see [Bei87c]).

Let Bti∗X : DAct(X)→ Db
c (X,Q) be the realization functor of [Ayo10]. If f : X → Y is a mor-

phism of quasi-projective k-varieties, by construction, there is an invertible natural transformation

θf : f∗
P ◦ Bti

∗
Y → Bti∗X ◦ f

∗

(see [Ayo10, Proposition 2.4]). Let θ be the collection of these natural transformations, then (Bti∗, θ)
is a morphism of stable homotopical 2-functors in the sense of [Ayo10, Definition 3.1]. Following
the notation in [Ayo10], we denote by

γf : Bti∗Y ◦ f∗ → fP
∗ ◦ Bti

∗
X ;

ρf : fP
! ◦ Bti

∗
X → Bti∗Y ◦ f! ;

ξf : Bti∗X ◦ f
! → f !

P ◦ Bti
∗
Y ;

the induced natural transformations. By [Ayo10, Théorème 3.19] these transformations are invert-
ible.

2.4. Direct images under affine and quasi-finite morphisms. Let QAff(Sch/k) be the sub-
category of (Sch/k) with the same objects but in which we only retain the morphisms that are
quasi-finite and affine. By [BBD82, Corollaire 4.1.3], for such a morphism f : X → Y , the functors

fP
∗ , fP

! : Db
c (X,Q)→ Db

c (Y,Q)

are t-exact for the perverse t-structures. In particular, they induce exact functors between categories
of perverse sheaves and by applying the propertyP1 to the canonical transformation γf : Bti∗Y ◦f∗ →
fP
∗ ◦ Bti

∗
X , we get a commutative diagram

DAct(X)

✌✌✌✌
BJγDA

f

//

f∗��

M (X) //

fM

∗ �� ☛☛☛☛
AIγM

f

P(X)

fP

∗��
DAct(Y ) // M (Y ) // P(Y )

where fM
∗ is an exact functor and γDA

f , γM
f are invertible natural transformations such that the

diagram

DAct(X)

f∗

��

pH0
M((◗◗

rrrr
5=γDA

f

❴❴❴❴ +3ρX

DAct(X)
pH0

P

##❍
❍❍

❍❍
❍❍

❍

f∗

�� qqqq
4<γf

M (X) ratMX''❖❖

fM

∗

��
♦♦♦♦
3;γM

f

P(X)

fP

∗

��

P(X)

fP

∗

��

DAct(Y )pH0
M((◗◗

❴❴❴❴ +3ρY

DAct(Y )
pH0

P

##
M (Y ) ratMY''❖❖

P(Y ) P(Y )
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is commutative. Moreover, since the natural transformations γf are compatible with the composi-
tion of morphisms (that is, with the connection 2-isomorphisms), 2.2 provides a 2-functor

QAffHM
∗ : QAff(Sch/k)→ TR

with QAffHM
∗ (X) = Db(M (X)) and such that (pH0

M
, γDA) and (ratM , γM ) are 1-morphisms of

2-functors. For every affine and quasi-finite morphism f : X → Y we have a natural transformation

γM
f : ratMY fM

∗ → fP
∗ ratMX

compatible with the composition of morphisms.

2.5. Inverse image by a smooth morphism. Let f : X → Y be a smooth morphism of
k-varieties. Then, Ωf is a locally free OX -module of finite rank. Let df its rank (which is
constant on each connected component of X). Then, df is the relative dimension of f (see
Grothendieck’s EGA IV, more precisely [Gro67, (17.10.2)]) and if g : Y → Z is a smooth morphism,
then dg◦f = dg +df with the obvious abuse of notation (see [Gro67, (17.10.3)]). By [BBD82, 4.2.4],
the functor

f∗
P [df ] : D

b
c (Y,Q)→ Db

c (X,Q)

is t-exact for the perverse t-structures. In particular, it induces an exact functor between the
categories of perverse sheaves and by applying the property P1 to the canonical transformation
θf : f∗

P
◦ Bti∗Y → Bti∗X ◦ f

∗, we get a commutative diagram

DAct(Y )

✌✌✌✌�
 θDA

f

//

f∗[df ]��

M (Y ) //

��
☛☛☛☛�	 θM

f

P(Y )

f∗
P

[df ]��
DAct(X) // M (X) // P(X)

where the functor in the middle f∗
M
[df ] is an exact functor and θDA

f , θM
f are invertible natural

transformations such that the diagram

DAct(Y )

f∗[df ]

��

pH0
M((◗◗

rrrru}
θDA

f

❴❴❴❴ +3
ρY

DAct(Y )
pH0

P

##❍
❍❍

❍❍
❍❍

❍

f∗[df ]

�� qqqqt|
θf

M (Y ) ratMY''❖❖

f∗
M

[df ]

��
♦♦♦♦s{

θM

f

P(Y )

f∗
P

[df ]

��

P(Y )

f∗
P

[df ]

��

DAct(X)pH0
M((◗◗

❴❴❴❴ +3
ρX

DAct(X)
pH0

P

##
M (X) ratMX''❖❖

P(X) P(X)

is commutative.

Remark 2.2. Note that f∗
M
A, given A in M (Y ), is not yet defined. We define the function f∗

M

by setting f∗
M

:= (f∗
M

[df ])[−df ].

Let Liss(Sch/k) be the subcategory of (Sch/k) with the same objects but having as morphisms
only the smooth morphisms of k-varieties. Since the natural transformations θf are compatible
with the composition of morphisms (that is, with the connection 2-isomorphisms), 2.2 provides a
contravariant 2-functor

LissH∗
M : Liss(Sch/k)→ TR



16 FLORIAN IVORRA AND SOPHIE MOREL

with LissH∗
M
(X) = Db(M (X)) and such that (pH0

M
, θDA) and (ratM , θM ) are 1-morphisms of

2-functors. For every smooth morphism f : X → Y we have a natural transformation

θM
f : f∗

PratMY → ratMX f∗
M

compatible with the composition of morphisms.

2.6. Exchange structure. Let us denote by

ImmHM
∗ : Imm(Sch/k)→ TR

the restriction of the 2-functor obtained in 2.4 to the subcategory Imm(Sch/k) of (Sch/k) with
the same objects but having as morphisms only the closed immersions of k-varieties. Exchange
structures are defined in Définition 1.2.1 of [Ayo07a].

Proposition 2.3. The exchange structure Ex∗∗ on (LissH∗
P
, ImmHP

∗ ) with respect to cartesian
squares can be lifted to an exchange structure on the pair (LissH∗

M
, ImmHM

∗ ).

Proof. The proposition is a simple application of property P2. Consider a cartesian square

X ′ i′ //

f ′

��

Y ′

f

��
X

i // Y

such that i is a closed immersion and f is a smooth morphism (more generally i need not be
a closed immersion and can be any quasi-finite affine morphism). Note that, since the morphism
i′∗Ω1

f → Ω1
f ′ is an isomorphism, f and f ′ have the same relative dimension d. Let Ex∗∗ : f∗i∗ → i′∗f

′∗

and PEx∗∗ : f∗
P
iP∗ → i′P∗ f ′∗

P
the exchange 2-isomorphisms in DA(−) and Db(P(−)). We have to

construct a 2-isomorphism

Db(M (X))

f∗
M

iM∗ --

i′M∗ f ′∗
M

11
✤✤ ✤✤
��

MEx∗
∗ Db(M (Y ′))

which is compatible with PEx∗∗ via the 2-isomorphisms γM
g , γM

g′ and θM
f , θM

f ′ . This amounts to
constructing a 2-isomorphism

M (X)

f∗
M

[d]iM∗ ,,

i′M∗ f ′∗
M

[d]

22
✤✤ ✤✤
��
MEx∗

∗[d] M (Y ′)
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such that

M (X)
ratMX //

iM∗
&&◆◆

◆ ❴❴❴❴ks
(γM

i )−1

P(X) iP∗
&&▼▼

▼

M (Y ) f∗
M

[d]
''◆◆

◆

ratMX //
❴❴❴❴ks

θM

f

P(Y ) f∗
P

[d]
&&◆◆

◆

✤✤ ✤✤
��MEx∗

∗[d]

M (Y ′)
ratM

X′ //✤✤ ✤✤
�� PEx∗

∗[d]

P(Y ′)

M (X)
ratMX //

f ′∗
M

[d]
&&◆◆

◆ ❴❴❴❴ks
θM

f′

P(X) f ′∗
P

[d]
&&

M (Y )
ratMY //

i′M∗
''◆◆

◆ ❴❴❴❴ks
(γM

i′
)−1

P(Y ) i′P∗
&&

M (Y ′)
ratM

Y ′ // P(Y ′)

is commutative. Note that such a 2-isomorphism is necessarily unique since the functors ratMS , for
S a k-variety, are faithful. For the same reason they will also be compatible with the horizontal
and vertical compositions of mixed squares (see [Ayo07a, Définition 1.21]). The proposition follows
from property P2 applied to the commutative diagram

DAct(X)
pH0

P //
i∗
))❘❘❘

❘ ❴❴❴❴ks
(γi)

−1

P(X) iP∗
''◆◆

◆

DAct(Y )
f∗[d]

))❘❘❘
❘

pH0
P //

❴❴❴❴ks
θf

P(Y ) f∗
P

[d]
''❖❖

❖

✤✤ ✤✤
��Ex∗

∗[d]

DAct(Y
′)

pH0
P //✤✤ ✤✤

�� PEx∗
∗[d]

P(Y ′)

DAct(X)
pH0

P //
f ′∗[d]

))❘❘❘
❘ ❴❴❴❴ks

θf′

P(X) f ′∗
P

[d]
''

DAct(X
′)

pH0
P //

i′∗
))❘❘❘

❘ ❴❴❴❴ks
(γi′ )

−1

P(X ′) i′P∗
''

DAct(Y
′)

pH0
P // P(Y ′).

The commutativity of this diagram follows from the compatibility of the Betti realization with the
exchange structures. �

Remark 2.4. The application of property P2 ensures that the two exchange structures MEx∗∗
and PEx∗∗ are compatible with the canonical 2-isomorphisms θM . That is, the diagram

f∗
P
ratMY iM∗

γM

i //

θM

f

��

f∗
P
iP∗ ratMX

PEx∗
∗ // i′P∗ f ′∗

P
ratMX

θM

f′

��
ratMY ′f∗

M
iM∗

MEx∗
∗ // ratMY ′ i′M∗ f ′∗

M

γM

i′ // i′P∗ ratMX′f ′∗
M

is commutative. This follows from the faithfulness of the functors ratM after applying the shift
functor (−)[d].

2.7. Adjunction. Let f : X → Y be an affine and étale morphism. In that case the exact functors
f∗ : P(X) → P(Y ) and f! : P(X) → P(Y ) are respectively right and left adjoint to the exact
functor f∗

P
: P(Y )→P(X). We can use the property P2 to lift these adjunctions to the functors

fM
! , f∗

M
, fM

∗ .

Proposition 2.5. Let f : X → Y be an affine and étale morphism.
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(1) There exist unique natural transformations Id → fM
∗ f∗

M
and f∗

M
fM
∗ → Id such that the

squares

ratMY
//

��

ratMY fM
∗ f∗

M

��
fP
∗ f∗

P
ratMY

// fP
∗ ratMX f∗

M

ratMX f∗
M
fM
∗

// ratMX

f∗
P
ratMY fM

∗

OO

// f∗
P
fP
∗ ratMX

OO

are commutative. With these natural transformations, the functors (f∗
M
, fM

∗ ) form a pair
of adjoint functors.

(2) There exist unique natural transformations Id → f∗
M
fM
! and fM

! f∗
M
→ Id such that the

squares

ratMX
//

��

ratMX f∗
M
fM
!

f∗
P
fP
! ratMX

// f∗
P
ratMY fM

!

OO
ratMY fM

! f∗
M

// ratMY

fP
! ratMX f∗

M

OO

fP
! f∗

P
ratMX

OO

oo

are commutative. With these natural transformations, the functors (fM
! , f∗

M
) form a pair

of adjoint functors.

Proof. As for 2.3, the proof is a simple application of property P2. The details are left to the
reader. �

2.8. Duality. The result in this subsection will be used in the proof of 5.3. Let DP
X be the duality

functor for perverse sheaves and εP
X : Id→ DP

X ◦D
P
X be the canonical 2-isomorphism. Recall that,

given a smooth morphism f : X → Y of relative dimension d, there is a canonical 2-isomorphism

εP
f : DP

X ◦ f
∗
P(−)(d)[d] → f∗

P(−)[d] ◦DP
Y .

Proposition 2.6. Let X,Y be k-varieties and f : X → Y be a smooth morphism of relative
dimension d.

(1) There exist a contravariant exact functor DM
X : M (X) → M (X), a 2-isomorphism νM

X :
DP

X ◦ rat
M
X → ratMX ◦D

M
X and a 2-isomorphism εM

X : Id→ DM
X ◦D

M
X such that the diagram

DP
X ◦ D

P
X ◦ rat

M
X

νM

X

��
ratMX

εP

X

77♣♣♣♣♣♣♣♣♣♣♣♣

εM

X ''◆◆
◆◆◆

◆◆◆
◆◆◆

DP
X ◦ rat

M
X ◦ D

M
X

νM

X

��
ratMX ◦ D

M
X ◦ D

M
X

is commutative.
(2) There exists a 2-isomorphism

εM
f : DM

X ◦ f
∗
M (−)(d)[d]→ f∗

M (−)[d] ◦ DM
Y
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such that the diagram

DP
X ◦ f

∗
P
(−)(d)[d] ◦ ratMY

εP

f // f∗
P
(−)[d] ◦ DP

Y ◦ rat
M
Y

νM

Y

��
DP

X ◦ rat
M
X ◦ f

∗
M
(−)(d)[d]

νM

X

��

θM

f

OO

f∗
P
(−)[d] ◦ ratMY ◦ D

M
Y

θM

f

��
ratMX ◦ D

M
X ◦ f

∗
M
(−)(d)[d]

εM

f // ratMX ◦ f
∗
M
(−)[d] ◦ DM

Y

is commutative.

Proof. Again, the proof is a simple application of property P2, once we know the existence and
properties of the Verdier duality functor on motives. We give references for these properties and
leave the rest of the details to the reader.

By [Ayo07a, Théorème 2.3.75] and [Ayo07b, §4.5] (see also [CD19, Théorème 3 and Théorème 7
in the introduction]), the categories DAct(X) are symmetric monöıdal closed and we have Verdier
duality functors DX such that, for f : X → Y a morphism of quasi-projective k-varieties, there is
a canonical isomorphism f∗ ◦ DY ≃ DX ◦ f

!. If f is smooth of relative dimension d, the functor f !

is defined in [Ayo07a, §1.5.3.1] as the composition Th(Ωf ) ◦ f
∗, where Th(Ωf ) is the Thom equiv-

alence associated with the locally free OX -module Ωf . As Ωf has rank d, we get an isomorphism
f ! ≃ f∗(d)[2d] by [Ayo14a, corollaire 2.14] (see also property 4 of [CD19, A.5.1]). Hence, we get
an isomorphism f∗[d] ◦ DY ≃ DX ◦ f

∗(d)[d]. Moreover, the Betti realization functors BtiX are
symmetric monöıdal unital (see [Ayo10, Remarque 3.3]), and they commute with internal Homs on
constructible objects by [Ayo10, Théorème 3.19]; so it commutes with the Verdier duality functor on
constructible objects, as that functor is constructed using the four operations and the internal Hom
(see for example [CD19, A.5.2]). The last crucial observation is that Verdier duality on Db

c (X,Q)
restricts to an exact contravariant functor on the subcategory of perverse sheaves (see for example
the beginning of Section 4 of [BBD82]). �

2.9. Perverse motives as a stack. Let S be a quasi-projective k-variety. Let us denote by
AffEt/S the category of affine étale schemes over S endowed with the étale topology. As in [Sta18,
Tag 02XU], the 2-functor

AffEt/X → Ab

U 7→M (U)

u 7→ u∗M

can be turned into a fibered category M → AffEt/S such that the fiber over an object U of AffEt/X
is the category M (U).

Proposition 2.7. The fibered category M → AffEt/S is a stack for the étale topology.

Proof. Let U be a k-variety, I be a finite set and U = (ui : Ui → U)i∈I be a covering of U by affine
and étale morphisms. If J ⊆ I is a nonempty subset of I, we denote by UJ the fiber product of the
Uj , j ∈ J , over U and by uJ : UJ → U the induced morphism. Given an object A ∈ M (U), and
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k ∈ Z, we set

Ck(A,U ) :=

{
0 if k < 0;⊕

J⊆I,|J|=k+1(uJ)
M
∗ (uJ)

∗
M
A if k > 0.

We make C•(A,U ) into a complex using the alternating sum of the maps obtained from the
unit of the adjunction in 2.5. The unit of this adjunction also provides a canonical morphism
A → C•(A,U ) in Cb(M (U)). This morphism induces a quasi-isomorphism on the underlying
complex of perverse sheaves and so is a quasi-isomorphism itself since the forgetful functor to the
derived category of perverse sheaves is conservative.

By [Sta18, Tag 0268], to prove the proposition we have to show the following:

(1) if U is an object in AffEt/S and A,B are objects in M (U), then the presheaf (V
v
−→ U) 7→

HomM (V )(v
∗
M
A, v∗

M
B) on AffEt/U is a sheaf for the étale topology;

(2) for any covering U = (ui : Ui → U)i∈I of the site AffEt/S, any descent datum is effective.

We already now that the similar assertions are true for perverse sheaves by [BBD82, Proposition
3.2.2, Théorème 3.2.4]. Let U = (ui : Ui → U)i∈I be a covering in the site AffEt/S. Given i, j ∈ I,
we denote by uij : Uij := Ui ×U Uj → U the fiber product and by pij : Uij → Ui, pji : Uij → Uj

the projections.
Let us first prove (1). Let A,B be objects in M (U) and K,L be their underlying perverse

sheaves. Consider the canonical commutative diagram

Hom(A,B) //

��

∏
i∈I Hom((ui)

∗
M
A, (ui)

∗
M
B)

//
//

��

∏
i,j∈I Hom((uij)

∗
M
A, (uij)

∗
M
B)

��
Hom(K,L) // ∏

i∈I Hom((ui)
∗
P
K, (ui)

∗
P
L)

//
//
∏

i,j∈I Hom((uij)
∗
P
K, (uij)

∗
P
L).

The lower row is exact and the vertical arrows are injective. We only have to check that the upper
row is exact at the middle term. Let c be an element in

∏
i∈I Hom((ui)

∗
M
A, (ui)

∗
M
B) which belongs

to the equalizer of the two maps on the right-hand side. Then, it defines (by adjunction) a morphism
c0 and a morphism c1 such that the square

(2.1) C0(A,U )
d0

//

c0

��

C1(A,U )

c1

��
C0(B,U )

d0
// C1(B,U )

is commutative. Since A→ C•(A,U ) and B → C•(B,U ) are quasi-isomorphisms, A is the kernel
of the upper map in (2.1) and B is the kernel of the lower map. Hence, c0 and c1 induce a morphism
A→ B in M (U) which maps to c.

Now we prove (2). Consider a descent datum. In other words, consider, for every i ∈ I, an
object Ai in M (Ui) and, for every i, j ∈ I, an isomorphism φij : (pij)

∗
M
Ai → (pji)

∗
M
Aj in M (Uij)

satisfying the usual cocycle condition. Let A the kernel of the map
⊕

i∈I

(ui)
M
∗ Ai →

⊕

i,j∈I

(ui)
M
∗ (pij)

M
∗ (pij)

∗
MAi =

⊕

i,j∈I

(uij)
M
∗ (pij)

∗
MAi

given on (ui)
M
∗ Ai by the difference of the maps obtained by composing the morphism induced by

adjunction
(ui)

M
∗ Ai → (ui)

M
∗ (pij)

M
∗ (pij)

∗
MAi
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with either the identity or the isomorphism φij . Using the fact that descent data on perverse
sheaves are effective, it is easy to see that A makes the given descent datum effective. �

2.10. A simpler generating quiver. Let X be a k-variety. Consider the quiver PairseffX defined

as follows. A vertex in PairseffX is a triple (a : Y → X,Z, n) where a : Y → X is morphism of
k-varieties, Z is a closed subscheme of Y and n ∈ Z is an integer.

• Let (Y1, Z1, i) and (Y2, Z2, i) be vertices in PairseffX . Then, every morphism of X-schemes
f : Y1 → Y2 such that f(Z1) ⊆ Z2 defines an edge

(2.2) f : (Y1, Z1, i)→ (Y2, Z2, i).

• For every vertex (a : Y → X,Z, i) in PairseffX and every closed subscheme W ⊆ Z, we have
an edge

(2.3) ∂ : (a : Y → X,Z, i)→ (az : Z → X,W, i− 1)

where z : Z →֒ Y is the closed immersion.

The quiver PairseffX admits a natural representation in Db
c (X,Q). If c = (a : Y → X,Z, i) is a

vertex in the quiver PairseffX and u : U →֒ Y is the inclusion of the complement of Z in Y , then we
set

B(c) := aP
! u

P
∗ KU [−i]

where KU is the dualizing complex of U .

Remark 2.8. There is a difference between the representation pH0 ◦B used here and the represen-
tation used in [Ivo17, 7.2–7.4] (see [Ivo17, Remark 7.8]). In loc.cit. the relative dualizing complex
u!

P
a!

P
QX is used instead of the absolute dualizing complex KU . If X is smooth, then the two

different choices lead to equivalent categories.

On vertices the representation B is defined as follows. Let c1 := (a1 : Y1 → X,Z1, i), c2 := (a2 :

Y2 → X,Z2, i) be vertices in PairseffX and f : c1 → c2 be an edge of type (2.2). The morphism
f maps Z1 to Z2 and therefore U := f−1(U2) is contained in U1. Let u : U →֒ U1 be the open
immersion. Then, we have a morphism

fP
! uP

1∗KU1

adj.
−−→ fP

! (u1u)
P
∗ KU −→ uP

2∗f
P
! KU = uP

2∗f
P
! f !

PKU2

adj.
−−→ uP

2∗KU2

where the arrow in the middle is given by the exchange morphism. By taking the image of this
morphism under a2![−i], we get a morphism

B(f) : B(c1) := aP
1! u

P
1∗KU1 [−i]→ B(c2) := aP

2! u
P
2∗KU2 [−i].

Let c = (Y
a
−→ X,Z, i) be a vertex in PairseffX , and W ⊆ Z be a closed subset. Consider the

commutative diagram

U := Y \ Z
j //

u

''
Y \W

vY // Y
a // X

V := Z \W

�

v //

zV

OO

Z

z

OO

b

@@��������

where v, vY , j are the open immersions, z the closed immersion and a, b the structural morphisms.
The localization triangle

(zV )
P
! (zV )

!
P → Id→ jP

∗ j∗P
+1
−−→,
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applied to KY \W , provides a morphism

jP
∗ KU → (zV )

P
! KV [1].

As z and zV are closed immersions, applying (vY )∗, yields a morphism

uP
∗ KU → zP

! vP
∗ KV [1].

Applying a![−i], we obtain a morphism

B(∂) : B(c) := aP
! u

P
∗ KU [−i]→ B(az : Z → X,Z, i− 1) := bP! v

P
∗ KV [1− i].

The category of perverse Nori motives considered in [Ivo17] is defined as follows.

Definition 2.9. Let X be a k-variety. The category of effective perverse Nori motives is the abelian
category

N
eff(X) := Aqv(PairseffX , pH0 ◦B).

Recall that the category M (X) can also be obtained by considering DAct(X) simply as a quiver,
that is it is canonically equivalent to the abelian category Aqv(DAct(X), pH0◦Bti∗X) (see 1.5). The
Grothendieck six operations formalism constructed in [Ayo07a, Ayo07b] and its compatibility with
its topological counterpart on the triangulated categories Db

c (X,Q) shown in [Ayo10], imply that
the quiver representation B can be lifted via the realization functor Bti∗X to a quiver representation

B : PairseffX → DAct(X).

In particular, since the diagram

DAct(X)
Bti∗X // Db

c (X,Q)

PairseffX ,

B

OO

B

88rrrrrrrrrr

is commutative (up to natural isomorphisms), there exists a canonical faithful exact functor

(2.4) N
eff(X)→M (X).

Let us explain now how Tate twists can be defined in the categories N eff(X) and M (X). In the
category DAct(X), the Tate twist (−)(1) is defined to be the endofunctor Th(OX)(−)[−2] where
Th(OX) is the Thom equivalence associated with the trivial locally free sheaf OX (see [Ayo07a,
§1.5.3]). This construction, being compatible with the usual Tate twist via the Betti realization,
induces an exact functor (−)(1) on the category M (X). Note that this functor is an equivalence
by construction.

In the category N eff(X) Tate twists can be defined using the following observation: if S is a k-
variety, q : Gm,S → S is the structural morphism and v : V →֒ Gm,S is the complement of the unit

section, then q!v∗v
∗q!K = K(1)[1] for every K ∈ Db

c (S,Q). In particular, if Q : PairseffX → PairseffX
is the morphism of quivers which maps (Y, Z, n) to (Gm,Y ,Gm,Z ∪ Y, n+ 1) (here Y is embedded
in Gm,Y via the unit section), then one has a natural isomorphism between B(Q(Y, Z, n)) and
B(Y, Z, n)(1). As a consequence, the Tate twist on the category of effective perverse Nori motives
can be defined as the exact functor induced by the morphism of quivers Q (and the usual Tate
twist).

This last construction does not yield an equivalence and one defines the category N (X) to be
the category obtained from N eff(X) by inverting the Tate twists (see [Ivo17, 7.6] for details). By
construction, the category of Nori motives HM(k) of Nori’s work [Fak00] coincides with N (k).
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Lemma 2.10. The functor (2.4) extends to a faithful exact

(2.5) N (X)→M (X).

Proof. To prove the lemma it is enough to observe that there is a natural isomorphism in DAct(X)
between B(Q(Y, Z, n)) and B(Y, Z, n)(1). �

Proposition 2.11. The category M (k) is canonically equivalent to the abelian category of Nori
motives HM(k). More precisely the functor (2.5) is an equivalence when X = Spec(k)

Proof. (See also Proposition 4.12 of the paper [BVHP20] by Barbieri-Viale, Huber and Prest.)
Consider the triangulated functor RN,s : DAct(X)→ Db(HM(k)) constructed in Proposition 7.12
of the paper [CGAdS17] of Choudhury and Gallauer. Up to a natural isomorphism, the diagram

DAct(k)

Bti∗k

((

RN,s

// Db(HM(k))
forgetful

// Db(Q)

is commutative. In particular, it provides a factorization of the cohomological functor H0 ◦ Bti∗k

DAct(k)
H0◦RN,s
−−−−−−→ HM(k)

forgetful
−−−−−→~(Q).

This implies the existence of a canonical faithful exact functor M (k)→ HM(k) such that

DAct(k) pH0
M

//

H0◦RN,s

''
M (k) // HM(k)

is commutative up to a natural isomorphism. Using the universal properties, it is easy to see that
it is a quasi-inverse to (2.5). �

The following conjecture seems reasonable and reachable via our current technology.

Conjecture 2.12. Let X be a smooth k-variety. Let N (X) be the category of perverse motives
constructed in [Ivo17] and

RLN

X : DAct(X)→ Db(N (X))

be the triangulated functor constructed in [Ivo16]. Then, the Betti realization Bti∗X is isomorphic
to the composition

DAct(X)→ Db(N (X))
forgetful
−−−−−→ Db(P(X))

real
−−→ Db

c (X,Q).

If 2.12 holds then the same proof as the one of 2.11 implies the following

Conjecture 2.13. Let X be a smooth k-variety. Then, the functor (2.5) is an equivalence.

3. Unipotent nearby and vanishing cycles

In [Bei87a], Bĕılinson has given an alternate construction of unipotent vanishing cycles functors
for perverse sheaves and has used it to explain a gluing procedure for perverse sheaves (see [Bei87a,
Proposition 3.1]). In this section, our main goal is to obtain similar results for perverse Nori
motives. Later on, the vanishing cycles functors for perverse Nori motives will play a crucial role
in the construction of the inverse image functor (see 4).
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Given the way the abelian categories of perverse Nori motives are constructed from the triangu-
lated categories of étale motives, our first step is to carry out Bĕılinson’s constructions for perverse
sheaves within the categories of étale motives or analytic motives (the latter categories being equiv-
alent to the classical unbounded derived categories of sheaves of Q-vector spaces on the associated
analytic spaces). This is done in 3.2 and 3.4. Our starting point is the logarithmic specialization
system constructed by Ayoub in [Ayo07b]. However, by working in triangulated categories instead
of abelian categories as Bĕılinson did, one has to face the classical functoriality issues, one of the
major drawback of triangulated categories. To avoid these problems and ensure that all our con-
structions are functorial we will rely heavily on the fact that the triangulated categories of motives
underlie a triangulated derivator.

Only then, using the compatibility with the Betti realization, will we be able to obtain in 3.5
the desired functors for perverse Nori motives.

3.1. Reminder on derivators. Let us recall some features of triangulated (a.k.a. stable) deriva-
tors D needed in the construction of the motivic unipotent vanishing cycles functor and the related
exact triangles. For the general theory, originally introduced by Grothendieck [Gro91], we refer
to the works [Ayo07a, Ayo07b] by Ayoub, [CN08] by Cisinki–Neeman, [Gro11, Gro13] by Groth
and [Mal12] by Maltsiniotis.

We will assume that our derivator D is defined over all small categories. In our applications,
the derivators considered will be of the form D := DA(S,−) for some k-variety S. Given a functor
ρ : A→ B, we denote by

ρ∗ : D(B)→ D(A), ρ∗ : D(A)→ D(B), ρ♯ : D(A)→ D(B)

the structural functor and its right and left adjoint. Note that in the literature on derivators, the
notation ρ! is used instead of ρ♯. We follow here the notation used in [Ayo07a, Ayo07b].

Notation: We let e be the punctual category reduced to one object and one morphism. Given a
small category A, we denote by pA : A → e the projection functor and, if a is an object in A, we
denote by a : e → A the functor that maps the unique object of e to a. Given n ∈ N, we let n be
the category

n← · · · ← 1← 0.

If one thinks of functors in Hom(Aop,D(e)) as diagrams, then an object in D(A) can be thought
as a “coherent diagram”. Indeed, every object M in D(A) has an underlying diagram called its
A-skeleton and defined to be the functor Aop → D(e) which maps an object a in A to the object
a∗M of D(e). This construction gives the A-skeleton functor

D(A)→ Hom(Aop,D(e))

which is not an equivalence in general (coherent diagrams are richer than simple diagrams). We say
that M ∈ D(A) is a coherent lifting of a given diagram of shape A if its A-skeleton is isomorphic
to the given diagram.

We will not give here the definition of a stable derivator (see e.g. [Ayo07a, Definition 2.1.34] or
[Gro13, Section 1 & Definition 4.1]), but instead recall a few properties which will be constantly
used.

(1) Let ρ : A → B be a functor and b be an object in B. Denote by jA/b : A/b → A and
jb\A : b\A→ A be the canonical functors where A/b and b\A are respectively the slice and coslice
categories. The exchange 2-morphisms (given by adjunction)

b∗ρ∗ → (pA/b)∗j
∗
A/b ; (pb\A)♯j

∗
b\A → b∗ρ♯
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are invertible (see [Ayo07a, Définition 2.1.34] or the base change axiom Der 3 of [CN08, Definition
1.11]).

(2) If a small category A admits an initial object o (resp. a final object o), then the 2-morphism
o∗ → (pA)♯ (resp. the 2-morphism (pA)∗ → o∗) is invertible too (see [Ayo07a, Corollaire 2.1.40]).

(3) Let A and B be small categories. Given an object a ∈ A we denote by a : B → A × B the
functor which maps b ∈ B to the pair (a, b). The A-skeleton of an object M in D(A×B) is defined
to be the functor Aop → D(B) which maps an object a in A to the object a∗M of D(B). This
construction gives the A-skeleton functor

D(A×B)→ Hom(Aop,D(B)).

This functor is conservative. Moreover if A = 1, it is full and essentially surjective. (See the axioms
Der 2 and Der 5 of [CN08, Definition 1.11].)

We denote by ��� = 1× 1 the category

(3.1) (1, 1) (0, 1)oo

(1, 0)

OO

(0, 0).

OO

oo

We denote by ppp the full subcategory of ��� that does not contain the object (0, 0) and by ippp : ppp→ ���

the inclusion functor. We denote by (−, 1) : 1→ ppp the fully faithful functor which maps 0 to (0, 1)
and 1 to (1, 1). Similarly we denote by yyy the full subcategory of ��� that does not contain the object
(1, 1) and iyyy : yyy → ��� the inclusion functor. We denote by (0,−) : 1 → yyy the fully faithful functor
that maps 0 and 1 respectively to (0, 0) and (0, 1)

An object M in D(���) is said to be cocartesian (resp. cartesian) if and only if the canonical
morphism (ippp)♯(ippp)

∗M → M (resp. M → (ippp)∗(ippp)
∗M) is an isomorphism. Since D is stable, a

square M in D(���) is cartesian if and only if it is cocartesian.
Let ��� be the category

(3.2) (2, 1) (1, 1)oo (0, 1)oo

(2, 0)

OO

(1, 0)

OO

oo (0, 0).

OO

oo

There are three natural ways to embed ��� in ��� and an object M ∈ D(���) is said to be cocartesian
if the squares in D(���) obtained by pullback along those embeddings are cocartesian. A coherent
triangle is a cocartesian object M ∈ D(���) such that (0, 1)∗M and (2, 0)∗M are zero. For such an
object, we have a canonical isomorphism (0, 0)∗M ≃ (2, 1)∗M [1] and the induced sequence

(3.3) (2, 1)∗M → (1, 1)∗M → (1, 0)∗M → (2, 1)∗M [1]

is an exact triangle in D(e).
One of the main advantages of working in a stable derivator is the possibility to associate with a

coherent morphismM ∈ D(1) functorially a coherent triangle. Let us briefly recall the construction
of this triangle. Let U be the full subcategory of ��� that does not contain (0, 0) and (1, 0). Denote
by v : 1→ U the functor that maps 0 and 1 respectively to (1, 1) and (2, 1) and by u : U →��� the
inclusion functor. The image under the functor

u♯v∗ : D(A× 1)→ D(A×���)
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of a coherent morphism M in D(A× 1) is a coherent triangle. Using the properties (1–2) recalled
above, we see that (3.3) provides an exact triangle

(3.4) 1∗M → 0∗M → Cof(M)→ 1∗M [1]

where the cofiber functor Cof is defined by

(3.5) Cof := (1, 0)∗u♯v∗ : D(1)→ D(e).

Using the properties (1–3) recalled above, it is easy to see that this functor is also given by

Cof = (0, 0)∗(ippp)♯(−, 1)∗.

In the exact triangle (3.4), the canonical morphism 0∗M → Cof(M) is the 1-skeleton of the coherent
morphism (1,−)∗u♯v∗M where (1,−) : 1 → ��� is the fully faithful functor that maps 0 and 1
respectively to (1, 0) and (1, 1). Note that we have an isomorphism of functors

(1,−)∗u♯v∗M ≃ (0,−)∗(iyyy)
∗(ippp)♯(−, 1)∗ : D(1)→ D(1).

Similarly the boundary morphism Cof(M) → 1∗M [1] is the 1-skeleton of the coherent morphism
(−, 0)∗u♯v∗M where (−, 0) : 1 → ��� is the fully faithful functor that maps 0 and 1 respectively to
(0, 0) and (1, 0).

The construction of the cofiber functor Cof and the cofiber triangle (3.4) can be dualized to get
a fiber functor Fib and a fiber triangle. Let us recall the following lemma.

Lemma 3.1. Let M ∈ D(���). Then, we have a morphism of exact triangles

Fib((−, 1)∗M) //

u

��

(1, 1)∗M //

��

(0, 1)∗M
+1 //

��
Fib((−, 0)∗M) // (1, 0)∗M // (0, 0)∗M

+1 //

which is functorial in M . Furthermore, if M is cartesian if and only if the canonical morphism

u : Fib((−, 1)∗M)→ Fib((−, 0)∗M)

is an isomorphism.

Proof. The first statement follows from the fact that we have functorially defined fibers, as we
just recalled. The second statement is Proposition 15.1.10 of Moritz Groth’s unpublished book
Introduction to the theory of derivators. Let us recall its proof. We have a commutative cube

(1, 0)∗M //

��

(0, 0)∗M

��
Fib((−, 0)∗M) // 0

(1, 1)∗M
&&◆◆

//

��

(0, 1)∗M
##●●

��
Fib((−, 1)∗M)

u&&◆◆
// 0

##

The front and back squares are cartesian by definition of an exact triangle. By [Gro13, Proposi-
tion 4.6], the top square is cartesian if and only if the bottom square is cartesian. But the top
square is M and the bottom square is cartesian if and only if u is an isomorphism, hence the result.

�
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There is also a functorial version of the octahedron axiom in D (see e.g. [Gro11, Proof of Theorem
9.44] or [Gro13, Proof of Theorem 4.15]), that is, there is a functor D(2)→ D(O) which associates
to a coherent sequence of morphisms a coherent octahedron diagram. Here the category O ⊆ 4× 2
is the full subcategory that does not contain the objects (4, 0) and (0, 2). In other words, O is the
category

(4, 2) (3, 2)oo (2, 2)oo (1, 2)oo

(4, 1)

OO

(3, 1)oo

OO

(2, 1)oo

OO

(1, 1)oo

OO

(0, 1)oo

(3, 0)

OO

(2, 0)oo

OO

(1, 0)oo

OO

(0, 0).oo

OO

Let W be the full subcategory of O that does not contain the objects (1, 1), (2, 1), (3, 1), (0, 0),
(1, 0) and (2, 0). Denote by ω : 2→W the fully faithful functor which maps 0, 1 and 2 respectively
on (2, 2), (3, 2) and (4, 2) and by w :W → O the inclusion functor. The octahedron diagram functor
is defined to be the functor

w♯ω∗ : D(2)→ D(O).

Denote by sm : 1 → 2 the fully faithful functor that maps 0 and 1 respectively to 0 and 1 and
by fm : 1 → 2 the fully faithful functor that maps 0 and 1 respectively to 1 and 2. Denote also
by cm : 1→ 2 the functor which maps 0 and 1 respectively to 0 and 2. Consider the fully faithful
functor fsq : ���→ O which maps the square (3.1) to the square

(4, 2) (3, 2)oo

(4, 1)

OO

(3, 1).

OO

oo

Similarly we denote by ssq : ���→ O (resp. csq : ���→ O) the fully faithful functor which maps the
square (3.1) to the square

(3, 2) (2, 2)oo

(3, 0)

OO

(2, 0)

OO

oo

(resp. (4, 2) (2, 2)oo

(4, 1)

OO

(2, 1)).

OO

oo

We have the following lemma.

Lemma 3.2. We have canonical isomorphisms

fsq∗w♯ω∗ ≃ (ippp)♯(−, 1)∗fm
∗, ssq∗w♯ω∗ ≃ (ippp)♯(−, 1)∗sm

∗

and

csq∗w♯ω∗ ≃ (ippp)♯(−, 1)∗cm
∗.

Proof. Let i : ppp→ W be the fully faithful functor that maps (0, 1), (1, 0) and (1, 1) respectively to
(3, 2), (4, 1) and (4, 2). Since ω ◦ fm = i ◦ (−, 1), we get a natural transformation i∗ω∗ → (0, 1)∗fm

∗.
Using the properties (Der1–3), it is easy to see that this natural transformation is invertible.
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Similarly, since w ◦ i = fsq ◦ ippp, there is a natural transformation (ippp)♯i
∗ → fsq∗w♯. Again, using the

properties (Der1–3), we see that it is invertible. This provides invertible natural transformations

(ippp)♯i
∗ω∗

��

// (ippp)♯(−, 1)∗fm
∗

fsq∗w♯ω∗.

The other invertible natural transformations are constructed similarly. �

In particular, it follows from 3.2 that (3, 1)∗w♯ω∗ is isomorphic to Cof ◦ fm∗, (2, 0)∗w♯ω∗ is
isomorphic to Cof ◦ sm∗ and (2, 1)∗w♯ω∗ is isomorphic to Cof ◦ cm∗. Since the inverse image of w♯ω∗

along the fully faithful functor ���→ O that maps the square (3.1) to the square

(3, 1) (2, 1)oo

(3, 0)

OO

(2, 0)

OO

oo

is a cocartesian square, by 3.2 and [Ayo07a, Définition 2.1.34], we get a natural exact triangle

(3.6) Cof(fm∗(−))→ Cof(cm∗(−))→ Cof(sm∗(−))
+1
−−→ .

Let us recall [Ayo07a, Lemma 1.4.8]. Note that the functors j∗ : DA(X, I)→ DA(U, I) and j∗ :
DA(U, I)→ DA(X, I) used below are induced by the functoriality of the categories of presheaves
on diagrams of schemes (see [Ayo07b, §4.5] for details).

Lemma 3.3. Let I be a small category and j : U →֒ X be an open immersion. Assume that we
have a exact triangle

M → j∗j
∗M → C(M)

+1
−−→

for every given object M ∈ DA(X, I). Then, for every morphism α : M → N in DA(X, I) there
exists one and only one morphism C(M)→ C(N) such that the square

C(M) //

C(α)

��

M [1]

α[1]

��
C(N) // N [1]

is commutative. Moreover the whole diagram

M //

α

��

j∗j
∗M

j∗j
∗α

��

// C(M) //

C(α)

��

M [1]

α[1]

��
N // j∗j∗N // C(N) // N [1]

is commutative.

Note that in loc.cit. the lemma is stated only in the case I = e. However its proof works in the
more general situation considered here.

We will need the following technical lemma.
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Lemma 3.4. Let I be a small category and f : Y → X be a morphism of separated k-schemes
of finite type. There exists a functor ∆∗

f : DA(X, I) → DA(X,1 × I) such that, for every M ∈

DA(X, I), the 1-skeleton of ∆∗
f (M) is M → f∗f

∗M .

Proof. Consider the diagram of k-varieties (F ,1× I) : 1× I→ (Sch/k) that maps (0, i) to Y and
(1, i) to X and the canonical morphisms of diagrams of k-varieties

(F ,1× I)

α

��

β // (X,1× I)

(X, I).

The functor ∆∗
f := β∗α

∗ satisfies the desired property.
�

Remark 3.5. Assume I = e. Given M in DA(X), we have an exact triangle

M → j∗j
∗M → Cof(∆∗

j (M))
+1
−−→

functorial in M . It follows from [Ayo07a, Lemme 1.4.8] that the functor i!i
!(−)[1] is isomorphic to

Cof ◦∆∗
j (−)

Similarly we will need the following lemma. Its proof is completely similar to the one of 3.4 and
will be omitted.

Lemma 3.6. Let I be a small category and f : Y → X be a smooth morphism of separated k-
schemes of finite type. There exists a functor ∆!

f : DA(X, I)→ DA(X, I× 1) such that for every

A ∈ DA(X, I) the 1-skeleton of ∆!
f (A) is f♯f

∗A→ A.

Remark 3.7. Assume I = e. Given M in DA(X), as in 3.5, we have an exact triangle

j!j
!M →M → Cof(∆!

j(M))
+1
−−→

functorial in M . It follows from (the dual statement of) [Ayo07a, Lemme 1.4.8], that the functor
i∗i

∗(−) is isomorphic to Cof ◦∆!
j(−).

3.2. Motivic unipotent vanishing cycles functor. Let f : X → A1
k be a morphism of k-

varieties. We consider the following diagram of k-varieties

Xη

fη

��

//

�

X

f

��

Xσ

fσ

��
�

oo

Gm,k
j // A1

k Spec(k)
ioo

where i denotes the zero section of A1
k and j the open immersion of the complement. We denote

also by i the closed immersion of the special fiber Xσ in X and by j the open immersion of the
generic fiber Xη in X . Let Logf be the logarithmic specialization system constructed in [Ayo07b,
3.6] (see also [Ayo14a, p.103–109]). It is defined by

Logf := χf ((−)⊗ f
∗
ηL og∨) =: i∗j∗((−)⊗ f

∗
ηL og∨)
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where L og∨ is the commutative associative unitary algebra in DA(Gm,k) constructed in [Ayo07b,
Définition 3.6.29] (see also [Ayo14a, Définition 11.6]). The monodromy triangle

(3.7) Q(0)→ L og∨
N
−→ L og∨(−1)

+1
−−→

(see [Ayo07b, Corollaire 3.6.21] or [Ayo14a, (116)]) in the triangulated category DA(Gm,k) induces
an exact triangle

χf (−)→ Logf (−)→ Logf (−)(−1)
+1
−−→ .

To construct the motivic unipotent vanishing cycles functor, we shall use the fact that the 1-skeleton
functor

DA(A1
k,1)→ Hom(1op,DA(A1

k))

is full and essentially surjective. This allows to choose an object L in DA(A1
k,1) that lifts the

morphism Q(0) → j∗L og∨ obtained as the composition of the adjunction morphism Q(0) →
j∗Q(0) and the image under j∗ of the unit Q(0) → L og∨ of the commutative associative unitary
algebra L og∨. Moreover, using the monodromy triangle (3.7), we can fix an isomorphism between
L og∨(−1) and the cofiber of j∗L such that the diagram

Q(0) // L og∨ // L og∨(−1)

��

+1 //

Q(0) // L og∨ // Cof(j∗L )
+1 //

is commutative.
Consider the object Q := ∆∗

j (L ) in DA(A1
k,���) obtained by applying the functor ∆∗

j of 3.4. Its
���-skeleton is the commutative square

Q(0) //

��

j∗L og∨

j∗Q(0) // j∗L og∨.

Let xxx be the full subcategory of ��� that does not contain (0, 1). Denote by ixxx : xxx → ��� the
inclusion and by p���,xxx : ��� → xxx the unique functor which is the identity on xxx and maps (0, 1) to
(0, 0). Consider the functor

Θf(−) := (p���,xxx)
∗(ixxx)

∗∆∗
j ((p1)

∗(−)⊗ f∗
L ) : DA(X)→ DA(X,���).

By construction, Θf (−) is a coherent lifting of the commutative square

Id(−) //

��

j∗(j
∗(−)⊗ f∗

ηL og∨)

j∗j
∗(−) // j∗(j∗(−)⊗ f∗

ηL og∨).

By pulling back along the closed immersion i : Xσ →֒ X we get the functor

i∗Θf (−) : DA(X)→ DA(Xσ,���)
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which is a coherent lifting of the commutative square

i∗(−) //

��

Logf (j
∗(−))

χf (j
∗(−)) // Logf (j

∗(−)).

Let (−, 1) : 1 → ��� be the fully faithful functor that maps 0 and 1 respectively to (0, 1) and
(1, 1). In particular, the 1-skeleton of (−, 1)∗i∗Θf(−) is the morphism

i∗(−)→ Logf (j
∗(−)).

Definition 3.8. The motivic unipotent vanishing cycles functor Φf : DA(X)→ DA(Xσ) is defined
as the composition of (−, 1)∗i∗Θf (−) and the cofiber functor:

Φf := Cof ◦ (−, 1)∗i∗Θf(−).

By construction, we get a natural transformation can : Logf (−) ◦ j
∗ → Φf (−) and an exact

triangle

(3.8) i∗ → Logf (−) ◦ j
∗ can
−−→ Φf

+1
−−→ .

We also get a natural transformation

var : Φf (−)→ Logf (j
∗(−))(−1)

such that var ◦ can = N . Indeed, let (−, 0) : 1 → ��� be the fully faithful functor that maps 0 and
1 respectively to (0, 0) and (1, 0).

The chosen isomorphism between L og∨(−1) and the cofiber of j∗L induces an isomorphism
between Logf (j

∗(−))(−1) and the cofiber of (−, 0)∗i∗Θf (−) such that the diagram

χf (j
∗(−)) // Logf (j

∗(−))
N // Logf (j

∗(−))(−1)
+1 //

χf (j
∗(−)) // Logf (j

∗(−)) // Cof((−, 0)∗i∗Θf(−))

OO

+1 //

is commutative. On the other hand, the canonical morphism (−, 1)∗Θf (−) → (−, 0)∗Θf (−) in
DA(X,1) induces a commutative diagram

χf (j
∗(−)) // Logf (j

∗(−)) // Cof((−, 0)∗i∗Θf (−))
+1 //

i∗(−) //

OO

Logf (j
∗(−))

can // Φf (−)

OO

+1 // .

By applying the coherent triangle functor u♯v∗ to the object i∗Θf(−) of the category DA(Xσ,���) =
DA(Xσ,1× 1), we get a functor

DA(X)→ DA(Xσ,1×���)
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which is a coherent lifting of the commutative diagram

χf (j
∗(−)) //

��

Logf (j
∗(−)) //

N

��

0

��
0 // Logf (j

∗(−))(−1) // χf (j
∗(−))[1].

i∗(−)
&&◆◆

//

��

Logf (j
∗(−))

❘❘❘❘
//

can

��

0

**❚❚❚
❚❚❚❚

❚❚❚❚

��
0

&&▼▼
▼▼▼

▼ // Φf (−) var
((

// i∗(−)[1]
))

The category 1×��� is given by

(1, 2, 1) (1, 1, 1)oo (1, 0, 1)oo

(1, 2, 0)

OO

(1, 0, 1)

OO

oo (1, 0, 0)

OO

oo

(0, 2, 1)

ee❑❑❑
(0, 1, 1)oo

ee❑❑❑
(0, 1, 0)oo

ee❑❑❑

(0, 2, 0)

OO

ee❑❑❑
(0, 1, 0)

OO

oo

ee

(0, 0, 0)

OO

oo

ee

and we consider the functor sq : ���→ 1×��� which maps (3.1) to the square

(1, 0, 1) (1, 0, 0)oo

(0, 1, 0)

OO

(0, 0, 0)oo

OO

inside 1×���. In the next subsection, we will be mainly focusing on the functor

sq∗u♯v∗i
∗Θf : DA(X)→ DA(X,���)

which is a coherent lifting of the commutative square

Φf (−) //

var

��

i∗(−)[1]

��
Logf (j

∗(−))(−1) // χf (j
∗(−))[1].

Remark 3.9. The square sq∗u♯v∗i
∗Θf is cartesian. This can be deduced from the basic properties

of cartesian squares (for example from [Gro13, Proposition 4.6]).

3.3. Maximal extension functor. Let us now construct Bĕılinson’s maximal extension functor
Ξf (see [Bei87a]) and the related exact triangles in the triangulated categories of étale motives.
This will be essential to prove 3.15 and for gluing perverse motives. By applying the coherent
triangle functor u♯v∗ to the object Θf(−) in DA(X,���) = DA(X,1× 1), we get a functor

u♯v∗Θf : DA(X)→ DA(X,1×���)
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which is a coherent lifting of the commutative diagram

j∗j
∗(−)) //

��

j∗(j
∗(−)⊗ f∗

ηL og∨) //

��

0

��
0 // j∗(j∗(−)⊗ f∗

ηL og∨(−1)) // j∗j∗(−)[1].

Id(−)
&&◆◆

//

��

j∗(j
∗(−)⊗ f∗

ηL og∨)
PPPP

//

��

0

))❘❘❘
❘❘❘❘

❘❘

��
0

&&▼▼
▼▼▼

▼ // •
''

// Id(−)[1]
((

(Here • is some motive which we do not need to specify). The category 1×��� is given by

(1, 2, 1) (1, 1, 1)oo (1, 0, 1)oo

(1, 2, 0)

OO

(1, 0, 1)

OO

oo (1, 0, 0)

OO

oo

(0, 2, 1)

ee❑❑❑
(0, 1, 1)oo

ee❑❑❑
(0, 1, 0)oo

ff▲▲▲

(0, 2, 0)

OO

ee❑❑❑
(0, 1, 0)

OO

oo

ee

(0, 0, 0).

OO

oo

ff

Let yyy be the full subcategory of ��� that does not contain (1, 1). Then 1× yyy is the category

(3.9) (1, 0, 1)

(1, 1, 0) (1, 0, 0)oo

OO

(0, 0, 1)

ff▼▼▼▼▼▼

(0, 1, 0)

ff▲▲▲▲▲▲
(0, 0, 0).oo

ff▼▼▼▼▼▼
OO

We denote by α : 1× yyy→ ���× 1 the functor which maps (3.9) to

(1, 0, 1)

(1, 0, 0)

OO

(0, 1, 1) (0, 1, 0)oo

ff▲▲▲

(0, 1, 0)

OO

(0, 0, 0).

OO

oo

ff

Then, α∗u♯v∗Θf (−) : DA(X)→ DA(X,1× yyy) is a coherent lifting of the commutative diagram

0

++❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲

��
j∗(j

∗(−)⊗ f∗
ηL og∨) //

N ,,❳❳❳❳❳
❳❳

0

++❱❱❱❱
❱❱❱❱❱

❱❱❱❱ Id(−)[1]

��
j∗(j

∗(−)⊗ f∗
ηL og∨(−1)) // j∗j∗(−)[1]

and (0 × Idyyy)
∗α∗u♯v∗Θf (−) = (iyyy)

∗sq∗u♯v∗Θf(−). Let β : 1 × yyy → 1 × 1 × yyy be the fully faithful
functor defined by

(0, 0, 0) 7→ (0, 0, 0, 0)(1, 0, 0) 7→ (0, 1, 0, 0)

(0, 0, 1) 7→ (0, 0, 0, 1)(1, 0, 1) 7→ (0, 1, 0, 1)

(0, 1, 0) 7→ (0, 0, 1, 0)(1, 1, 0) 7→ (1, 1, 1, 0).



34 FLORIAN IVORRA AND SOPHIE MOREL

The 1× yyy-skeleton of the functor

Σf (−) := β∗ ◦∆!
j ◦ α

∗u♯v∗Θf(−) : DA(X)→ DA(X,1× yyy)

is now the commutative diagram

0

++❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲

��
j!
(
j∗(−)⊗ f∗

ηL og∨
)

//

++❳❳❳❳❳
❳❳

0

++❱❱❱❱
❱❱❱❱

❱❱❱❱
❱ Id(−)[1]

��
j∗
(
j∗(−)⊗ f∗

ηL og∨(−1)
)

// j∗j∗(−)[1]

where the non-zero diagonal morphism is obtained via the canonical morphism j! → j∗ and the
monodromy operator. Note that we have

(0× Idyyy)
∗Σf = (0 × Idyyy)

∗α∗u♯v∗Θf(−) = (iyyy)
∗sq∗u♯v∗Θf(−).

In particular, we have canonical isomorphisms (0, 0, 0)∗Σf (−) = j∗j
∗(−)[1] and

(0, 0, 1)∗Σf (−) = Id(−)[1].

Definition 3.10. Let Ξf : DA(X)→ DA(X) be the functor defined by

Ξf (−) := (1, 0)∗Cof(Σf (−)).

We also define Ωf : DA(X)→ DA(X) to be the functor

Ωf (−) := (1, 1)∗(iyyy)∗Cof(Σf (−)).

By construction, we have an exact triangle

(3.10) Ωf (−)→ Ξf (−)⊕ (0, 1)∗Cof(Σf (−))→ (0, 0)∗Cof(Σf (−))
+1
−−→ .

Since the canonical morphisms

Id(−)[1] = (0, 0, 1)∗Σf (−)→ (0, 1)∗Cof(Σf (−))

and

j∗j
∗(−)[1] = (0, 0, 0)∗Σf (−)→ (0, 0)∗Cof(Σf (−))

are isomorphisms, the exact triangle (3.10) can be rewritten as

Ωf (−)→ Ξf (−)⊕ Id(−)[1]→ j∗j
∗(−)[1]

+1
−−→ .

On the other hand, we have an exact triangle

(1, 1, 0)∗Σf (−)→ (0, 1, 0)∗Σf (−)→ Ξf (−)
+1
−−→

that is an exact triangle

(3.11) j!
(
j∗(−)⊗ f∗

ηL og∨
)
→ j∗

(
j∗(−)⊗ f∗

ηL og∨(−1)
)
→ Ξf (−)

+1
−−→ .

Proposition 3.11. There are exact triangles

(3.12) i∗Logf (j
∗(−))→ Ξf → j∗j

∗(−)[1]
+1
−−→

and

(3.13) j!j
∗(−)[1]→ Ξf → i∗Logf (j

∗(−))(−1)
+1
−−→ .
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Proof. Let us first construct (3.12) using the functorial version of the octahedron axiom (see 3.1).
Recall that by definition

Ξf (−) := (1, 0)∗Cof(Σf (−)) = Cof((−, 1, 0)∗Σf (−)).

Let us set

Σ′
f (−) := ∆!

j ◦ α
∗u♯v∗Θf (−) : DA(X)→ DA(X,1× 1× yyy)

so that Σf (−) = β∗Σ′
f (−). Now let γ : 2 → 1× 1× yyy be the fully faithful functor that maps 0, 1

and 2 respectively to (0, 0, 1, 0), (0, 1, 1, 0) and (1, 1, 1, 0). Recall that cm : 1→ 2 is the fully faithful
functor that maps 0 and 1 respectively to 0 and 2. Then, β ◦ (−, 1, 0) = γ ◦ cm. In particular, we
get that

(−, 1, 0)∗Σf (−) = cm∗γ∗Σ′
f (−).

Using the exact triangle (3.6) given by the functorial octahedron axiom, we get an exact triangle

Cof(fm∗γ∗Σ′
f (−))→ Ξf (−)→ Cof(sm∗γ∗Σ′

f (−))
+1
−−→ .

However, by construction, we have an exact triangle

j!(j
∗(−)⊗ f∗

ηL og∨)→ j∗(j
∗(−)⊗ f∗

ηL og∨)→ Cof(fm∗γ∗Σ′
f (−))

+1
−−→ .

Using 3.7, we see that Cof(fm∗γ∗Σ′
f (−)) is isomorphic to

i∗Logf (j
∗(−)) := i∗i

∗j∗(j
∗(−)⊗ f∗

ηL og∨).

On the other hand, sm∗γ∗Σ′
f (−) = (0, 1,−)∗u♯v∗Θf(−), so that we get an isomorphism

Cof(fm∗γ∗Σ′
f (−)) = (0, 0, 0)∗u♯v∗Θf(−) = j∗j

∗(−)[1].

This constructs the exact triangle (3.12). Consider now the localization triangle

j!j
∗Ξf (−)→ Ξf (−)→ i∗i

∗Ξf (−)
+1
−−→ .

To obtain (3.13) it is enough to check that j∗Ξf (−) is isomorphic to j∗(−)[1] and that i∗Ξf (−)
is isomorphic to Logf (j

∗(−)). The first isomorphism is obtained by applying j∗ to (3.12) and the
second isomorphism is obtained by applying i∗ to (3.11).

�

Proposition 3.12. There are exact triangles

(3.14) i∗Logf (j
∗(−))→ Ωf → Id(−)[1]

+1
−−→

and

(3.15) j!j
∗(−)[1]→ Ωf → i∗Φf (−)

+1
−−→ .

Proof. Using (3.12), the exact triangle (3.14) is obtained by applying 3.1 to the cartesian square
(iyyy)∗Cof(Σf (−)).

Since j∗i∗ = 0, (3.14) provides an isomorphism between j∗Ωf (−) and j∗(−)[1]. Now, consider
the localization triangle

j!j
∗Ωf → Ωf → i∗i

∗Ωf (−)
+1
−−→ .

To construct (3.15), it is enough to obtain an isomorphism between i∗Ωf (−) and Φf (−). By
definition

i∗Ωf (−) = (1, 1)∗(iyyy)∗Cof(i
∗Σf (−)).
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However since i∗j! = 0, the canonical morphism

(0 × Idyyy)
∗i∗Σf (−)→ Cof(i∗Σf (−))

is an isomorphism. Given that

(0× Idyyy)
∗Σf = (0 × Idyyy)

∗α∗u♯v∗Θf(−) = (iyyy)
∗sq∗u♯v∗Θf(−),

we get isomorphisms

(1, 1)∗(iyyy)∗(0× Idyyy)
∗i∗Σf (−)

≃ // (1, 1)∗(iyyy)∗Cof(i∗Σf (−)) = i∗Ωf (−)

(1, 1)∗(iyyy)∗(iyyy)
∗sq∗u♯v∗Θf(−).

By 3.9, the canonical morphism

Φf (−) = (1, 1)∗sq∗u♯v∗Θf(−)→ (1, 1)∗(iyyy)∗(iyyy)
∗sq∗u♯v∗Θf (−)

is an isomorphism. This concludes the proof. �

3.4. Betti realization. Let X be a complex algebraic variety. Let AnDA(X) be the triangu-
lated category of analytic motives. This category is obtained as the special case of the category
SHan

M
(X) considered in [Ayo10] when the stable model category M is taken to be the category

of unbounded complexes of Q-vector spaces with its projective model structure. Recall that the
canonical triangulated functor

(3.16) i∗X : D(X)→ AnDA(X)

is an equivalence of categories (see [Ayo10, Théorème 1.8]). Here D(X) denotes the (unbounded)
derived category of sheaves of Q-vector spaces on the associated analytic space Xan. The functor

AnX : (Sm/X)→ (AnSm/Xan)

which maps a smooth X-scheme Y to the associated Xan-analytic space Y an induces a triangulated
functor

(3.17) An∗X : DA(X)→ AnDA(X).

The Betti realization Bti∗X of [Ayo10] is obtained as the composition of (3.17) and a quasi-inverse
to (3.16).

Let L og∨
P

be the image under the Betti realization of the motive L og∨ and consider the
specialization system it defines

LogP

f (−) := i∗PjP
∗ ((−)⊗ (fη)

∗
PL og∨P) : D(Xη)→ D(Xσ).

Recall that in 3.2 we fixed an object L in DA(A1
k,1) that lifts the morphism Q(0) → j∗L og∨

obtained as the composition of the adjunction morphism Q(0) → j∗Q(0) and the image under j∗
of the unit Q(0)→ L og∨ of the commutative associative unitary algebra L og∨.

Let LP the image in D(X,1) of L . Using this object, we can perform the same constructions
as in 3.2 and 3.3 using the derivator D(X,−) to obtain functors

ΞP
f (−),ΩP

f (−) : D(X)→ D(X)

and

ΦP
f (−) : D(X)→ D(Xσ)
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and four exact triangles: the two triangles

iP∗ LogP

f j
∗
P → ΞP

f → jP
∗ j∗P [1]

+1
−−→, jP

! j∗P [1]→ ΞP
f → iP∗ LogP

f (−1)
+1
−−→

and the two triangles

iP∗ LogP

f j
∗
P → ΩP

f → Id[1]
+1
−−→, jP

! j∗P [1]→ ΩP
f → iP∗ ΦP

f
+1
−−→ .

Moreover, we have canonical natural transformations

Bti∗ ◦ Logf → LogP

f ◦ Bti
∗, Bti∗ ◦ Φf → ΦP

f ◦ Bti
∗

and
Bti∗ ◦ Ξf → ΞP

f ◦ Bti
∗, Bti∗ ◦ Ωf → ΩP

f ◦ Bti
∗

which are isomorphisms when applied to constructible motives (see [Ayo10, Théorème 3.9]) and are
also compatible with the various exact triangles.

As proved in [Ayo10, Théorème 4.9], the Betti realization is compatible with the (total) nearby
cycles functors for constructible motives. In this subsection, we will need the compatibility of the
Betti realization with the unipotent nearby cycles functors.

Lemma 3.13. The functor LogP

f (−) is isomorphic to the unipotent nearby cycles functor ψun
f (−).

Let e : C → C×; z 7→ exp(z) be the universal cover of the punctured complex plane C×. The
group of deck transformations is identified with Z by mapping the integer k ∈ Z to the deck
transformation z 7→ z + 2iπk.

Let En be the unipotent rational local system on C× of rank n+1 with (nilpotent) monodromy
given by one Jordan block of maximal size. It underlies a variation of Q-mixed Hodge structures
described e.g. in §1.1 of Morihiko Saito’s [Sai90a].

Let us recall the description of this local system and relate it to Ayoub’s logarithmic motive
L og∨n . The following description is given in M. Saito, [Sai89, 2.3. Remark]. Let En be the subsheaf
of e∗QC annihilated by (T − Id)n+1 where T is the automorphism of e∗QC induced by the deck
transformation corresponding to 1 ∈ Z. The restriction of T to En is unipotent and we denote by
N = log T the associated nilpotent endomorphism.

The sheaf En is a local system on C× of rank n+ 1. Let (En)1 be its fiber over 1. We have an
inclusion

(En)1 ⊆ (e∗QC)1 =
∏

k∈Z

(QC)2iπk =
∏

k∈Z

Q.

Note that the automorphism T acts by mapping a sequence (ak)k∈Z to (ak+1)k∈Z. Let τn be the
element in (En)1 given by τn = (kn/n!)k∈Z. The family (1, τ1, . . . , τn) is a basis of (En)1 such that
T (τr) =

∑r
k=0 τk/(r − k)! for every r ∈ [[1, n]]. The matrix with respect to the basis (1, τ1, . . . , τn)

of the unipotent endomorphism T of (En)1 is thus given by
∑n

k=0(Jn)
k/k! where Jn is the nilpotent

Jordan block of size n+1 and therefore N is given by the Jordan block Jn in the basis (1, τ1, . . . , τn).
The multiplication e∗QC⊗ e∗QC → e∗QC induces a morphism of local systems Ek⊗Eℓ → Ek+ℓ.

In particular, for n ∈ N∗, we have a canonical morphism E
⊗n
1 → En which defines a morphism

(3.18) Symn
E1 → En.

If τ := τ1, then τn = τn/n! and the above description of En implies that (3.18) is an isomorphism.
Let us consider the Kummer natural transform eK : Id(−)(−1)[−1]→ Id(−) in Betti cohomology

(see [Ayo07b, Définition 3.6.22]). By 5.1 Lemma in M. Saito’s [Sai06], the local system E1 fits into
an exact triangle

Q(−1)[−1]
eK−−→ Q→ E1

+1
−−→ .



38 FLORIAN IVORRA AND SOPHIE MOREL

By [Ayo10, Théorème 3.19] the Betti realization is compatible with the Kummer transform (for
constructible motives). In particular, we have a natural isomorphism Bti∗K → E1 where K ∈
DA(Gm) is the motivic Kummer extension, that is, the cone of the Kummer natural transform
for étale motives (see [Ayo07b, Lemme 3.6.28]). Since the Betti realization Bti∗ is a symmetric
monoidal functor, it induces an isomorphism

Bti∗L og∨n = Bti∗Symn
K

≃
−→ SymnBti∗K

≃
−→ Symn

E1
(3.18)
−−−−→ En

for every integer n ∈ N. Therefore, we get an isomorphism

(3.19) L og∨P := Bti∗L og∨
≃
−→ E

where E is the ind-local system given by E = colimn∈N× En.
Let K ∈ Db

c (X,Q), the unipotent nearby cycles functor ψun
f is given by

ψun
f (K) = i∗PjP

∗ (K ⊗ (fη)
∗
PE )

(see [Sai89, (2.3.3)], Beilison’s [Bei87a] or Reich’s [Rei10]). With this description, 3.13 is an imme-
diate consequence of (3.19).

Corollary 3.14. The functors

pLogP

f (−) := LogP

f (−)[−1], pΦP
f (−) := ΦP

f (−)[−1], pΞP
f (−) := ΞP

f (−)[−1]

and
pΩP

f (−) := ΩP
f (−)[−1]

are t-exact for the perverse t-structure.

Proof. Since the functor ψun
f (−)[−1] is t-exact for the perverse t-structure, the corollary is an

immediate consequence of 3.13 and the exact triangles relating the various functors. �

3.5. Application to perverse motives. Now, we can apply the universal property of the cate-
gories of perverse motives to obtain four exact functors

pLogM

f (−) : M (Xη)→M (Xσ),
pΦM

f (−) : M (X)→M (Xσ)

and
pΞM

f (−) : M (X)→M (X), pΩM
f (−) : M (X)→M (X).

Moreover we have four canonical exact sequences obtained from the exact triangles relating the four
functors used in the construction. Two exact sequences

0→ iM∗
pLogM

f (j∗M (−))→ pΞM
f → jM

∗ j∗M (−)→ 0

and

0→ jM
! j∗M (−)→ pΞM

f → iM∗
pLogM

f (−)(−1)→ 0.

As well as two exact sequences

(3.20) 0→ iM∗
pLogM

f (j∗M (−))→ pΩM
f (−)→ Id(−)→ 0

and

0→ jM
! j∗M (−)→ pΩM

f (−)→ iM∗
pΦM

f (−)→ 0.

These four functors and the associated exact sequences are compatible with the various functors
and exact triangles constructed in 3.2, 3.3 and 3.4.

Now we can prove the following theorem.
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Theorem 3.15. Let i : Z →֒ X be a closed immersion of k-varieties. Then, the functor

iM∗ : M (Z)→M (X)

is fully faithful and its essential image is the kernel, denoted by MZ(X), of the exact functor

j∗M : M (X)→M (U)

where j : U →֒ X is the open immersion of the complement of Z in X.

We first consider the case of the immersion of a special fiber.

Lemma 3.16. Let X be a k-variety and f : X → A1
k be a morphism. Let i : Xσ →֒ X be the closed

immersion of the special fiber in X and Z be a closed subscheme of Xσ. Then, the exact functor

iM∗ : MZ(Xσ)→MZ(X)

is an equivalence of categories.

Proof. We may assume Z = Xσ. Indeed, let u : X \ Z →֒ X and v : Xσ \ Z →֒ Xσ be the open
immersion. By 2.3 applied to cartesian square

Xσ \ Z
i′ //

�v

��

X \ Z

u

��
Xσ

i // X,

we get an isomorphism u∗
M
iM∗ ≃ i

′M
∗ v∗

M
. Since the functor i′M∗ is conservative (it is faithful exact),

we see that an object A in M (Xσ) belongs to Ker v∗
M

if and only if iM∗ A belongs to Keru∗
M
. Hence,

it is enough to show that

iM∗ : M (Xσ)→MXσ
(X)

is an equivalence.
Let us show that the functor pΦM

f is a quasi-inverse. Let Xη be the generic fiber and j : Xη →֒ X

be the open immersion. The exact triangle (3.8), provides an isomorphism of endomorphisms of
DA(Xσ) between i∗i∗ and Φf [−1]i∗. By composing with the isomorphism of functors i∗i∗ → Id,
we get an isomorphism of functors between the identity of DA(Xσ) and

pΦf [−1]i∗.
Similarly, we get an isomorphism between the identity of D(Xσ,Q) and the functor ΦP

f [−1]iP∗ .
Since these isomorphisms are compatible with the Betti realization, the property P2, ensures that
pΦM

f iM∗ is isomorphic to the identity functor of the category M (Xσ).

An isomorphism between the identity of MXσ
(X) := Ker j∗

M
and i∗

M
pΦf is provided by the

exact sequences

0→ iM∗
pLogM

f (j∗M (−))→ pΩM
f (−)→ Id(−)→ 0

and

0→ jM
! j∗M (−)→ pΩM

f (−)→ iM∗
pΦM

f (−)→ 0

(the first terms vanish for objects in the kernel of j∗
M
). This concludes the proof. �

Proof of 3.15. Using 2.7, we may assume that X is an affine scheme. Let U be the open complement
of Z in X and let f1, . . . , fr be elements in O(X) such that U = D(f1) ∪ · · ·D(fr). Let Zr+1 = X
and set Zk = Zk+1 \D(fk) for k ∈ [[1, r]]. Let ik : Zk →֒ Zk+1 be the closed immersion. We have
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Z1 = Z and i = ir ◦ ir−1 ◦ · · · ◦ i1, so that the functor iM∗ : M (Z) → MZ(X) is obtained as the
composition

M (Z)
(i1)

M

∗−−−−→MZ(Z2)
(i2)

M

∗−−−−→MZ(Z3)→ · · · →MZ(Zk)
(ik)

M

∗−−−−→MZ(X).

By 3.16, all these functors are equivalences. This concludes the proof. �

4. Inverse images

The purpose of this section is to extend the (contravariant) 2-functor LissH∗
M

constructed in 2.5
into a (contravariant) 2-functor

H∗
M : (Sch/k)→ TR

X 7→ Db(M (X))

f 7→ f∗
M .

To do this, we first use the vanishing cycles functor to show that the (covariant) 2-functor ImmHM
∗

admits a global left adjoint ImmH∗
M

(we recall that a global left adjoint is unique up to unique
isomorphism and refer to [Ayo07a, Définition 1.1.18] for the definition). Then, we show that the
2-functors LissH∗

M
and ImmH∗

M
can be glued into a 2-functor H∗

M
.

4.1. Inverse image by a closed immersion. By [Ayo07a, Proposition 1.1.17], to show that
ImmHM

∗ admits a global left adjoint ImmH∗
M

it suffices to show that for every closed immersion
i : Z →֒ X the functor iM∗ admits a left adjoint; this in turn is proved in 4.2.

Theorem 4.1. Let i : Z →֒ X be a closed immersion. Then, the functor

iM∗ : Db(M (Z))→ Db(M (X))

is fully faithful and its essential image is is the kernel, denoted by Db
Z(M (X)), of the exact functor

j∗M : Db(M (X))→ Db(M (U))

where j : U →֒ X is the open immersion of the complement of Z in X.

Proof. We know that the essential image of iM∗ : Db(M (Z)) → Db(M (X)) is contained in
Db

Z(M (X)) by 3.15. We now want to prove that the functor iM∗ : Db(M (Z)) → Db
Z(M (X))

is an equivalence of categories. Note that the obvious t-structure on Db(M (X)) induces a t-
structure on Db

Z(M (X)), whose heart is the thick abelian subcategory MZ(X) of M (X). By 3.15,
the functor iM∗ : M (Z) → M (X) induces an equivalence of categories M (Z) → MZ(X). So, by
[Bei87c, Lemma 1.4], the functor iM∗ : Db(M (Z)) → Db

Z(M (X)) is an equivalence of categories if

and only if, for any A,B in MZ(X) and i > 1, and any class u ∈ ExtiM (X)(A,B), there exists a

monomorphism B →֒ B′ in MZ(X) such that the image of u in ExtiM (X)(A,B
′) is 0.

Suppose that j : V →֒ X is an affine open immersion, that A is an object of M (X) and that B
is an object of M (V ). Let i > 1. Then, we have

ExtiM (X)(A, j
M
∗ B) = ExtiM (V )(j

∗
MA,B)

by 2.5, and, if u ∈ ExtiM (V )(j
∗
M
A,B) and B →֒ B′ is a monomorphism of M (V ) such that the

image of u in ExtiM (V )(j
∗
M
A,B′) is 0, then, the image in ExtiM (X)(A, j

M
∗ B′) of the element of

ExtiM (X)(A, j
M
∗ B) corresponding to u is also 0. Applying this to an open cover j1 : U1 →֒ X , . . . ,

jn : Un →֒ X of X by affine subsets and using the fact the canonical map B →
⊕n

r=1(jr)
M
∗ (jr)

∗
M
B
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given by 2.5 is a monomorphism for every object B of M (X), we reduce to the case where X is
affine.

If X is affine, then, as in the proof of 3.15, we write i = ir◦· · ·◦i1, where Z1 = Z, Zr+1 = X , and,
for every k ∈ {1, . . . , r}, ik : Zk → Zk+1 is the immersion of the complement of an open set of the
form D(f), with f ∈ O(Zk+1). It suffices to show that each (ik)

M
∗ : Db(M (Zk))→ Db

Zk
(M (Zk+1))

is an equivalence of categories. So we may assume that there exists f ∈ O(X) such that i is
the immersion of the complement of D(f). In that case, we showed in the proof of 3.16 that
the trivial derived functor of the exact functor pΦM

f : M (X) → M (Z) induces a quasi-inverse of

iM∗ : Db(M (Z))→ Db
Z(M (X)). �

Proposition 4.2. Let i : Z →֒ X be a closed immersion. Then, the functor

iM∗ : Db(M (Z))→ Db(M (X))

admits a left adjoint.

Proof. By 4.1, it suffices to show that the inclusion functor

(4.1) Db
Z(M (X))→ Db(M (X))

admits a left adjoint C•. Let j : U →֒ X be the open immersion of the complement of Z in X .
Let us first assume that U is affine. In that case, given A in Cb(M (X)), we define C•(A) as the
mapping cone of the canonical morphism jM

! j∗
M
A → A given by 2.5. This construction induces

a triangulated functor C• : Db(M (X)) → Db(M (X)) and there is a canonical exact triangle
jM
! j∗

M
A→ A→ C•(A)→ jM

! j∗
M
A[1], which shows that C• takes its values in the full subcategory

Db
Z(M (X)). Let B ∈ Db

Z(M (X)). Using the long exact sequence associated with this triangle and
2.5 which ensures that

HomDb(M (X))(j
M
! j∗MA,B[n]) = HomDb(M (U))(j

∗
MA, j∗MB[n]) = 0,

we get a functorial isomorphism

HomDb(M (X))(C
•(A), B)

≃
−→ HomDb(M (X))(A,B)

as desired.
In the general case, the adjoint C• can be constructed by considering a finite set I and an affine

open covering U = (ji : Ui → U)i∈I . For every J ⊆ I, let jJ be the inclusion
⋂

i∈J Ui →֒ X . We

define an exact functor C• : M (X) → Cb(M (X)) in the following way. Let A be an object of
M (X). We set:

Ci(A) =





0 if i > 1
A if i = 0⊕

I⊂{1,...,r},|J|=−i(jJ )
M
! (jJ)

∗
M
A if i 6 −1.

The differential of C•(A) is an alternating sum of maps given by 2.5. Then, the left adjoint of
Db

Z(M (X))→ Db(M (X)) is the functor sending A• to the total complex of C•(A•). �

Let Z be a closed immersion such that the open immersion j : U →֒ X of the complement of Z
in X is affine. It follows from the proof of 4.2 that we have a canonical exact triangle

jM
! j∗M → Id→ iM∗ i∗M

+1
−−→ .
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Moreover the diagram

(4.2) jP
! j∗

P
ratMX

//

θM

j

��

ratMX
// iP∗ i

∗
P
ratMX

θM

i

��

+1 //

jP
! ratMU j∗

M
//

ρM

j

��

ratMX
// iP∗ ratMZ i∗

M

+1 //

(γM

i )−1

��
ratMX jM

! j∗
M

// ratMX // ratMX iM∗ i∗
M

+1 //

is commutative (the morphisms in the second row are those obtained by adjunction from θM
i and

the inverse of θM
j ).

Lemma 4.3. Let i : Z → X be a closed immersion. Then, the natural transformation

θM
i : i∗P ◦ rat

M
X → ratMZ ◦ i

∗
M

is invertible.

Proof. The statement is local on X , so we may assume that X is affine. Then, as in the proof
of 4.1, we can write i = ir ◦ . . . ◦ i1, where each is is a closed immersion with affine complement.
Using the compatibility of the 2-morphisms θM

i with the composition of morphisms in Imm(Sch/k)
we may assume that the open immersion j : U →֒ X of the complement of Z in X is affine. Then,
our assertion follows from (4.2) and the conservativity of the functor iP∗ . �

4.2. Gluing of the pullback 2-functors. Let us fix a global left adjoint ImmH∗
M

of ImmHM
∗ . To

be able to glue the 2-functors ImmH∗
M

and LissH∗
M

using [Ayo07a, Théorème 1.3.1], it suffices to
construct, for every commutative square

(4.3) X ′ i′ //

f ′

��

Y ′

f

��
X

i // Y

such that i, i′ are closed immersions and f, f ′ smooth morphisms, a 2-isomorphism

(4.4) i′∗M ◦ f
∗
M

≃
−→ f ′∗

M ◦ i
∗
M

and prove that these 2-isomorphisms define an exchange structure, that is, they are compatible with
the horizontal and vertical composition of commutative squares (see [Ayo07a, Définition 1.2.1]).

dg-enhancements. For the general theory of dg categories we refer to Drinfeld’s [Dri04], Keller’s [Kel94,
Kel06] or Toën’s [Tofrm[o]–1]. Let A be an abelian category. We denote by Cb

dg(A) the dg category

of bounded complexes of objects of A and by Db
dg(A) the dg quotient of Cb

dg(A) by the subcategory

of acyclic bounded complexes (for a simple construction of the dg quotient see [Dri04, §3.1]). The
bounded derived category Db(A) of A is the homotopy category of the dg category Db

dg(A). We

let rep(Db
dg(A),Db

dg(B)) be the category of dg quasi-functors from Db
dg(A) to Db

dg(B) (this cate-

gory is denoted by T (Db
dg(A),Db

dg(B)) in Vologodsky’s paper [Vol10]). Let us recall the following

particular case of [Vol10, Theorem 1].
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Proposition 4.4. Let A,B be abelian categories and F,G ∈ r(A,B) be dg quasi-functors. As-
sume that the induced triangulated functors F,G : Db(A) → Db(B) are t-exact for the classical
t-structures. Then F,G are respectively canonically isomorphic to the functors induced by the exact
functors H0F : A→ B, H0G : A→ B and the canonical map

Homrep(Db
dg(A),Db

dg(B))(F,G)→ HomFct(A,B)(H
0F,H0G)

is an isomorphism.

A triangulated functor Db(A) → Db(B) is said to be dg enhanced if it is induced by some dg
quasi-functor in rep(Db

dg(A),Db
dg(B)). Note that a composition of dg enhanced functors is also dg

enhanced.

Remark 4.5. Let i : Z →֒ X be a closed immersion and f : X → Y be a smooth morphism of
quasi-projective k-varieties. By construction the triangulated functors iM∗ and f∗

M
are dg enhanced.

This is also the case of the triangulated functor

i∗M : Db(M (X))→ Db(M (Z)).

Indeed, let j : U →֒ X be the open immersion of the complement of Z in X and fix a finite open
covering of U by affine open subsets. Let Db

dg,Z(M (X)) be the dg full subcategory of Db
dg(M (X))

formed by the complexes that belongs to Db
Z(M (X)). We have then dg-functors

(4.5) Db
dg(M (Z))

iM∗ // Db
dg,Z(M (X)) Db

dg(M (X))
C•

oo

where C• is the dg functor constructed (using the given open covering of U by affine open subsets)
in the proof of 4.2. Since the dg-functor on the left is a quasi-equivalence, the diagram (4.5) defines
a quasi-functor from Db

dg(M (X)) to Db
dg(M (Z)) that induces the triangulated functor i∗

M
.

Gluing of the 2-functors. Let us now start with the construction of the 2-isomorphisms (4.4).

Step 1: When the square (4.3) is cartesian the 2-isomorphism (4.4) is obtained by considering the

exchange structure MEx∗∗ on the pair (ImmHM
∗ , LissH∗

M
) obtained in 2.3 (in this exchange structure,

all squares are cartesian). By applying [Ayo07a, Proposition 1.2.5], we get an exchange structure
MEx∗∗ on the pair (ImmH∗

M
, LissH∗

M
) for the class of cartesian squares (4.3). The uniqueness in

loc.cit. implies that this exchange structure lifts the trivial exchange structure on (ImmH∗
P
, LissH∗

P
)

given by the connection 2-isomorphisms of the 2-functor H∗
P
. In particular, the conservativity of

the functors ratMX : Db(M (X))→ Db(P(X)) implies that MEx∗∗ is an iso-exchange.

Step 2: Let us consider a commutative triangle

(4.6) X
i //

g
  ❅

❅❅
❅❅

❅❅
❅ Y

f

��
S

in which i is a closed immersion and f, g are smooth morphisms. As preparation for the construction
of the 2-isomorphism (4.4), we first construct a 2-isomorphism

(4.7) i∗M ◦ f
∗
M → g∗M .

To do this, observe that, if d is the relative dimension of g, then the triangulated functors i∗
M
◦f∗

M
[d]

and g∗
M
[d] are t-exact for the classical t-structures. This is a vanishing statement that can be checked
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after application of the functor ratMX and, for perverse sheaves, it follows from [BBD82, 4.2.4] since
g∗

P
and i∗

P
◦ f∗

P
are isomorphic. Moreover both functors are dg enhanced by 4.5.

By 4.4, to construct (4.7), it is enough to construct a 2-isomorphism

(4.8) i∗M ◦ f
∗
M [d]→ g∗M [d]

where both functors are exact functors from M (S) to M (X). Therefore, it suffices to prove the
following proposition.

Proposition 4.6. Consider the commutative diagram (4.6). Let A be an object in M (S) and let K
be its underlying perverse sheaf. Then, the canonical morphism of perverse sheaves i∗

P
◦f∗

P
[d](K)→

g∗
P
[d](K) lies in the image of the injective morphism

(4.9) HomM (X)(i
∗
M ◦ f

∗
M [d](A), g∗M [d](A))→ HomP(X)(i

∗
P ◦ f

∗
P [d](K), g∗P [d](K)).

Remark 4.7. Note that the map (4.9) is obtained via the functor ratMX using the invertible natural
transformations f∗

P
◦ ratMS → ratMY ◦ f

∗
M
, g∗

P
◦ ratMS → ratMX ◦ g

∗
M

and i∗
P
◦ ratMY → ratMX ◦ i

∗
M

which have been previously constructed.

Proof. Step (a). Consider a commutative diagram

X ′ i′ //

g′

//

�v

��

Y ′

u

��
f ′

��

X
i //

g
!!❈

❈❈
❈❈

❈❈
❈ Y

f

��
S

where i is a closed immersion, f, g are smooth morphisms and u is an étale morphism. By step
1, we have a natural transformation i′∗

M
◦ u∗

M
→ v∗

M
◦ i∗

M
that lifts the corresponding natural

transformation in the derived category of perverse sheaves. Assume the proposition true for the
diagram (4.6). Then, the morphism i∗

P
◦f∗

P
[d](K)→ g∗

P
[d](K) lifts to a morphism i∗

M
◦f∗

M
[d](A)→

g∗
M
[d](A). By applying v∗

M
to this lift we obtain a morphism i′∗

M
◦ f ′∗

M
[d](A)→ g′∗

M
[d](A) that lifts

the morphism i′∗
P
◦ f ′∗

P
[d](K)→ g′∗

M
[d](K). This shows, in particular, that if the proposition is true

for the diagram (4.6) then it is also true for the diagram

X ′ i′ //

g′

!!❇
❇❇

❇❇
❇❇

❇ Y ′

f ′

��
S.

Step (b). Let Y = (Yα)α∈I be a finite Zariski open covering of Y and consider for every α ∈ I
the commutative diagram

Xα
iα //

gα

//

�vα

��

Yα

uα

��
fα

��

X
i //

g
!!❈

❈❈
❈❈

❈❈
❈ Y

f

��
S
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where uα is the open immersion of Yα in Y . Note that the canonical morphism of perverse sheaves
i∗
P
◦ f∗

P
[d](K) → g∗

P
[d](K) is obtained by gluing the morphism i∗α,P ◦ f

∗
α,P[d](K) → g∗α,P [d](K)

along the Zariski open covering X = (Xα)α∈I of X . Hence it follows from step (a) and 2.7 that
the proposition is true for the diagram (4.6) if and only if it is true for the diagrams

Xα
iα //

gα
!!❈

❈❈
❈❈

❈❈
❈ Yα

fα

��
S.

Step (c). By step (b) the problem is local on Y for the Zariski topology. Since both Y and X
are smooth over S, we may assume that there exists a cartesian square

X
i //

g

//

�v

��

Y

u

��
f

��

Ad
S

//

""❊
❊❊

❊❊
❊❊

❊❊
Ad+c

S

��
S

where u is an étale morphism. Using step (a) and induction, we are reduced to proving the propo-
sition in the case

Ad
S

π
""❊

❊❊
❊❊

❊❊
❊❊

s // Ad+1
S

p

��
S

where p and π are the projections and s is the zero section. By considering the factorization

Ad
S

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

s //

π

��✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷

Ad+1
S

p

��

��
Ad

S

π

��
S

and observing that the functors π∗
M
[d], π∗

P
[d] are exact, we may further assume d = 0.

Step (d). It remains to prove the proposition in the case of the diagram

S
s //

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

A1
S

p

��
S

where s is the zero section and p is the projection. Let f : A1
S = A1×S → A1 be the first projection,

a : Gm×S → A1×S be the inclusion. We set q = p◦a. Given a motive B ∈M (A1
S), consider the
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connecting morphism B → sM
∗

pLogM

f (a∗
M
(B))[1] in Db(M (A1

S)) obtained from the exact sequence

(3.20). By adjunction, we get a morphism s∗
M

(B)→ pLogM

f (a∗
M
B)[1] in the category Db(M (S)).

Taking B to be the perverse motive B = p∗
M
[1]A, we get after a shift a morphism

s∗M ◦ p
∗
M (A)→ pLog

M

f (q∗M [1](A))

in Db(M (S)). As both objects are concentrated in degree zero, the above morphism is actually
a morphism in the abelian category M (S). Moreover, it is an isomorphism since it is on the
underlying perverse sheaves. Moreover, we know that the square

HomM (S)(
pLogM

f (q∗
M

[1](A)), A) //

≃

��

HomP(S)(
pLogP

f (q∗
P
[1](K)),K)

≃

��
HomM (S)(s

∗
M
◦ p∗

M
(A), A) // HomP(S)(s

∗
P
◦ p∗

P
(K),K)

is commutative. Hence, to conclude, it suffices to show that the canonical morphism of perverse
sheaves

(4.10) pLogP

f (q∗P [1](K))→ K

lifts to a morphism pLogM

f (q∗
M

[1](A))→ A in the abelian category M (S). By construction of the

exact functors pLogM

f and q∗
M

[1], this is an application of the property P2, since (4.10) is the Betti
realization of a natural transformation

Logf (q
∗(−))→ Id

in the triangulated category of étale motives on S. �

Lemma 4.8. Consider a commutative diagram

X
i //

h
''PP

PPP
PPP

PPP
PPP

Y
s //

g

��❅
❅❅

❅❅
❅❅

❅ Z

f

��
S

in which i, s are closed immersions and f, g, h are smooth morphisms. Then, the diagram

i∗
M
◦ s∗

M
◦ f∗

M
//

≃

��

i∗
M
◦ g∗

M
// h∗

M

(s ◦ i)∗
M
◦ f∗

M

>>

is commutative.

Proof. The lemma follows from the analogous statement for perverse sheaves. Indeed, let d be the
relative dimension of h. It suffices to show that the diagram

i∗
M
◦ s∗

M
◦ f∗

M
[d] //

≃

��

i∗
M
◦ g∗

M
[d] // h∗

M
[d]

(s ◦ i)∗
M
◦ f∗

M
[d]

;;
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is commutative. Since all functors in this diagram are dg enhanced and t-exact for the classical
t-structures, by 4.4 it suffices to check the commutativity of the diagram induced on the hearts.
This can be checked on the underlying perverse sheaves. �

Step 3: To construct the 2-isomorphisms (4.4) in the general case, we can decompose the com-
mutative square (4.3) as follows

X ′ i′′′ //

f ′

$$■
■■

■■
■■

■■
■

i′

%%
X ×Y Y ′ i′′ //

f ′′

��
�

Y ′

f

��
X

i // Y

where i′′, i′′′ are closed immersions and f ′′ is a smooth morphism. Then, using the iso-exchange
constructed in step 1, the 2-isomorphism of step 2 and the connection 2-isomorphisms of the 2-
functor ImmH∗

M
we get (4.4) as the composition

i′∗M ◦ f
∗
M

≃
−→ i′′′∗M ◦ i′′∗M ◦ f

∗
M

≃
−→ i′′′∗M ◦ f ′′∗

M ◦ i
∗
M

≃
−→ f ′∗

M ◦ i
∗
M .

Lemma 4.9. Let

X ′ i′ //

f ′

��
�

Y ′ s //

f

��

Z

g
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X
i // Y

be a commutative diagram of morphisms of k-varieties in which g, f are smooth and i, s are closed
immersions. Consider the commutative diagram

X ′

s◦i′

$$s′ //

f ′

$$❍
❍❍

❍❍
❍❍

❍❍
❍ X ×Y Z

i′′ //

g′

��
�

Z

g

��
X

i // Y.

Then, the following diagram is commutative

(s ◦ i′)∗
M
◦ g∗

M

≃ // i′∗
M
◦ s∗

M
◦ g∗

M
// i′∗

M
◦ f∗

M
// f ′∗

M
◦ i∗

M

(i′′ ◦ s′)∗
M
◦ g∗

M

≃ // s′∗
M
◦ i′′∗

M
◦ g∗

M
// s′∗

M
◦ g′∗

M
◦ i∗

M
// f ′∗

M
◦ i∗

M
.

Proof. By adjunction, it is enough to show that the diagram

s∗
M
◦ g∗

M
◦ iM∗ A //

--

f∗
M
◦ iM∗ A // i′M∗ ◦ f ′∗

M
A

s∗
M
◦ i′′M∗ ◦ g′∗

M
A // i′M∗ ◦ s′∗

M
◦ g′∗

M
A

OO
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is commutative for every object A in Db(M (X)). Since all the entries of the above diagram are
dg enhanced and t-exact functors up to a shift by the relative dimension d of f , by 4.4 it suffices
to check the commutativity of the diagram induced on the hearts. This can be checked on the
underlying perverse sheaves. �

Lemma 4.10. Consider a commutative diagram

X ′

f ′

��

i′ //

�

h′

11

Y ′

f

��
h

��

X
i //

g′

!!❈
❈❈

❈❈
❈❈

❈ Y

g

��
S

in which i, i′ are closed immersions and all other morphisms are smooth. Then, the diagram

i′∗
M
◦ f∗

M
◦ g∗

M
//

≃

��

f ′∗
M
◦ i∗

M
◦ g∗

M
// f ′∗

M
◦ g′∗

M

≃

��
i′∗
M
◦ h∗

M
// h′∗

M

is commutative.

Proof. Let d be the relative dimension of h′. It is enough to check that the diagram

i′∗
M
◦ f∗

M
◦ g∗

M
[d] //

≃

��

f ′∗
M
◦ i∗

M
◦ g∗

M
[d] // f ′∗

M
◦ g′∗

M
[d]

≃

��
i′∗
M
◦ h∗

M
[d] // h′∗

M
[d]

is commutative. Since all functors in this diagram are dg enhanced and t-exact for the classical
t-structures, by 4.4 it suffices to check the commutativity of the diagram induced on the hearts.
This can be checked on the underlying perverse sheaves. �

Proposition 4.11. The 2-isomorphisms (4.4) define an exchange structure i.e., they are compatible
with the horizontal and vertical compositions of commutative squares.

Proof. • Horizontal composition of squares. Consider a commutative diagram

(4.11) Z ′ s′ //

f ′′

��

X ′ i′ //

f ′

��

Y ′

f

��
Z

s // X i // Y
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in which i, s, i′, s′ are closed immersions and f, f ′, f ′′ are smooth morphisms. We have to prove
that the diagram

(i′ ◦ s′)∗
M
◦ f∗

M

≃

��

// f ′′∗
M
◦ (i ◦ s)∗

M

≃

��
s′∗

M
◦ i′∗

M
◦ f∗

M
// s′∗

M
◦ f ′∗

M
◦ i∗

M
// f ′′∗

M
◦ s∗

M
◦ i∗

M

is commutative. Let us decompose (4.11) the following ways:

(4.12) Z ′ //

$$■
■■

■■
■■

■■
■ Z ×X X ′ //

��
�

X ′ //

��

X ×Y Y ′ //

zz✉✉✉
✉✉✉

✉✉✉
✉

�

Y ′

zz✉✉✉
✉✉
✉✉
✉✉
✉

Z // X // Y

and

Z ′ //

$$■
■■

■■
■■

■■
■ Z ×Y Y ′

��

//

�

Y ′

��
Z // Y.

Since Z ×X (X ×Y Y ′) = Z ×Y Y ′ we can rewrite the portion

Z ×X X ′ //

��
�

X ′ //

��

X ×Y Y ′

zz✉✉✉
✉✉✉

✉✉
✉✉

Z // X

of the diagram (4.12) as

Z ×X X ′ //

&&▼▼
▼▼▼

▼▼▼
▼▼▼

▼ Z ×Y Y ′ //

��
�

X ×Y Y ′

��
Z // X.

Therefore the desired compatibility is a consequence of 2.3, 4.9 and 4.8.

• Vertical composition of squares. Consider a commutative diagram

(4.13) X ′′ i′′ //

g′

��

Y ′′

g

��
X ′ i′ //

f ′

��

Y ′

f

��
X

i // Y
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in which i, i′, i′′ are closed immersions and f, g, f ′, g′ are smooth morphisms. We have to prove that
the diagram

i′′∗
M
◦ (f ◦ g)∗

M
//

��

(f ′ ◦ g′)∗
M
◦ i∗

M

≃

��
i′′∗
M
◦ g∗

M
◦ f∗

M
// g′∗

M
◦ i′∗

M
◦ f∗

M
// g′∗

M
◦ f ′∗

M
◦ i∗

M

is commutative. We can refine (4.13) into the following commutative diagrams

X ′′ //

22

X ′ ×Y ′ Y ′′ //

��
�

X ×Y Y ′′ //

��
�

Y ′′

��
X ′ //

33

X ×Y Y ′ //

��
�

Y ′

��
X // Y

or

X ′′ //

22

X ×Y Y ′′ //

��
�

Y ′′

��
X // Y.

The desired compatibility is now a consequence of 2.3, 4.10 and 4.8. �

5. Main theorem

In 3.5, we have shown that the unipotent nearby and vanishing cycles functors can be defined at
the level of perverse Nori motives.

Our goal is to prove that the four operations (0.1) can be lifted to the derived categories of
perverse Nori motives. To obtain these various functors

(5.1) Db(M (X))
fM

∗

// Db(M (Y ))
f∗

Moo f !
M //

Db(M (X))
fM

!

oo

(and their compatibility relations) with the least amount of effort, we have chosen to follow Ay-
oub’s approach developed in [Ayo07a] around the notion of stable homotopical 2-functor, which
encompasses in a small package all the ingredients needed to build the rest of the formalism.

5.1. Statement of the theorem. As before, (Sch/k) denotes the category of quasi-projective
k-varieties. Recall that a contravariant 2-functor

H∗ : (Sch/k)→ TR

is a called a stable homotopical 2-functor (see [Ayo07a, Définition 1.4.1]) when the following six
properties are satisfied.

(1) H(∅) = 0 (that is, H(∅) is the trivial triangulated category).
(2) For every morphism f : X → Y in (Sch/k), the functor f∗ : H(Y ) → H(X) admits a right

adjoint. Furthermore for every immersion i the counit i∗i∗ → Id is invertible.
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(3) For every smooth morphism f : X → Y in (Sch/k), the functor f∗ : H(Y )→ H(X) admits
a left adjoint f♯. Furthermore, for every cartesian square

X ′ g′

//

f ′

��

X

f

��
Y ′ g // Y

with f smooth, the exchange 2-morphism f ′
♯g

′∗ → g∗f♯ is invertible.

(4) If j : U → X is an open immersion in (Sch/k) and i : Z → X is the closed immersion of
the complement, then the pair (j∗, i∗) is conservative.

(5) If p : A1
X → X is the canonical projection, then the unit morphism Id→ p∗p

∗ is invertible.
(6) If s is the zero section of the canonical projection p : A1

X → X , then p♯s∗ : H(X)→ H(X)
is an equivalence of categories.

The main theorem of [Ayo07a] says that these data can be expanded into a complete formalism
of the four operations (see [Ayo07a, Scholie 1.4.2]).

Theorem 5.1. The contravariant 2-functor H∗
M

constructed in 4 is a stable homotopical 2-functor
is the sense of [Ayo07a, Définition 1.4.1], and (ratM , θM ) is a morphism of stable homotopical
2-functors.

In particular, we can apply [Ayo07a, Scholie 1.4.2] to get the functors (5.1). The next subsection
is devoted to the proof of 5.1, and the reader will find some applications of the main theorem in
5.4.

5.2. Proof of the main theorem (5.1). We start by showing the existence of the direct image
functor. The most important step is the proof of the existence of the direct image by the projection
of the affine line A1

Y onto its base Y .

Proposition 5.2. For every morphism f : X → Y in (Sch/k), the functor

f∗
M : Db(M (Y ))→ Db(M (X))

admits a right adjoint fM
∗ . Moreover

(1) if i : Z → X is a closed immersion, the counit of the adjunction i∗
M
iM∗ → Id is invertible;

(2) the natural transformation

γM
f : ratMY fM

∗ → fP
∗ ratMX ,

obtained from θM
f by adjunction, is invertible;

(3) if p : A1
X → X is the canonical projection, then the unit morphism Id→ pM

∗ p∗
M

is invertible.

Proof. In the proof, all products are fiber products over the base field k and A1 is the affine line
over k.

Step 1: Suppose first that f is a closed immersion. Then f∗
M

admits fM
∗ as a right adjoint by

construction of f∗
M
, we know point (2) by 4.3, and point (1) is true by (2) and by conservativity of

ratMX .

Step 2: Now we consider the case where f is the projection morphism p : X := A1
Y → Y . As

before, if we can prove that p∗
M

admits a right adjoint satisfying (2), then point (3) will follow
automatically.
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We consider the following commutative diagram:

A1 × Y

p

��

A1 ×A1 × Y
q2oo

q1

��

U × Y
j

oo

Y A1 × Y
p

oo A1 × Y
Id

oo

i

gg❖❖❖❖❖❖❖❖❖❖❖
Id ❲❲❲❲❲❲❲❲❲❲❲❲

kk❲❲❲❲❲❲❲❲❲❲❲❲

where q1 = IdA1 × p, q2 is the product of the projection A1 → Spec k and of IdA1×Y , i is the
product of the diagonal morphism of A1 and of IdY , and j is the complementary open inclusion.
We also denote by s : Y → A1× Y the zero section of p. By the smooth base change theorem (or a
direct calculation), the base change map p∗

P
pP
∗ → qP

1∗q
∗
2P

is an isomorphism, so we get a functorial
isomorphism pP

∗ ≃ s
∗
P
p∗

P
pP
∗ → s∗

P
qP
1∗q

∗
2P

.
Let K be a perverse sheaf on Y . Then L := q∗2P

K[1] is perverse, and we have i∗
P
L = K[1], so

we get an exact sequence of perverse sheaves on A1 × Y :

0→ iP∗ K → jP
! j∗PL→ L→ 0.

Applying the functor qP
1∗ and using the fact that q1 ◦ i = IdA1×Y , we get an exact triangle:

qP
1∗q

∗
2PK → K → qP

1∗j
P
! j∗PL

+1
−−→ .

We claim that qP
1∗j

P
! j∗

P
L is perverse. Indeed, this complex is concentrated in perverse degrees −1

and 0 by [BBD82, 4.1.1 & 4.2.4]. So we just need to prove that M := pH−1qP
1∗j

P
! j∗

P
L is equal

to 0. By [BBD82, 4.2.6.2], the adjunction morphism q∗1P
M [1] → jP

! j∗
P
L is injective; we denote

its quotient by N . Then, as q1 ◦ i = IdA1×Y and i∗
P
jP
! = 0, we have i∗

P
N = M [2]. But i is the

complement of an open affine embedding, so i∗
P

is of perverse cohomological amplitude [−1, 0] by
[BBD82, 4.1.10], hence M = 0.

Finally, we get an exact sequence of perverse sheaves on A1 × Y :

0→ pH0qP
1∗q

∗
2PK → K → qP

1∗ j
P
! j∗Pq∗2PK[1]→ pH1qP

1∗q
∗
2PK → 0.

Consider the functors FP ,GP : P(A1 × Y )→ Db(P(A1 × Y )) defined by

FP(K) := K

and
GP(K) := qP

1∗j
P
! j∗Pq∗2PK[1].

We have just proved that these functors are t-exact (of course, this is obvious for the first one) and
that there is a functorial exact triangle

qP
1∗q

∗
2P → FP → GP

+1
−−→ .

The functors FP and GP are defined in terms of the four operations. The existence of these
operations in the categories DAct(−) and the compatibility of the Betti realization with the four
operations (see [Ayo10, Théorème 3.19]), imply by the universal property of the categories of
perverse motives that there exist:

• two exact functors

FM ,GM : M (A1 × Y )→M (A1 × Y ),

• a natural transformation FM → GM , and
• two invertible natural transformations ratM

A1×Y ◦FM → FP ◦ rat
M

A1×Y and ratM
A1×Y ◦GM →

GP ◦ rat
M

A1×Y
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such that the diagram

ratM
A1×Y ◦ FM

//

��

ratM
A1×Y ◦ GM

��
FP ◦ rat

M

A1×Y
// GP ◦ rat

M

A1×Y

is commutative.
Given a complex M• of perverse motives on X = A1 × Y , let HM (M•) be the mapping fiber of

the morphism FM (M•)→ GM (M•) of complexes of perverse motives on X . We get a triangulated
functor

HM : Db(M (A1 × Y ))→ Db(M (A1 × Y )),

and the Betti realization of HM is isomorphic to qP
1∗q

∗P
2 .

We now define a functor

pM
• := s∗MHM (−) : Db(M (A1 × Y ))→ Db(M (Y )).

By construction of pM
• , we have an invertible natural transformation

ratM
A1×Y p

M
• → pP

∗ ratM
A1×Y .

Note also the following useful fact. We denote by f : A1 × Y → A1 the first projection and
by a : Gm × Y → A1 × Y the inclusion. Then applying s∗

M
to the connecting map in the exact

sequence (3.20) in 3.5, we get a natural transformation

s∗M →
pLogM

f a∗M [1],

whose composition with the functor HM is invertible. Indeed, we can check this last statement after

applying the functors ratMY , and then this follows from the exact triangle qP
1∗q

∗P
2 → FP → GP

+1
−−→

and the fact that the composition of the natural transformation s∗
P
→ pLog

P

f a
∗
P
[1] and of the

functor qP
1∗q

∗P
2 ≃ p∗

P
pP
∗ ≃ QA1 ⊠ pP

∗ is invertible. As the functor pLogM

f a∗
M

is exact, we get an

isomorphism from pM
• to the mapping cone of the morphism of exact functors pLogM

f a∗
M
◦ FM →

pLogM

f a∗
M
◦ GM .

Let us prove that the functor pM
• is right adjoint to the functor p∗

M
. Let ηP : Id→ pP

∗ p
∗
P

and
δP : p∗

P
pP
∗ → Id be the unit and the counit of the adjunction between p∗

P
and p∗

P
. It suffices to

lift ηP and δP to natural transformations ηM : Id→ pM
• p∗

M
and δM : p∗

M
pM
• → Id such that the

two natural transformations

p∗M
p∗

M
ηM

−−−−→ p∗MpM
• p∗M

δMp∗
M−−−−→ p∗M

and

pM
•

ηMpM

•−−−−→ pM
• p∗MpM

•

pM

• δM

−−−−→ pM
•

are isomorphisms and the first one is the identity (see Section 3.1 of M. Saito’s [Sai06]). Note that
the fact that these natural transformations are isomorphisms will follow automatically from the
conservativity of the functors ratMX .

We first construct ηM . Let us first show that GM ◦p
∗
M

= 0. As the functors ratMX are conservative,
it suffices to prove that GP ◦p

∗
P

= 0. Let k : U → A1×A1 be the open immersion (remember that
U is the complement of the diagonal in A1 ×A1), so that j = k × IdY , and let π : A1 ×A1 → A1

be the first projection, so that q1 = π × IdY . Then

GP ◦ p
∗
P = qP

1∗j
P
! j∗Pq∗2Pp∗M [1] ≃ qP

1∗ ((k
P
! QU )⊠−)[1] ≃ (πP

∗ kP
! QU )⊠ (−)[1],
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so it suffices to show that

πP
∗ kP

! QU = 0.

Let ∆ : A1 → A1 ×A1 be the diagonal embedding. Then we have an exact triangle

k!QU → QA1×A1 → ∆∗QA1
+1
−−→,

so, applying πP
∗ , we get an exact triangle

πP
∗ kP

! QU → QA1
Id
−→ QA1

+1
−−→,

and this implies the desired result.
Now that we know that GP ◦ p

∗
M

= 0, we get HM ◦ p
∗
M

= p∗
M
, hence pM

• p∗
M

= s∗
M
◦HM ◦ p

∗
M

=

s∗
M
p∗

M
, and we take for ηM : Id→ pM

• p∗
M

the inverse of the connection isomorphism s∗
M
p∗

M

∼
−→ Id.

Next we construct δM . First we define a functor qM
1• : Db(M (A1×Y ))→ Db(M (A1×A1×Y ))

in the same way as pM
• . That is, we consider the commutative diagram

A1 ×A1 × Y

q1

��

A1 ×A1 ×A1 × Y
r2oo

r1

��

A1 × U × Y
J

oo

A1 × Y A1 ×A1 × Y
q1

oo A1 ×A1 × Y
Id

oo

I

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙
Id ❨❨❨❨❨❨❨❨❨❨❨❨❨❨

ll❨❨❨❨❨❨❨❨❨❨❨❨❨❨

where r1 = IdA1×q1, r2 = IdA1×q2, I = IdA1× i and J = IdA1× j, and we set t = IdA1 ×s : A1×
Y → A1×A1×Y . Then the functors F′

P
,G′

P
from Db(P(A1×A1×Y )) to itself defined by F′

P
= Id

and G′
P

= rP
1∗J

P
! J∗

P
r∗2P

[1] are t-exact and we have a natural transformation F′
P
→ G′

P
. As before,

we can lift these functors and transformation to endofunctors F′
M
→ G′

M
of Db(M (A1×A1×Y )).

We denote by H′
M

the mapping fiber of F′
M
→ G′

M
, and we set qM

1• = t∗
M
◦H′

M
. Also, if we denote

by f ′ : A1 ×A1 × Y → A1 the second projection and by a′ the injection of A1 ×Gm × Y into
A1 ×A1 × Y , we get as above an invertible natural transformation from qM

1• to the mapping cone

of the morphism of exact functors pLogM

f ′ (a′)∗M ◦ F
′
M
→ pLogM

f ′ (a′)∗M ◦ G
′
M

.

Let’s show that the base change isomorphism p∗
P
pP
∗

∼
−→ qP

1∗q
∗
2P

lifts to a morphism p∗
M
pM
• →

qM
1• q

∗
2M

(which will automatically be an isomorphism). We have invertible natural transformations
F′

P
◦ q∗2P

≃ q∗2P
◦ FP and G′

P
◦ q∗2P

≃ q∗2P
◦ GP . As all the functors involved are t-exact up

to the same shift, the transformations lift to natural transformations F′
M
◦ q∗2M

≃ q∗2M
◦ FM and

G′
M
◦ q∗2M

≃ q∗2M
◦ GM , and induce an invertible natural transformation H′

M
◦ q∗2M

≃ q∗2M
◦ HM .

Composing on the left with t∗
M

and using the connection isomorphism t∗
M
q∗2M

≃ p∗
M
s∗

M
, we get

the desired isomorphism p∗
M
pM
•

∼
−→ qM

1• q
∗
2M

.
Composing this isomorphism with the unit of the adjunction (i∗

M
, iM∗ ) and using the connection

isomorphism i∗
M
q∗2M

≃ Id gives a natural transformation p∗
M
pM
• → qM

1• i
M
∗ . It remains to show

that the isomorphism qP
1∗ i

P
∗ ≃ Id lifts to a natural transformation qM

1• i
M
∗ → Id. First we note that

the functors

(5.2) pLogBf ′(a′)∗PrP
1∗r

∗P
2 iP∗ [1]

and
pLogBf ′(a′)∗PrP

1∗J
P
! J∗

Pr∗P
2 iP∗ [1]

are t-exact and the counit of the adjunction (JP
! , J∗

P
) induces a natural transformation from

the second one to the first one. Hence, the functor (5.2) induces an exact endofunctor H′′
M
of
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M (A1 × Y ), together with a natural transformation pLogM (a′)∗
M
◦ G′

M
◦ iM∗ → H′′

M
. But we also

have an invertible natural transformation of t-exact functors

IdDb(P(A1×Y )) ≃ t
∗
Pq∗P

1 qP
1∗ i

P
∗ (connection isomorphisms)

∼
−→ t∗PrP

1∗r
∗
2PiP∗ (base change)

∼
−→ pLogBf ′(a′)∗PrP

1∗r
∗
2P iP∗ [1] (by 3.5 as above)

and all the maps in it are defined in the categories DAct(−), so it induces an invertible natural

transformation IdM (A1×Y )
∼
−→ H′′

M
. Composing it with pLogM (a′)∗

M
◦ G′

M
◦ iM∗ → H′′

M
and using

the isomorphism from qM
1• to the mapping fiber of pLogM (a′)∗

M
◦ F′

M
→ pLogM (a′)∗

M
◦ G′

M
, we

finally get the desired natural transformation δM :

p∗MpM
•

∼
−→ qM

1• q
∗M
2 → qM

1• i
M
∗ →

pLogM (a′)∗M ◦ G
′
M ◦ i

M
∗ → H′′

M ≃ IdDb(M (A1×Y )).

Finally, we check that the natural transformation

p∗M
p∗

M
ηM

−−−−→ p∗MpM
• p∗M

δMp∗
M−−−−→ p∗M

is the identity. The two functors p∗
M
pM
• p∗

M
[1] and p∗

M
[1] are exact and equal to the derived functor

of their H0, and the natural transformations

(p∗MηM )−1, δMp∗M : p∗MpM
• p∗M [1]→ p∗M [1]

are also defined by extending their action on the H0’s, so it suffices to check that they are equal on
these H0’s. But this follows from the analogous result for the category of perverse sheaves.

Step 3: We can now use the Brown Representability Theorem to see that the proposition is true
more generally if f is the projection p : X := E → Y of a vector bundle E on Y . Indeed, given a k-
variety S, let Ind(M (S)) be the abelian category of Ind-objects of M (S) and consider the bounded
derived category Db(M (S)) as a full subcategory of the unbounded derived category D(Ind(M (S)))
(see e.g. Theorem 15.3.1 of Kashiwara–Schapira’s book [KS06]). As the morphism p : E → Y is
smooth, the functor p∗

M
extends to a triangulated functor L : D(Ind(M (Y ))) → D(Ind(M (E))).

By the Brown Representability Theorem (see e.g. Theorem 4.1 of Neeman’s article [Nee96] or
the book [Nee01] by the same author), the functor L admits a right adjoint R : D(Ind(M (E)) →
D(Ind(M (Y ))).

To prove that p∗
M

admits a right adjoint pM
∗ , it suffices to check that, given M ∈ Db(M (E)),

the object R(M) belongs to the subcategory Db(M (Y )). This can be checked on a finite Zariski
open covering of Y that trivializes E and thus follows from the case of a projection A1

Y → Y proved
in step 2. That pM

∗ satisfies (2) can again be checked on a finite Zariski open covering of Y that
trivializes E and we conclude using step 2.

Step 4: By steps 1 and 3, the proposition is true if f is an affine morphism. Indeed, if f is affine,
then we can write f = p ◦ i, where i is a closed immersion and p : E → Y is a vector bundle on Y .

Step 5: We now consider the case of an arbitrary morphism f : X → Y in (Sch/k). By

Jouanolou’s trick (cf. Jouanolou’s paper [Jou73]), there exists a vector bundle E → X and an

affine E-torsor p : X̃ → X . As p is affine, we know the proposition for p by step 3. Moreover,
the unit Id → pM

∗ p∗
M

is an isomorphism; indeed, it suffices to show this after restricting to an
open covering of X , so we may assume that the morphism p is isomorphic to the second projection
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An × X → X , and then the result follows from point (3) of the proposition. As the unit of the
adjunction (p∗

M
, pM

∗ ) is an isomorphism, the left adjoint p∗
M

is fully faithful.

Let g = f ◦ p. As X̃ is affine, the morphism g is affine. Also, we show as before that the
unit Id → pP

∗ p
∗
P

is an isomorphism, so we get an isomorphism fP
∗

∼
−→ fP

∗ pP
∗ p

∗
P
≃ gP

∗ p∗
P
. We

set fM
∗ = gM

∗ p∗
M
; by the calculation we just did, this satisfies condition (2). It remains to show

that fM
∗ is right adjoint to f∗

M
. Let K ∈ ObDbM (Y ) and L ∈ ObDbM (X). Then we have

isomorphisms

HomDbM (Y )(K, f
M
∗ L) = HomDbM (Y )(K, g

M
∗ p∗ML) ≃ HomDbM (X̃)(g

∗
MK, p∗ML)

≃ HomDbM (X̃)(p
∗
Mf∗

MK, p∗ML),

and the last group is isomorphic to HomDbM (X)(f
∗
M
K,L) by the full faithfulness of p∗

M
. �

Proposition 5.3. For every smooth morphism f : X → Y in (Sch/k) the functor

f∗
M : Db(M (Y ))→ Db(M (X))

admits a left adjoint f♯. Moreover

(1) the natural transformation

fP
♯ ratMX → ratMY fM

♯

obtained from θM
f by adjunction, is invertible;

(2) for every cartesian square

X ′ g′

//

f ′

��

X

f

��
Y ′ g // Y

with f smooth, the exchange 2-morphism f ′M
♯ g′∗

M
→ g∗

M
fM
♯ is invertible.

Proof. The assertion (2) is an immediate consequence of (1) since the functor ratMY is conservative.
We deduce the proposition from 5.2 using Verdier duality. Let f : X → Y be a smooth morphisms

of relative dimension d. Note that f∗
P

has a left adjoint given by

fP
♯ := D

P
Y f

P
∗ (−d)[−2d]DP

X .

Therefore we similarly set fM
♯ := D

M
Y fM

∗ (−d)[−2d]DM
X .

Let A be an object in Db(M (X)) and B be an object in Db(M (Y )). Then, 5.2 and 2.6 provide
isomorphisms

Hom(fM
♯ A,B) ≃ Hom(DM

Y B, fM
∗ (−d)[−2d]DM

X A) ≃ Hom(f∗
M (d)[2d]DM

Y B,DM
X A)

≃ Hom(A,DM
X f∗

M (d)[2d]DM
Y B) ≃ Hom(A, f∗

MB).

This shows that (fM
♯ , f∗

M
) form a pair of adjoint functors. Note that the counit M δ∗♯ of the

adjunction is given by the composition

(5.3) fM
♯ f∗

M

εM

f
−−→ D

M
Y fM

∗ f∗
MD

M
Y

Mη∗
∗−−−→ (DM

Y )2
(εM

Y )−1

−−−−−→ Id

and the unit Mη∗♯ by the composition

(5.4) Id
εM

X−−→ (DM
X )2

Mδ∗∗−−−→ D
M
X f∗

MfM
∗ D

M
X

εM

f
−−→ f∗

MfM
♯ .
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To show that the morphism

fP
♯ ratMX

Mη∗
♯

−−−→ fP
♯ ratMX f∗

MfM
♯

(θM

f )−1

−−−−−→ fP
♯ f∗

PratMY fM
♯

Pδ∗♯
−−−→ ratMY fM

♯

is invertible, it is enough to check that it is equal to the morphism

fP
♯ ratMX

(νM

X )−1

// DP
Y f

P
∗ (−d)[−2d]ratMX DM

X

γM

f

��
D

P
Y ratMY fM

∗ (−d)[−2d]DM
X

νM

Y // ratMY fM
♯

where γM
f is the invertible natural transformation of 5.2. Using the expressions of M δ∗♯ and M η∗♯

given in (5.3) and (5.4), this follows directly from 2.6 (2) and 2.6 (1), which ensure that the diagram

DP
X f

∗
P
[d]DP

Y ratMY
εP

f //

εM

f

**❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

(DP
X )2f∗

P
(d)[d]ratMY

(εP

X )−1

��
DP

X f
∗
P
[d]ratMY DM

Y

εP

f

��

νM

Y

OO

f∗
P
(d)[d](DP

Y )2ratMY
νM

Y

uu❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥❥

(εP

Y )−1

// f∗
P
(d)[d]ratMY

f∗
P
(d)[d]DP

Y ratMY DM
Y

νM

Y // f∗
P
(d)[d]ratMY (DM

Y )2

(εM

Y )−1

OO

is commutative.
�

The pair (j∗
M
, i∗

M
) is conservative, since so is the pair (j∗

P
, i∗

P
). This follows from the existence

of the isomorphisms θM
j , θM

i and the fact that ratMX is a conservative functor.

To finish the proof of 5.1, it remains to check that, if s is the zero section of p : A1
X → X , then

pM
♯ sM

∗ is an equivalence of categories. By construction

pM
♯ sM

∗ = D
M
X pM

∗ (−1)[−2]DM

A1
X
sM
∗ .

Note that the isomorphism D
P

A1
X

sP
∗ ≃ s

P
∗ D

P
X exists in the category of (constructible) étale motives.

Therefore, the compatibility of the Betti realization with the four operations (see [Ayo10, Théorème
3.19]) implies by the universal property of the categories of perverse motives that this isomorphism
lifts to an isomorphism DM

A1
X

sM
∗ ≃ s

M
∗ DM

X . As a consequence, we get an isomorphism

pM
♯ sM

∗ ≃ D
M
X pM

∗ sM
∗ (−1)[−2]DM

A1
X
≃ Id(−1)[−2].

This shows that pM
♯ sM

∗ is an equivalence of categories and concludes the proof of 5.1.

5.3. Complement to the main theorem. The following proposition complements 5.1.

Proposition 5.4. Let f : X → Y be a morphism of quasi-projective k-varieties. Then, the natural
transformations

ξM
f : ratMX f !

M → f !
PratMY ρM

f : fP
! ratMX → ratMY fM

!

are invertible.
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Proof. By [Ayo10, Théorème 3.4], it just remains to check that ξM
i is invertible if i : Z →֒ X is a

closed immersion. Let j : U →֒ X be the open immersion of the complement of Z in X . Then, we
have a commutative diagram

iP∗ i
!
P
ratMX

// ratMX // jP
∗ j∗

P
ratMX

+1 //

iP∗ ratMZ i!
M

//

ξM

i

OO

ratMX
// jP

∗ ratMU j∗
M

+1 //

(θM

j )−1

OO

ratMX iM∗ i!
M

//

γM

i

OO

ratMX
// ratMX jM

∗ j∗
M

+1 //

γM

j

OO

which implies that the image of ξM
i under iM∗ is invertible since all the other morphisms are.

Therefore ξM
i is also invertible. �

5.4. Some consequences. In this subsection, we draw some immediate consequences of the main
theorem (5.1).

Geometric local systems are motivic. A Q-local system L on a quasi-projective k-variety X will
be called geometric if there exists a smooth proper morphism g : Z → X such that L = Rig∗Q for
some integer i ∈ Z. We will say that L is motivic if there exists an object L in Db(M (X)) such
that L and ratMX (L) are isomorphic in the category Db(P(X)).

Corollary 5.5. A geometric Q-local system L on a quasi-projective k-variety X is motivic.

Proof. If the local system L is geometric, there exists a smooth proper morphism g : Z → X
such that L = Rig∗QZ for some integer i ∈ Z. Then L is the image under the functor ratMX
of the perverse motive cHi(gM

∗ QM
Z ), where cHi is the cohomological functor associated with the

constructible t-structure (see below). �

Remark 5.6. In this remark, we denote by Hi the standard cohomology functors on the category
Db(M (X)). Let L be a geometric Q-local system on a smooth quasi-projective variety of (pure)
dimension d and choose a smooth proper morphism g : Z → X , an integer j ∈ Z such that
L = Rjg∗QZ . As Z is smooth and g is proper and smooth, the constructible sheaves Rig∗QZ are
all Q-local systems on X . Hence the complexes (Rig∗QZ)[d] are perverse sheaves and therefore
(Rig∗QZ)[d] =

pHd+ig∗QZ for every i ∈ Z. In particular, L [d] = pHj+dg∗QZ and it follows that
L [d] is the image under ratMX of the perverse motivic sheaf A := Hj+d(gM

∗ QM
Z ).

Intersection cohomology. The four operations formalism allows the definition of a motivic avatar of
intersection complexes. In particular, intersection cohomology groups with coefficients in geometric
systems are motivic. More precisely:

Corollary 5.7. Let X be an irreducible quasi-projective k-variety and L be a Q-local system on
a smooth dense open subscheme of X. If L is motivic (in particular if L is geometric), then the
intersection cohomology group IHi(X,L ), for i ∈ Z, is canonically the Betti realization of a Nori
motive over k.

Proof. Let d be the dimension of X and L be a Q-local system on a smooth dense open subscheme
U of X . Since L is motivic, there exists an object L ∈ Db(M (U)) such that L is isomorphic
to ratMU (L). Since L [d] is a perverse sheaf on U and ratMU is conservative, the complex L[d] is
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a perverse motivic sheaf on U that is belongs to M (U). Then, with the notation of 6.19, the
intersection complex

ICX(L ) := Im(pH0jP
! L [d]→ pH0jP

∗ L [d])

is canonically isomorphic to the image under ratMX of the perverse motivic sheaf jM
!∗ L[d] :=

Im(H0(jM
! L[d]) → H0(jM

∗ L[d])). This implies that IHi(X,L ) := Hi−d(X, ICX(L )) is the Betti
realization of the Nori motive Hi−d(πM

∗ jM
!∗ L[d]) where π : X → Spec k is the structural morphism.

�

This shows, in particular, that intersection cohomology groups carry a natural Hodge structure.
If X is a smooth projective curve, and L underlies a polarizable variation of Hodge structure, then
the Hodge structure on the intersection cohomology groups was constructed by Zucker in [Zuc79,
(7.2) Theorem, (11.6) Theorem]. In general, it follows from Saito’s work on mixed Hodge modules
[Sai90b] and a different proof has been given by de Cataldo in [dC12]. We consider the weights in
the next section (see 6.28 and 6.29).

Leray spectral sequences. Let f : X → Y be a morphism of quasi-projective k-varieties and L

be a Q-local system on X . Then, we can associate with it two Leray spectral sequences in Betti
cohomology: the classical one

Hr(Y,Rsf∗L ) =⇒ Hr+s(X,L )

and the perverse one

Hr(Y, pHsf∗L ) =⇒ Hr+s(X,L ).

The main theorem of Arapura’s [Ara05] shows that, if L = QX is the constant local system on
X and the morphism f is projective, then the classical Leray sequence is motivic, that is, it is
the realization of a spectral sequence in the abelian category of Nori motives over k (see precisely
[Ara05, Theorem 3.1]).

This property is still true without the projectivity assumption and also more generally if the
local system L is geometric:

Corollary 5.8. If the local system L is motivic (in particular if it is geometric), then the classical
Leray spectral sequence and the perverse Leray spectral sequence are spectral sequences of Nori
motives over k.

Proof. The result follows from the functoriality of the direct image functors. �

In particular, the Leray spectral sequences are spectral sequences of (polarizable) mixed Hodge
structures. The compatibility of the classical Leray spectral sequence result in Hodge theory was
already proved by Zucker in [Zuc79] when X is a curve and more generally, for both spectral
sequences, by Saito if L underlies an admissible variation of mixed Hodge structures (see [Sai90b]).
This result has been recovered by de Cataldo and Migliorini with different techniques in [dCM10].

Nearby cycles. The theory developed here also shows that nearby cycles functors applied to perverse
motives produce Nori motives.

Corollary 5.9. Let X be a quasi-projective k-variety, f : X → A1
k a flat morphism with smooth

generic fiber Xη and L be a Q-local system on Xη. If L is motivic (in particular if it is geometric),
then, for every point x ∈ Xσ(k) and every integer i ∈ Z, the Betti cohomology Hi(Ψf (L )x) of the
nearby fiber is canonically a Nori motive over k.
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Proof. The nearby cycles functor ψf := Ψf [−1] is t-exact for the perverse t-structure. Since it exists
in the triangulated category of constructible étale motives (see [Ayo07b]) and the Betti realization
is compatible with the nearby cycles functor by [Ayo10, Proposition 4.9], the universal property
ensures the existence of an exact functor ψM

f : M (Xη) → M (Xσ) and an invertible natural

transformation ratMXσ
ψM
f ≃ ψf rat

M
Xη

.

Let d be the dimension of the generic fiber Xη. Since L is motivic, there exists an object
L in Db(M (Xη)) such that L and ratMXη

(L) are isomorphic. As L [d] is perverse and ratMXη
is

conservative, the complex L[d] belongs to M (Xη). So we conclude that Hi(Ψf (L )x) is the Betti
realization of the Nori motive Hi+1−d(x∗ψM

f L[d]).
�

Exponential motives. The perverse motives introduced in the present paper and their stability under
the four operations could be used also in the study of exponential motives as introduced in Fresán—
Jossen’s book [FJ18]. Indeed, recall that Kontsevich and Soibelman define an exponential mixed
Hodge structure as a mixed Hodge module A on the complex affine line A1

C
such that p∗A = 0,

where p : A1
C
→ Spec(C) is the projection (see the paper [KS11] of Kontsevich and Soibelman).

Their definition can be mimicked in the motivic context and the abelian category of exponential
Nori motives can be defined as the full subcategory of M (A1

k) formed by the objects which have
no global cohomology.

Constructible t-structure. Let us conclude by a possible comparison with Arapura’s construction
from [Ara13]. Let X be a k-variety and consider the following full subcategories of Db(M (X))

cD60 := {A ∈ Db(M (X)) : Hk(x∗MA) = 0, ∀ x ∈ X, ∀ k > 0},

cD>0 := {A ∈ Db(M (X)) : Hk(x∗MA) = 0, ∀ x ∈ X, ∀ k < 0}.

As in 4.6. Remarks of M. Saito’s [Sai90b] (see also [Ara13, Theorem C.0.12]), we can check that
these categories define a t-structure on Db(M (X)).

Let ctM (X) be the heart of this t-structure. Then, the functor ratMX induces a faithful exact
functor from ctM (X) into the abelian category of constructible sheaves of Q-vector spaces on X .
Then, using the universal property of the category of constructible motivesM(X,Q) constructed
by Arapura in [Ara13], we get a faithful exact functor M(X,Q) → ctM (X). Is this functor an
equivalence? If X = Spec k, then both categories are equivalent to the abelian category of Nori
motives, so this functor is an equivalence.

6. Weights

In this section, we will use results on motives and weight structures from Bondarko’s and Hébert’s
papers [Bon14, H1́1]. To apply these references directly in our context, we will make use of the
fact that, if S is a Noetherian scheme of finite dimension, then Ayoub’s category DAct(S) is
canonically equivalent to the category of constructible Bĕılinson motives studied in Cisinski and
Déglise’s book [CD19]. This follows from [CD19, Theorem 16.2.18] and will henceforth be used

without further comment. (Note also that, though the authors of [Bon14, H1́1] have chosen to use
Bĕılinson’s motives, étale motives could have been used.)

6.1. Continuity of the abelian hull. Remember that, in chapter 5 of Neeman’s book [Nee01],
there are four constructions of the abelian hull of a triangulated category. The first one gives a lax
2-functor from the 2-category of triangulated categories to that of abelian categories, but the other
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three constructions give strict 2-functors. If we use the fourth construction, which Neeman calls
D(S) (see [Nee01, Definition 5.2.1]), then the following proposition is immediate.

Proposition 6.1. Let S be a triangulated category, and suppose that we have an equivalence of
triangulated categories S

∼
−→ 2− lim

−→i∈I
Si, where I is a small filtered category.

Then the canonical functor Atr(S)→ 2− lim
−→i∈I

Atr(Si) is an equivalence of abelian categories.

6.2. Étale realization and ℓ-adic perverse Nori motives. Let S be a Noetherian excellent
scheme finite-dimensional scheme, let ℓ be a prime number invertible over S; we assume that S is a
Q-scheme. (By Exposé XVIII-A of [ILO14], the hypotheses above imply Hypothesis 5.1 in Ayoub’s
paper [Ayo14a].) Under this hypothesis, Ayoub has constructed an étale ℓ-adic realization functor
on DAct(S), compatible with pullbacks.

Theorem 6.2. (See [Ayo14a] sections 5 and 10.) Denote by Db
c (S,Qℓ) the category of constructible

ℓ-adic complexes on S. Then we have a triangulated functor Rét
S : DAct(S)→ Db

c (S,Qℓ) for every
S and, for every morphism f : S → S′, with S′ satisfying the same hypotheses as S, we have an
invertible natural transformation

θf : f∗ ◦Rét
Y → R

ét
X ◦ f

∗.

Using results of Gabber (see [Gab04], and also sections 4 and 5 of Fargues’s article [Far09]), we
can construct an abelian category P(S,Qℓ) of ℓ-adic perverse sheaves on S, satisfying all the usual
properties. In particular, we get a perverse cohomology functor pH0

ℓ := pH0 ◦ Rét
S : DAct(S) →

P(S,Qℓ).

Definition 6.3. Let S be as above. The Abelian category of ℓ-adic perverse motives on S is the
Abelian category

M (S)ℓ := Atr(DAct(S),
pH0

ℓ ).

By construction, the functor pH0
ℓ has a factorization

DAct(S)
pH0

M−−−→M (S)ℓ
ratMS,ℓ
−−−→P(S,Qℓ)

where ratMS,ℓ is a faithful exact functor and pH0
M

is a homological functor.

By the universal property of M (S)ℓ, we also get pullback functors between these categories as
soon as the pullback functor between the categories of ℓ-adic complexes preserves the category of
perverse sheaves.

We will use the following important fact: If we fix a base field k of characteristic 0 and only
consider schemes that are quasi-projective over k, then the main theorem (stated in 5.1) stays true
for the categories M (S)ℓ. Of course, we have to replace Db

ct(S) and the Betti realization functor
by Db

c (S,Qℓ) and the étale realization functor in all the statements. Indeed, the proof of the main
theorem, of of the statements that it uses, still work if we use the ℓ-adic étale realization instead
of the Betti realization. The only result that requires a slightly different proof is 3.13: we have to
show that the ℓ-adic realization of Ayoub’s logarithmic motive L og∨n is the local system used in
Beilison’s construction of the unipotent nearby cycle functor (see 1.1 and 1.2 of Beilinson’s [Bei87b]
or Definition 5.2.1 of [Mor18]). As in the proof of 3.13, it suffices to check this for n = 1, and then
it follows from Lemma 11.22 of Ayoub’s [Ayo14a].
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6.3. Mixed horizontal perverse sheaves. Let k be a field and S be a k-scheme of finite type.
Suppose that k is finitely generated over its prime field. We also fix a prime number ℓ invertible
over S. The category Db

m(S,Qℓ) of mixed horizontalQℓ-complexes and its perverse t-structure with
heart Pm(S,Qℓ) (the category of mixed horizontal ℓ-adic perverse sheaves on S) were constructed
in Huber’s article [Hub97] (see also [Mor18, section 2]). We recall the definition quickly and refer
to [Hub97] and [Mor18] for the details. First we consider the category Db

h(S,Qℓ) of horizontal
complexes on S, which is by definition the 2-colimit of the categories Db

c (X ,Qℓ), where X runs
over all flat finite type models of X over regular subalgebras A of k that are of finite type over Z
and have k as their fraction field. There is an obvious functor η∗ : Db

h(S,Qℓ)→ Db
c (S,Qℓ), which is

triangulated and conservative, and a perverse t-structure on Db
h(S,Qℓ) that is characterized by the

fact that η∗ is t-exact. Also, the functor η∗ is fully faithful on the heart of this t-structure ([Mor18,
Proposition 2.6.2]).

We say that an object of Db
h(S,Qℓ) if it extends to a complex K on a model X of X as before

such that all the (ordinary) cohomology sheaves of K are successive extensions of punctually pure
sheaves in the sense of Deligne’s [Del80]. The category Db

m(S,Qℓ) of mixed horizontal complexes is
the full subcategory of Db

h(S,Qℓ) whose objects are mixed complexes. The perverse t-structure on
Db

h(S,Qℓ) restricts to a t-structure on Db
m(S,Qℓ), whose heart is the category Pm(S,Qℓ) of mixed

horizontal perverse sheaves; this last category is a full subcategory of the heart of the perverse
t-structure on Db

h(S,Qℓ), so η
∗ induces a fully faithful functor Pm(S,Qℓ)→P(S,Qℓ).

Now we want to show that the realization functor ratMS,ℓ : M (S)ℓ → P(S,Qℓ) factors through

the fully faithful functor Pm(S,Qℓ)→P(S,Qℓ).
We have a continuity theorem for the categories of étale motives, proved by Ayoub in [Ayo15,

Corollaire 1.A.3] and [Ayo14a, Corollaire 3.22] and by Cisinski–Déglise in [CD19, Proposition 15.1.6]).

Theorem 6.4. Let S be a Noetherian scheme of finite dimension. Suppose that we have S =
lim
←−i∈I

Si, where all the Si are finite-dimensional Noetherian schemes and all the transition maps

Si → Sj are affine. Then the canonical functor 2 − lim
−→i∈I

DAct(Si)→ DAct(S) is an equivalence

of monoidal triangulated categories.

Using the definition of mixed horizontal ℓ-adic complexes, we immediately get the following
corollary.

Corollary 6.5. Let S and ℓ be as in the beginning of this subsection. Then the étale realization
functor DAct(S)→ Db

c (S,Qℓ) factors through a functor DAct(S)→ Db
h(S,Qℓ).

Corollary 6.6. With the notation of the previous corollary, the essential image of the functor
DAct(S) → Db

h(S,Qℓ) is contained in the full subcategory Db
m(S,Qℓ). In particular, the perverse

cohomology functor pH0
ℓ : DAct(S)→P(S,Qℓ) factors through the subcategory Pm(S,Qℓ).

Proof. This follows from the facts that DAct(S) is generated by the Tate twists of motives of
smooth S-schemes (see Definition 15.1.1 and Proposition 15.1.4 of [CD19]) and that mixed hori-
zontal complexes are preserved by direct images and Tate twists (see [Hub97, Proposition 3.2] for
direct images, the stability by Tate twists is easy).

�

Corollary 6.7. The essential image of the realization functor ratMS,ℓ : M (S)ℓ → P(S,Qℓ) is

contained in the subcategory Pm(S,Qℓ).

We will also denote the resulting faithful exact functor M (S)→Pm(S,Qℓ) by ratMS,ℓ.
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Remark 6.8. Suppose that k is not necessarily finitely generated over its prime field. We define
Db

m(S,Qℓ) as the 2-colimit of the categories Db
m(S

′,Qℓ), for S
′ a model of S over a finitely generated

subfield of k. This category inherits a perverse t-structure from the perverse t-structures on the
Db

m(S
′,Qℓ), whose heart we denote by Pm(S,Qℓ). The obvious functor Pm(S,Qℓ)→P(S,Qℓ) is

only exact faithful in general (not necessarily fully faithful), but the the perverse cohomology functor
pH0

ℓ : DAct(S)→P(S,Qℓ) still factors through this functor as in Corollary 6.6 (by Theorem 6.4),
so we get a faithful exact realization functor M (S)ℓ →Pm(S,Qℓ).

6.4. Continuity for perverse Nori motives. Like the triangulated category of motives, the
category of perverse Nori motives satisfies a continuity property.

Proposition 6.9. Let S be a scheme and ℓ be a prime number satisfying the conditions of 6.2.
We assume that S = lim

←−i∈I
Si, where (Si)i∈I is a directed projective system of schemes satisfying

the same conditions as S, and in which the transition maps are affine. We also assume that the
pullback by any transition map Si → Sj preserves the category of perverse sheaves, and that there
exists a ∈ Z such that, if fi : S → Si is the canonical map, then f∗

i [a] preserves the category of
perverse sheaves for every i ∈ I. Under these hypotheses, the functors f∗

i [a] induce a functor

2− lim
−→
i∈I

M (Si)ℓ →M (S)ℓ,

and this functor is full and essentially surjective.
If moreover the canonical exact functor 2 − lim

−→i∈I
P(Si,Qℓ) → P(S,Qℓ) induced by the f∗

i [a]

is faithful, then the canonical functor

2− lim
−→
i∈I

M (Si)ℓ →M (S)ℓ

is an equivalence of abelian categories.

Proof. This follows from 6.1 and 6.4.
�

Corollary 6.10. Let S and ℓ be as above, and suppose also that S is integral. Then, if η is the
generic point of S, the canonical exact functor

2− lim
−→
U

M (U)ℓ →M (η)ℓ,

where the colimit is taken over all nonempty affine open subschemes of S and where the image of
KU ∈ ObM (U)ℓ is KU,η[− dimS], is an equivalence of categories.

Proof. By 6.9, it suffices to check that the similar functor

2− lim
−→
U

P(U,Qℓ)→P(η,Qℓ)

is faithful. Let K be an object of 2 − lim
−→U

P(U,Qℓ) whose image in P(η,Qℓ) is 0, and let U be

a nonempty open affine subscheme of S such that K comes from an object K ′ of P(U,Qℓ). After
shrinking U (which does not change K), we may assume that K ′[− dimS] is a local system. Then
the condition K ′

η[− dimS] = 0 implies that this local system is zero, hence that K = 0.
�
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6.5. Comparison of the different categories of perverse Nori motives. In the next proposi-
tion, we compare the ℓ-adic definition of perverse motives with the one used previously and obtained
via the Betti realization.

Proposition 6.11. Suppose that k is a field of characteristic 0 and that S is quasi-projective over
k.

We write ρℓ for the canonical exact functor Atr(DAct(S)) → P(S,Qℓ) induced by pH0
ℓ . If σ

is an embedding of k into C, then we also have an exact functor ρσ from Atr(DAct(S)) to P(S)
induced by pH0. Then:

(1) If ℓ, ℓ′ are two prime numbers, then Ker ρℓ = Ker ρℓ′ . In particular, we get a canonical
equivalence of abelian categories M (S)ℓ = M (S)ℓ′ .

(2) If σ : k → C is an embedding, then Ker ρℓ = Kerρσ. In particular, we get a canonical
equivalence of abelian categories M (S)ℓ = M (S).

Proof. We first treat the case S = Spec k. If k can be embedded in C, then (2) follows from Huber’s
construction of mixed realizations in Huber’s [Hub00], and (1) follows from (2). In the general case,
(1) follows from the case where k can be embedded in C and from 6.9, applied to the family of
subfields of k that can be embedded in C.

Now we treat the case of a general k-scheme S. As in the first case, (1) follows from (2) and
from 6.9. So suppose that we have an embedding σ : k → C. We prove the desired result by
induction on the dimension of S. The case dimS = 0 has already been treated, so we may assume
that dimS > 0 and that the result is known for all the schemes of lower dimension. We denote
by M 7→ [M ] the canonical functor DAct(S) → Atr(DAct(S)); as DAct(S) is a triangulated
category, this is a fully faithful functor. Let X be an object of Atr(DAct(S)). By construction
of Atr(DAct(S)), there exists a morphism N → M in DAct(S) such that X is the cokernel of
[N ]→ [M ]. Then ρℓ(X) is the cokernel of pH0

ℓ (N)→ pH0
ℓ (M), so ρℓ(X) = 0 if and only pH0

ℓ (N)→
pH0

ℓ (M) is surjective. Similarly, ρσ(X) = 0 if and only if pH0(N) → pH0(M) is surjective.
We can check these conditions on a Zariski open covering of S, so we may assume that S is
affine. Choose a nonempty smooth open subset U of S such that the restrictions to U of ρℓ(M),
ρℓ(N), ρσ(M) and ρσ(N) are all locally constant sheaves placed in degree − dimS. As S is affine,
after shrinking U , we may assume that U is the complement of the vanishing set of a nonzero
function f ∈ O(S). By Proposition 3.1 of Beilinson’s [Bei87b], we have that ρℓ(N) → ρℓ(M)
is surjective if and only if both ρℓ(N)|U → ρℓ(M)|U and pΦM

f ρℓ(N) → pΦM
f ρℓ(M) are, which

is equivalent to the surjectivity of ρℓ(N|U ) → ρℓ(M|U ) and ρℓ(ΦfN) → ρℓ(ΦfM). We have a
similar statement for ρσ. As dim(S − U) < dim(S), we can use the induction hypothesis to reduce
to the case S = U . It suffices to check the result on an étale cover of S, so we may assume
that S has a rational point x. Let i : x → S be the obvious inclusion. As ρℓ(N)[− dimS] and
ρℓ(M)[− dimS] are locally constant sheaves on S, the morphism ρℓ(N) → ρℓ(M) is surjective if
and only if ρℓ(i

∗N [− dimS])→ ρℓ(i
∗M [− dimS]) is, and similarly for ρσ. So we are reduced to the

result on the scheme x, which we have already treated. �

Corollary 6.12. Let k be a field of characteristic 0 and S a quasi-projective scheme over k. We have
a canonical Q-linear abelian category of perverse Nori motives M (S), together with a cohomological
functor pH0

M
: DAct(S)→M (S), with a ℓ-adic realization functor ratMS,ℓ : M (S)→P(S,Qℓ) for

every prime number ℓ, with a Betti realization functor ratMS,σ : M (S)→P(S) for every embedding
σ : k → C, and it has a formalism of the 4 operations, duality, unipotent nearby and vanishing
cycles compatible with all these operations.
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We fix a field k of characteristic zero and a quasi-projective scheme S over k. We first define
weights via the ℓ-adic realizations.

Definition 6.13. Let w ∈ Z. Let K be an object of M (S). We say that K is of weight ≤ w (resp.
≥ w) if ratMS,ℓ(K) ∈ Ob(Pm(S,Qℓ)) is of weight ≤ w (resp. ≥ w) for every prime number ℓ. We
say that K is pure of weight w if it is both of weight ≤ w and of weight ≥ w.

In 6.18, we will a more intrinsic definition of weights that does not use the realization functors.

Definition 6.14. A weight filtration on an object K of M (S) is an increasing filtration W•K on
K such that WiK = 0 for i small enough, WiK = K for i big enough, and WiK/Wi−1K is pure of
weight i for every i ∈ Z.

The next result follows immediately from the similar result in the categories of mixed horizontal
perverse sheaves (see Proposition 3.4 and Lemma 3.8 of Huber’s [Hub97]).

Proposition 6.15. Let K,L be objects of M (S), and let w ∈ Z.

(1) If K is of weight ≤ w (resp. ≥ w), so is every subquotient of K.
(2) If K is of weight ≤ w and L is of weight ≥ w + 1, then HomM (S)(K,L) = 0.

Recall that, if A and B are objects of an abelian category endowed with increasing filtrations
(FiA)i∈Z and (FiB)i∈Z, then a morphism u : A→ B is called compatible (resp. strictly compatible)
with the filtrations if, for every i ∈ Z, we have u(FiA) ⊂ FiB (resp. u(FiA) = u(A) ∩ FiB).

Corollary 6.16. A weight filtration on an object of M (S) is unique if it exists, and morphisms
of M (S) are strictly compatible with weights filtrations. In particular, if an object of M (S) has a
weight filtration, then so do all its subquotients.

6.6. Application of Bondarko’s weight structures. Let S be as in the previous subsection.
We will now make use of Bondarko’s Chow weight structure on DAct(S). Let Chow(S) be the full
subcategory of DAct(S) whose objects are direct factors of finite direct sums of objects of the form
f!QX(d)[2d], with f : X → S a proper morphism from a smooth k-scheme X to S and d ∈ Z.

Then, as shown by Hébert in [H1́1, Theorem 3.3], and also by Bondarko in [Bon14, Theorem 2.1],

there exists a unique weight structure on DAct(S) with heart Chow(S) (see [H1́1, Definition 1.5]
or [Bon14, Definition 1.5] for the definition of a weight structure).

In particular, for every objectK ofDAct(S), there exists an exact triangle A→ K → B
+1
−−→ (not

unique) such that A (resp. B) is a direct factor of a successive extension of objects of Chow(S)[i]
with i ≤ 0 (resp. i ≥ 1).

Proposition 6.17. Every object of M (S) has a weight filtration. Moreover, if S = Spec k and σ
is an embedding of k in C, then the notion of weights of 6.13 coincides with that of Section 10.2.2
of the book [HMS17] of Huber and Müller-Stach.

Proof. We first prove that, if M is an object of Chow(S), then pH0
M

(M) is pure of weight 0 in
our sense, and also in the sense of [HMS17, Section 10.2.2] if S = Spec k with k embeddable in C.
The second statement is actually an immediate consequence of [HMS17, Definition 10.2.4] and of

the motivic Chow’s lemma (see for example [H1́1, Lemma 3.1]). To prove the first statement, by
definition of the weights on Pm(S,Qℓ), we may assume that k is finitely generated over Q; then
the statement follows immediately from [BBD82, 5.1.14] (see the remark on page 116 of [Hub97]).

Then we note that every object of M (S) is a quotient of an object of the form pH0
M
(M), for

M ∈ Ob(DAct(S)) (because this is true for objects of Atr(DAct(S))). So it suffices to prove the
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result for objects in the essential image of pH0
M
. Let M ∈ Ob(DAct(S)), and let K = pH0

M
(M).

Let w ∈ Z. By the first part of the proof, if M is a direct factor of a successive extension of objects
of Chow(S)[i] with i ≤ w (resp i ≥ w + 1), then pH0

M
(M) is of weight ≤ w (resp. ≥ w + 1) in

our sense, and also in the sense of [HMS17] when this applies. In general, using the Chow weight

structure of Bondarko, we can find an exact triangle A → M → B
+1
−−→ such that A (resp. B)

is a direct factor of a successive extension of objects of Chow(S)[i] with i ≤ w (resp i ≥ w + 1).
Applying pH0

M
, we get an exact sequence pH0

M
(A)→ K → pH0

M
(B), with pH0

M
(A) of weight ≤ w

and pH0
M
(B) of weight ≥ w + 1. If we set WwK = Im(pH0

M
(A) → K), then WwK is of weight

≤ w and K/WwK is of weight ≥ w + 1. This defines a weight filtration on K. �

Weights and the related weight filtration so far have been defined and constructed for perverse
motives via the ℓ-adic realizations. As we shall see now, we can also define weights more directly.
Let DAct(S)w≤i be the full subcategory of DAct(S) whose objects are direct factors of successive
extensions of objects of Chow(S)[w] with w ≤ i and consider the Abelian category

M (S)w≤i := Aad(DAct(S)w≤i,
pH0

ℓ ),

for some prime number ℓ. It follows from 6.11 that this category, up to an equivalence, does not
depend on ℓ. Indeed, the universal property provides a commutative diagram (up to isomorphisms
of functors)

DAct(S)w≤i

I

��

// Aad(DAct(S)w≤i)

J

��

̺ℓ

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

DAct(S) //

pH0
ℓ

44
Atr(DAct(S))

ρℓ // Pm(S,Qℓ)

where I is the inclusion and J, ̺ℓ are exact functors. As by constructionM (S)w≤i := Aad(DAct(S)w≤i)/Ker̺ℓ
it suffices to show that Ker ̺ℓ is independent on ℓ. Let A be an object in Aad(DAct(S)w≤i). Since
A belongs to Ker ̺ℓ if and only if J(A) belongs to Kerρℓ our claim follows from 6.11.

The inclusion DAct(S)w≤i ⊆ DAct(S) induces a faithful exact functor

ui : M (S)w≤i →M (S).

Let K be an object in M (S). Given an object (L, α : ui(L)→ K) in the slice category M (S)w≤i/K
we can consider the subobject Imα of K and define WiK to be the union of all such subobjects in
K, that is, we set

WiK := colim
(L,α)∈M (S)w≤i/K

Imα.

This construction is functorial inK (and moreover using the inclusion ofDAct(S)w≤i inDAct(S)w≤i+1

it is easy to see that it defines a filtration on K).

Proposition 6.18. Let K ∈M (S). Then, WiK = WiK, for every integer i ∈ Z.

Proof. As observed in the proof of 6.17, ifM belongs toDAct(S)w≤i, then
pH0

M
(M) is of weight≤ i.

Hence, the functor ui takes its values in the Abelian subcategory of M (S) formed by the objects
of weight ≤ i. As a consequence, for (L, α) in the slice category M (S)w≤i/K, the subobject Imα
of K is of weight ≤ i and therefore WiK ⊆WiK.
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Conversely, there exists an epimorphism e : pH0
M
(M) ։ K where M belongs to DAct(S). By

construction

Wi
pH0

M (M) := Im
(
pH0

M (A)→ pH0
M (M)

)
⊆Wi

pH0
M (M)

where A is an object of DAct(S)w≤i that fits in an exact triangle A→M → B
+1
−−→ such that B is

a direct factor of a successive extension of objects of Chow(S)[w] with w ≥ i+ 1. Therefore, since
the weight filtration on K is the induced filtration (see 6.16), we get

WiK = e(Wi
pH0

M (M)) ⊆ e(Wi
pH0

M (M)) ⊆WiK.

This concludes the proof. �

6.7. The intermediate extension functor. Recall the definition of the intermediate extension
functor, that already appeared in the proof of 5.7.

Definition 6.19. Let j : S → T be a quasi-finite morphism between quasi-projective k-schemes.
We define a functor jM

!∗ : M (S)→M (T ) by

jM
!∗ (K) = Im(H0(jM

! K)→ H0(jM
∗ K)).

Note that, as j is quasi-finite, the functor jM
! is right exact and the functor jM

∗ is left exact.
In particular, the functor jM

!∗ preserves injective and surjective morphisms, but it is not exact in
general.

Proposition 6.20. Let j : S → T be an open immersion, and let w ∈ Z. Then, if K ∈ ObM (S)
is of weight ≤ w (resp. of weight ≥ w, resp. pure of weight w), so is jM

!∗ K.
Also, the functor jM

!∗ is exact on the full abelian subcategory of objects that are pure of weight w.

Proof. It suffices to show these statement for mixed ℓ-adic perverse sheaves. The first statement
follows from [BBD82, 5.3.2] (more precisely, if j is not affine, it follows from [BBD82, 5.1.14 and
5.3.1] ). The second statement follows from [Mor18, Corollary 9.4]. �

6.8. Pure objects. Let us start with the definition of objects with strict support on a given closed
subscheme.

Definition 6.21. Let Z be a closed integral subscheme of S, and denote the immersion Z → S by
i. We say that an object K of M (S) has strict support Z if K|S−Z = 0 and if, for every nonempty

open subset j : U → Z, the adjunction morphism K → (ij)M∗ (ij)∗
M
K is injective and induces an

isomorphism between K and (ij)M!∗ (ij)∗
M
K.

Remark 6.22. For example, ifK|S−Z = 0 and if there exists a smooth dense open subset j : U → Z

such that ratMU (K|U )[− dimU ] (or any ratMU,ℓ(K|U )[− dimU ] for some prime number ℓ) is locally

constant and KZ = jM
!∗ (K|U ), then K has strict support Z. Indeed, this follows from the similar

result for perverse sheaves, which follows from [BBD82, 4.3.2] (note that the proof of this result
does not use the hypothesis that L is irreducible).

Proposition 6.23. (Compare with [BBD82, 5.3.8].) Let K be an object of M (S), and suppose
that K is pure of some weight. Then we can write K =

⊕
Z KZ , where the sum is over all integral

closed subschemes Z of S, each KZ is an object of M (S) with strict support Z, and KZ = 0 for all
but finitely many Z.
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Proof. We prove the result by Noetherian induction on S. If dimS = 0, there is nothing to prove.
Suppose that dimS ≥ 1, and let j : U → S be a nonempty open affine subset of S. After shrinking
U , we may assume that U is smooth and that ratMS (K)[− dimU ] is a locally constant sheaf on U .
Let w be the weight of K. Then [Mor18, Corollary 9.4] implies that jM

∗ j∗
M
K/jM

!∗ j
∗
M
K is of weight

≥ w + 1, so the adjunction morphism K → jM
∗ j∗

M
K factors through a morphism K → jM

!∗ j
∗
M
K.

Similarly, the adjunction morphism jM
! j∗

M
K → K factors through a morphism jM

!∗ j
∗
M
→ K. By

definition of jM
!∗ , the composition jM

!∗ j
∗
M
K → K → jM

!∗ j
∗
M
K is the identity of jM

!∗ j
∗
M
K. So we

have K = jM
!∗ j

∗
M
K ⊕ L, with j∗

M
L = 0. The first summand has strict support U by the remark

above, and L|U = 0, so the conclusion follows from the induction hypothesis applied to L|S−U . �

Theorem 6.24. Let S be as before, and let w ∈ Z. Let M (S)w be the full abelian subcategory of
M (S) whose objects are motives that are pure of weight w.

Then M (S)w is semi-simple.

Proof. By 6.23, we may assume that S is integral, and it suffices to prove the result for the full
subcategory M (S)0w of objects in M (S)w with strict support S itself.

Let η be the generic point of S. By 6.10, we have a full and essentially surjective exact functor
(given by the restriction morphisms) 2− lim

−→U
M (U)→M (η), where the limit is over the projective

system of nonempty affine open subsets U of S. For such a U , we denote by M (U)0w the full
subcategory of M (U) whose objects are motives that are pure of weight w and have strict support
U . By Proposition 6.17, the functor above induces a full and essentially surjective functor 2 −
lim
−→U

M (U)w → M (η)w , and, by 6.23, this is turn gives a full and essentially surjective functor

2 − lim
−→U

M (U)0w → M (η)w . Moreover, if j : U → S is a nonempty open subset, then the exact

functor j∗
M

: M (S)0w → M (U)0w is an equivalence of categories, because it has a quasi-inverse,
given by jM

!∗ . So we deduce that the restriction functor M (S)0w → M (η)w is full and essentially
surjective. But this functor is also faithful, because the analogous functor on categories of ℓ-adic
perverse sheaves is faithful. So M (S)0w →M (η)w is an equivalence of categories, which means that
we just need to show the theorem in the case S = η, i.e. if S is the spectrum of a field.

Now suppose that S = Spec k. Then, by 6.9, M (k)w = 2 − lim
−→k′

M (k′)w, where the limit is

over all the subfields k′ of k that are finitely generated over Q. So it suffices to show the theorem
for k finitely generated over Q. But then we can embed k into C, and the conclusion follows from
[HMS17, Theorem 10.2.7]. �

Definition 6.25. Let K be an object of DbM (X) and w ∈ Z. We say that K is of weight ≤ w
(resp. of weight ≥ w, resp. pure of weight w) if, for every i ∈ Z, the perverse motive HiK is of
weight ≤ w + i (resp. of weight ≥ w + i, resp. pure of weight w + i).

Corollary 6.26. Let K,L be objects of M (S). If K and L are pure of respective weights i and j,
then ExtrM (S)(A,B) = 0 if i < j + r.

Proof. By Lemma 4.5 of M. Saito’s [Sai91], this follows from the existence of the weight filtration
and the fact that it is strictly compatible with morphisms of M (S), and from the semi-simplicity
of pure objects of M (S).

�

Corollary 6.27. (1) There exists a unique weight structure (see [Bon14, Definition 1.5]) on
DbM (S) whose heart is the full subcategory of complexes of weight 0.

(2) Let K,L be objects of DbM (S) and w ∈ Z. If K is of weight ≤ w and L is of weight > w,
then HomDbM (S)(K,L) = 0.
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(3) The weight structure of (1) is transversal to the canonical t-structure on DbM (S) in the
sense of Definition 1.2.2 of Bondarko’s paper [Bon12].

(4) If K ∈ ObDbM (S) is pure of some weight, then K ≃
⊕

i∈Z
HiK[−i].

Proof. To prove (1), we apply part II of Theorem 4.3.2 of [Bon10] to the triangulated category
DbM (S) and the full subcategory A of complexes of weight 0. This subcategory is stable by
finite coproducts and direct summands, and it generates DbM (S). Indeed, to prove the second
statement, it suffices to show that the triangulated subcategory generated by A contains P(S);
but every perverse motives is a successive extension of pure perverse motives (by the existence of
the weight filtration), and, if K is a pure perverse motives, then some shift of K is an A . By
Theorem 4.3.2 of [Bon10], there exists a weight structure on DbM (S) with heart A if and only
if, for every objects K,L of A and every integer n > 0, we have HomDbM (S)(K,L) = 0. As the
functor Hom is cohomological in each variable, we may assume that K and L are concentrated in
one degree, so that there exist objects A and B that are pure of respective weights i and j such
that K = A[−i] and L = B[−j]. Then HomDbM (S)(K,L[n]) = Extn+i−j

M (S) (A,B) is zero by 6.26.

We prove (2). We have HomDbM (S)(K,L) = HomDbM (S)(K[−w], L[−w]). AsK[−w] is of weight
≤ 0 and L[−w] is of weight ≥ 1, the statement follows from Proposition 1.3.3(1) of [Bon10].

Point (3) follows immediately from the existence of the weight filtration on objects of M (S).
We prove(4). Let w be the weight of K. Let i ∈ Z. Then τ≤iK and τ>iK are pure of weight

w, so HomDbM (S)(τ>iK, τ≤iK[1]) = 0 by (3), so the exact triangle τ≤iK → K → τ>iK
+1
−−→ splits.

This implies the statement. �

Theorem 6.28. Let f : X → S be a proper morphism of quasi-projective k-varieties with X
irreducible. Let j : U → X be an open immersion, and K be a perverse motive on U . If K is pure
of weight w, then Hi(fM

∗ jM
!∗ K) is a motivic perverse sheaf that is pure of weight w + i.

Proof. Let us say that L ∈ Db(M (S)) is pure of weight w if HiL is pure of weight w + i for every
i ∈ Z. For such an L, by 6.12, it follows from the Weil conjectures proved by Deligne in [Del80]
that fM

∗ L is pure of weight w (see the remark after [Hub97, Definition 3.3]). Hence, 6.20 ensures
that fM

∗ jM
!∗ K is pure of weight w. This gives the conclusion. �

In particular, this provides (for geometric variations of Hodge structures) an arithmetic proof of
Zucker’s theorem [Zuc79, Theorem p.416] via reduction to positive characteristic and to the Weil
conjectures [Del80, Théorème 2]. More generally, in higher dimension:

Corollary 6.29. Let k be a field embedded into C. Let X be an irreducible proper k-variety and
L be a Q-local system on a smooth dense open subscheme U of X of the form L = Rwg∗QV

where g : V → U is a smooth proper morphism and w ∈ Z is an integer. Then, the intersection
cohomology group IHi(X,L ), for i ∈ Z, is canonically the Betti realization of a Nori motive over
k which is pure of weight i+w. In particular, IHi(X,L ) carries a canonical pure Hodge structure
of weight i+ w.

Proof. Let d be the dimension ofX , π : X → Spec(k) be the structural morphism and j be the inclu-
sion of U inX . As in 5.7, IHi(X,L ) is the Betti realization of the Nori motive Hi−d(πM

∗ jM
!∗ Hw+d(gM

∗ QM
V )),

which is pure of weight w + i by 6.28. �

References

[AGV+73] M. Artin, A. Grothendieck, J. L. Verdier, P. Deligne, and Bernard Saint-Donat, editors. Séminaire de
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motivique. I. Astérisque, (314):x+466 pp. (2008), 2007.
[Ayo07b] Joseph Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde
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[Ayo14b] Joseph Ayoub. L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle,
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[Ver95] Jean-Louis Verdier. Dualité dans la cohomologie des espaces localement compacts. In Séminaire Bour-
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