
HAL Id: hal-03058251
https://hal.science/hal-03058251

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New randomized strategies for the color coding
algorithm

Lucie Pansart, Hadrien Cambazard, Nicolas Catusse

To cite this version:
Lucie Pansart, Hadrien Cambazard, Nicolas Catusse. New randomized strategies for the color coding
algorithm. 24th European Conference on Artificial Intelligence, Aug 2020, Santiago de Compostela,
Spain. �hal-03058251�

https://hal.science/hal-03058251
https://hal.archives-ouvertes.fr


New randomized strategies for the color coding algorithm
Lucie Pansart and Hadrien Cambazard and Nicolas Catusse 1

Abstract. The color coding technique is used to solve subgraph iso-
morphism problems, in particular path problems. One color among
C is randomly assigned to each vertex of the graph and if distinct
colors are given to the vertices of the desired subgraph, it can be
found efficiently by dynamic programming. These two phases are
repeated until the subgraph is found with a high probability, which
can require a large number of iterations. We propose new coloring
strategies that take advantage of the graph structure to increase this
probability and thus reduce the number of iterations. They provide
a guaranteed improvement over the original color coding technique
based on a particular structural parameter related to the bandwidth.
When this parameter is smaller than the number C of colors, we
prove that only C calls to the dynamic program are needed to find
the subgraph.

1 Introduction
Color coding is a randomized algorithm proposed by Alon et al. [3] to
address NP-complete subgraph isomorphism problems. The method
was initially introduced to find simple paths or cycles of limited
length within a given input graph G = (V,E). To briefly illustrate
the technique, consider the L-path problem, i.e., the problem of find-
ing a simple path of L vertices in a given directed graph. The key
idea is to randomly color the vertices of the graph with C ≥ L col-
ors and to seek a colorful path, i.e., a path where all vertices have
distinct colors. On the one hand, the search for a colorful path is sig-
nificantly more efficient than the search for a simple path as there
are C distinct vertex identifiers instead of |V |. On the other hand,
the random coloring might be unlucky and give the same color to at
least two vertices of the path. The two steps are therefore repeated to
ensure that the path is found with a high enough probability.

We encountered a weighted variant of the L-path problem in the
context of the kidney exchange problem (KEP), which packs a given
input graph with K-cycles and L-paths representing exchanges of
kidneys. One of the best integer programming formulations solving
the KEP is exponential and handled with column generation [22].
The pricing subproblem requires to solve a minimum-weighted L-
path problem in a directed and arc-weighted graph. In this situation,
which motivates the present work, many of these L-path problems
must be solved very quickly.

This pricing subproblem is a special case of the Elementary Short-
est Path Problem with Resource Constraints where the resource is
the number of vertices and the constraint is to use exactly L of them.
It is NP-hard [12, 24] but small instances can be solved in practice
(with a dynamic program of complexity O(2|V | · |V |2) [13]). Many
approaches to solve simple path problems consist in relaxing or con-
straining the problem to obtain a smaller dynamic program. The color

1 Univ. Grenoble Alpes, CNRS, G-SCOP, 38000 Grenoble, France, email:
{firstname.lastname}@g-scop.grenoble-inp.fr

coding algorithm is one of them as it constrains the path to have L
distinct colors instead of L distinct vertices. Even then, the dynamic
program, and thus a color coding iteration, can be very costly as it
runs in O(2C · |V |2) time. For this reason, we aim at reducing the
number of iterations needed to find an optimal weighted path.

The color coding technique is a two-phase algorithm: the first
phase colors the graph, the second phase solves the dynamic program
in order to find a best L-path with distinct colors. This second phase
can miss optimal solutions if every best L-path contains two vertices
of the same color. Both from theoretical and practical perspectives,
in all prior works related to color coding, the graph is colored accord-
ing to a discrete uniform distribution: all the colors are equally likely
to be selected for each vertex. To the best of our knowledge, only
one paper addresses the choice of the coloring for a derandomization
purpose [18]. Yet the random distribution used to color the graph is
an efficiency factor. Although it does not influence the runtime com-
plexity of the dynamic program, it can highly reduce the number of
its executions by increasing the chance for an optimal solution to be
colorful.

Our key idea is to bias the coloring in the first phase to increase
the probability that an optimal solution has distinct colors and thus
reduce the number of calls to the dynamic program. These new col-
oring strategies take advantage of the graph structure and provide a
guaranteed improvement over the original color coding technique on
graphs with a particular structural property related to the bandwidth.
In practice, a significant improvement is observed on instances from
our application and from an online benchmark.

We propose to decompose the coloring phase into two steps: or-
dering and coloring, detailed in Section 3. Each step is randomized
with different strategies. A new general coloring strategy that can
be applied for any subgraph isomorphism problem is studied in Sec-
tion 4. Section 5 introduces an ordering strategy for the special case
of connected subgraph isomorphism problems such as path prob-
lems. These two techniques are combined together in an algorithm
described in Section 6 and evaluated experimentally in Section 7.

2 Literature review

The color coding approach was proposed in 1995 by Alon et al. [3].
It has been studied in several papers in which the graph is colored
either with a discrete uniform distribution or with a derandomized
procedure and no other coloring strategy has been proposed, except
in [18]. This is surprising as this algorithm is studied in various do-
mains.

When combined with derandomization [21], color coding can be
used to design deterministic, fixed-parameter tractable (FPT) algo-
rithms. A number of state-of-the-art FPT algorithms rely on color
coding for several fundamental problems related to packing [19],
matching [14, 19], vertex cover [18] or L-path [3, 28]. Several ran-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



domized algorithmic frameworks [30] such as randomized divide-
and-conquer [7], the random separation technique [6] or parallel
fixed-parameter algorithms [4] are also based on color coding.

This technique has also been successfully used in practice, and in
particular in the bioinformatics field (see e.g. [2, 11, 20, 26, 27]). A
typical example is the detection of signaling pathways in protein in-
teraction networks [17]. The problem is cast as a minimum-weighted
L-path problem and practical experiments regarding the implemen-
tation of color coding is reported by Hüffner et al. [17]. In particular,
they analyze the best trade-off between the number of colors (which
controls the number of trials required) and the complexity of the dy-
namic programming step (the runtime of one trial).

Another relevant application for the present paper is the work of
Borndörfer et al. [5] which uses the color coding to solve a path
problem, encountered as a pricing subproblem in the context of line
planning in public transport. The kidney exchange problem can also
be solved with an exponential formulation whose pricing step re-
quires to solve a weighted elementary length constrained path prob-
lem [22]. Actually, exponential integer programming formulations
based on paths are common in the field of transport and planning.
For these formulations, the color coding turns out to be of major
interest to solve the pricing problems. Surprisingly though, this algo-
rithm has received little attention in this context and, to the best of
our knowledge, only [5] uses it in such a situation.

3 The color coding algorithm

In the following, let G = (V,E) be a simple graph, directed or not,
and n = |V |. The color coding method is meant to find any subgraph
H = (VH , EH) with L =

∣∣VH∣∣ in G. The set V is colored with C
colors and if by chance the vertices of H all have distinct colors then
the problem is solved.

A coloring of a subset S of vertices is a tuple c ∈ {1, ..., C}|S|.
There are C|S| colorings of S. Let ci bet the color of vertex i ∈ S.
A coloring c is said to be colorful for the subset S ⊆ V , if
ci 6= cj ∀i 6= j ∈ S. A graph is colored when each vertex of V is as-
signed to a color. It is a randomized procedure and the color assigned
to a vertex follows a probability distribution. Let Ci ∈ {1, ..., C} be
the random variable giving the color of vertex i. A coloring strategy
defines P (Ci = c), ∀i ∈ V and ∀c ∈ {1, ..., C}.

The standard version of the color coding algorithm draws each
color according to a discrete uniform distribution. In this case, de-
noted by unif, the probability for a vertex to get a color is the
same for each color and each vertex: ∀i ∈ V , ∀c ∈ {1, ..., C},
P (Ci = c) = 1

C
. They are C!

(C−L)! colorful colorings for H and
every coloring is equally likely to happen. The probability that H is
colorful can be easily computed and was reported by Alon et al. [3]
in the case L = C.

Property 1. If the graph is colored following the unif strategy,
then P (H is colorful) = C!

(C−L)!CL

This probability does not depend on H , nor on the structure of the
graph or the problem. Our idea is to introduce a bias in the graph
coloring with the purpose to increase the chance that H is colorful.
To address this question, we decompose the coloring of G into two
randomized steps:
• The ordering step, which randomly orders the vertices according

to an ordering strategy.
• The coloring step, which, given the ordering, randomly colors the

vertices according to a coloring strategy.

Ordering step. An ordering x is a permutation of the set
{0, ..., n − 1}. Let xi be the position of vertex i in the ordering.
Note that the ordering begins at position 0. We also refer to x as
a coloring sequence. We propose to randomize the vertex ordering
and define, ∀i ∈ V , Xi ∈ {0, ..., n − 1} the random variable giv-
ing the position of i in the sequence. An ordering strategy defines
a probability distribution for the variable X = (X1, ..., Xn). When
the random variable X follows a discrete uniform distribution each
coloring sequence has the same probability to occur than the others.
A new strategy using the structure of the graph will be presented in
Section 5.

Coloring step We assume that a coloring sequence x has been al-
ready drawn, i.e., Xi = xi ∀i ∈ V . We propose to make the choice
of a color for each vertex i dependent on the previously colored ver-
tices, η(i) = {j ∈ V : Xj < Xi}. Note that |η(i)| = Xi, meaning
that when i has to be colored, Xi vertices are already colored. We
now define a coloring strategy by P (Ci = c|Cj ∀j ∈ η(i)).

Many choices can be made for this distribution. Our idea is to force
the colors to be equally spread in the graph. The next section details
this new strategy and how it affects the probability thatH is colorful.

4 Coloring by intervals
In this section we present a new coloring strategy that aims at spread-
ing the colors uniformly. The idea is to color the ordered vertices
by intervals of size C so that each interval is colorful. For sake of
simplicity assume in this section that n = qC with q ∈ N (the
following results directly adapt when n = qC + r). We divide the
coloring sequence J0;n− 1K into q intervals I1, I2, ..., Iq of size C:
Ii = J(i− 1)C; iC − 1K. I(Xi) denotes the interval containing the
position of i, i.e., Xi ∈ Ik ⇔ I(Xi) = Ik. By slightly abusing the
notation we also write i ∈ Ik.

We propose that the color of a vertex depends only of the col-
ors taken by the other vertices in the same interval. We refer to
this strategy as spread and intentionally eclipse the mathematical
definition of P (Ci = c|Cj ∀j ∈ η(i)) to give a clearer description:
∀I ∈ {I1, ..., In}, ∀(i1, ..., iC) ∈ I , (ci1 , ..., ciC ) is a permutation
of {1, ..., C} chosen with a uniform probability over all the permu-
tations. Two vertices in the same interval thus cannot have the same
color. As a result, since the coloring of two intervals is independent,
the probability that two vertices take distinct colors can be easily
computed.

Property 2. If the coloring step follows the spread strategy, then
∀i, j ∈ V i 6= j:

P (Ci 6= Cj |Xi, Xj) =

{ 1 if I(Xi) = I(Xj)
C − 1
C

otherwise

Probability that H is colorful. Recall that we want to color G
such that VH is colorful. The probability that this event occurs is an
indicator of performance for a coloring strategy. In the unif case,
P (H is colorful) is easily computed and does not depend on an or-
dering. The analysis of the spread strategy is detailed below.

From the property 2, we know that vertices in the same interval
have distinct colors, but in general the vertices of H are likely to
be spread in several intervals. Let VH = {v1, ..., vL} denote the L
vertices of H and thus P (H is colorful) = P (Cv1 6= ... 6= CvL ).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Let Yk be the random variable counting the number of ver-
tices of H in the kth interval Ik. Yk is calculated from the ran-
dom variables Xi as follows: Yk =

∣∣{i ∈ VH : Xi ∈ Ik}
∣∣. Re-

call that q is the number of intervals (n = qC). A realiza-
tion x of the random variable X can be used to compute

y ∈ Y =
{

(y1, ..., yq) ∈ J0, LKq :
q∑
k=1

yk = L

}
. By the law of to-

tal probability, we have:

P (Cv1 6= ... 6= CvL ) =
∑
y∈Y

P (Cv1 6= ... 6= CvL , Y = y) (1)

and

P (Cv1 6= ... 6= CvL , Y = y) = P (Y1 = y1, ..., Yq = yq)

×P
(
Cv1 6= ... 6= CvL

∣∣Y1 = y1, ..., Yq = yq
)

(2)

Let y ∈ Y be a repartition of the vertices of H in the q intervals.
The first term of the product (2) is the probability that Y = y. With
a uniform ordering strategy, it is:

P (Y1 = y1, ..., Yq = yq) =

q∏
k=1

(
C
yk

)
(
n
L

)
The second term of the product (2) is the probability that H is

colorful knowing the repartition is fixed to y.

P
(
Cv1 6= ... 6= CvL

∣∣Y1 = y1, ..., Yq = yq
)

=(
C
y1

)
×
(
C−y1
y2

)
×
(
C−(y1+y2)

y3

)
× ...×

(
C−(y1+...+yq−1)

yq

)
q∏
k=1

(
C
yk

) (3)

Best and worst cases. The best case for this coloring strategy is
when all the vertices of H are in the same interval, as H is then
colorful with a probability of 1.

On the contrary, the worst case for this strategy is when all the
vertices are ordered in different intervals. We denote this event S.
Namely, S := {I(Xvi ) 6= I(Xvj ) ∀vi, vj ∈ VH}. We show that in
this case the spread strategy is equivalent to the unif strategy.

Property 3. P (Cv1 6= ... 6= CvL |S) = C!
(C−L)!CL

Proof. The event S can be defined as “exactly L intervals Ik have
yk = 1”. Using (3), we have:

P (Cv1 6= ... 6= CvL |S) =
(
C
1

)
×
(
C−1

1

)
×
(
C−2

1

)
× ...×

(
C−(L−1)

1

)
L∏
k=1

(
C
1

)
= C!

(C − L)!CL

Thus, the new strategy always improves over the original one. In-
deed, the chance for H to be colorful is always greater or equal in
the spread case than in the unif case. However, as n increases,
S is more likely and spread is more and more equivalent to unif.
This convergence is yet slower as n grows. Figure 1 shows P (S)
depending on n for various L.

Property 4. With a uniform ordering, P (S) −→
n→+∞

1

Proof. Let U =
{

(y1, ..., yq) ∈ {0, 1}q :
q∑
k=1

yk = L

}
be the set

of realizations y such that S happens.
∣∣U∣∣ =

(
q
L

)
=
( n

C
L

)
. Ev-

ery tuple (y) of U is equally likely to happen with probability
L∏

k=1

(C
1)

(n
L) = CL

(n
L) .

P (S) =
∑
y∈U

P (Y1 = y1, ..., Yq = yq) =
∑
y∈U

CL(
n
L

) =
(
n
C

L

)
CL(
n
L

)
=

n
C
× ( n

C
− 1)× ...× ( n

C
− L+ 1)

L!

× CL × L!
n× (n− 1)× ...× (n− L+ 1)

= n× (n× (n− C)× ...× (n− C(L− 1))
L!× CL

× CL × L!
n× (n− 1)× ...× (n− L+ 1)

=
(
n− C
n− 1

)
×
(
n− 2C
n− 2

)
× ...×

(
n− C(L− 1)
n− (L− 1)

)
Each term of this product converges to 1 as n tends to +∞, so the
product converges to 1.

Property 5. The derivative ∂P(S)
∂n

is in O
(

1
n2

)
.

Proof. P (S) =
L−1∏
i=1

(n−iC)
(n−i) =

L−1∏
i=1

(n−iC)

L−1∏
i=1

(n−i)

P (S) is the quotient of two polynomials of the same degree L−1,
so the result is a quotient with one degree less in the numerator. Thus
P (S) = u

v
with u a polynomial of degree at most L−2 and v is still

a polynomial of degree L− 1. The derivative ∂P(S)
∂n

is a polynomial
quotient with a polynomial of degree at most 2L − 4 as numerator
and a polynomial of degree 2L− 2 as denominator. Therefore ∂P(S)

∂n

is in O
(

1
n2

)
.

0 1000 2000 3000 4000 5000

0.
0

0.
5

1.
0

P
(S

)

n

L

5
10
15
20

Figure 1: P(S) with C = L

The spread strategy is at least as good as the unif strategy. For
small n, the improvement is significant but the gap between the two
strategies follows a decreasing function in O( 1

n2 ). As an example,
let L = C = 10: when n = 30, the probability that H is color-
ful increases more than fivefold, and when n = 100 the factor is

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



about 1.6. A major property of our coloring strategy is that some
subsets of vertices (the intervals Ik) are colorful. Thus, if the vertices
of H could be gathered in a single interval, then the spread strat-
egy would always make H colorful. In the next section, we propose
a new ordering that takes advantage of the graph structure to address
this goal.

5 Ordering strategy for connected subgraph
isomorphism problems

The spread coloring strategy is very efficient when the coloring
sequence defined by the ordering strategy puts the vertices of H in
the smallest number of intervals. Even more, an ordering where the
vertices of H belong to a single interval ensures a probability of 1
that H is colorful. This ideal ordering cannot be easily found but we
can define a strategy that orders close to each other two vertices that
may belong to H .

We propose a new strategy dedicated to this purpose when H is
connected. We compute with the Floyd-Warshall algorithm the dis-
tance function d : V × V ⇒ N ∪ {+∞} where d(i, j) is the num-
ber of arcs of a shortest path (with respect to the number of arcs)
between i and j. We define the extended neighborhood γ(i) of ver-
tex i as the set of vertices that may appear in a subgraphH including
i.

Our first idea is to control the maximum difference between the
position of two extended neighbors, defined as ∆ = max

i∈V
j∈γ(i)

|xi − xj |.

VH is contained in a coloring subsequence of size at most ∆. To cre-
ate an ordering that minimizes ∆, we solve the following optimiza-
tion problem:

∆∗ = min ∆ = max
i∈V
j∈γ(i)

|xi − xj |

xi 6= xj ∀i 6= j ∈ V
xi ∈ {0, ..., n− 1} ∀i ∈ V

(4)

This problem is equivalent to the graph bandwidth problem in an
auxiliary graph G′ = (V,E′) with the same set of vertices V but
which contains an edge (ij) if i and j are extended neighbors. For
the L-path problem, we look for a path having L vertices, so L − 1
arcs. In this case the extended neighborhood is defined ∀i ∈ V as
γ(i) = {j ∈ V : d(i, j) < L or d(j, i) < L} and G′ is the L− 1th
power graph of G.

The graph bandwidth problem on G′ aims at labeling the ver-
tices of G′ with distinct integers such that the maximum differ-
ence between the label of two adjacent vertices is minimized. In
our case the label of a vertex i is its position Xi and solving
the bandwidth problem provides a coloring sequence x minimizing
∆ = max

(ij)∈E′
|xi − xj | = max

i∈V
j∈γ(i)

|xi − xj |.

The optimal solution ∆∗ of (4) is called the bandwidth of G′, de-
noted by ϕ(G′). Finding the bandwidth of a graph is an NP-hard
problem [23] for which various algorithms exist, as the widely used
Cuthill-McKee heuristic and its reversed version [9, 16]. Many of
them are heuristics but some exact approaches are able to solve in-
stances of reasonable size (250 nodes). We refer the reader to [29]
for a comprehensive review.

The graph bandwidth problem focuses only on the maximum
difference between the positions of two extended neighbors and
does not control the average difference between them. However,

it could be efficient to move the positions of two extended neigh-
bors away from each other, at the risk of increasing ∆, if that
means many other extended neighbors are contained in a smaller
coloring subsequence. We thus propose to solve a slightly dif-
ferent problem that minimizes the sum of all differences, that is
δ =

∑
(ij)∈E′

|xi − xj | =
∑
i∈V
j∈γ(i)

|xi − xj |. This problem is known as

the (minimum) linear arrangement problem [1] that was proven to be
NP-complete [15].
δ∗ = min δ =

∑
(ij)∈E′

|xi − xj |

xi 6= xj ∀i 6= j ∈ V
xi ∈ {0, ..., n− 1} ∀i ∈ V

In this case, ∆ can be big, but in average the difference between
the positions of two extended neighbors might be small. We there-
fore define a new ordering strategy based on this linear assignment
problem, called la ordering, which constructs an ordering aimed at
minimizing δ. We use a simple local search approach swapping the
vertices in the sequence that we do not detail in the present paper.
This strategy gathers extended neighbors in the coloring sequence
and its quality depends on its running time as the local search is an
anytime algorithm that provides an ordering whenever it is asked.
The longer it runs, the better the ordering, i.e., the smaller δ. Note
that the solution to the linear arrangement problem does not have
to be optimal, even if its quality has an impact on the efficiency of
the coloring. The running time is determined by the user depending
on the algorithm application and the time allocated to the dynamic
program of the second phase.

Even when the positions of VH are close enough, la ordering can-
not guarantee that they belong to the same interval Ik. Indeed, the
size of the position sequence of VH may be smaller than C while be-
ing split into two intervals. In this case and with a standard color cod-
ing, the spread coloring strategy would not find H with a proba-
bility of 1. This motivates the new color coding technique introduced
in the next section.

6 Order-and-shift technique

Given a coloring sequence x and a subgraph H , we can compute
the size of the coloring subsequence containing all the vertices of H:
∆H := max

i∈VH
j∈γ(i)

|xi − xj |. Recall that the spread coloring strategy

colors the vertices of G by intervals of size C. However, even if ∆H

is smaller than C, the coloring subsequence of H can straddle two
coloring intervals, and H can be non colorful.

We introduce a new coloring strategy, called shifted-spread,
making the color coding more expensive (C dynamic programs calls
by iteration) but stronger. We apply C times the spread coloring
while shifting the coloring sequence between each iteration. Thus, if
∆H ≤ C, at least one coloring sequence will put the vertices of H
in a single coloring interval Ik and H will be colorful. As we do not
know H , we cannot compute ∆H , but the algorithm guarantees that
when ∆ ≤ C only one iteration of the color coding algorithm, with
C calls to the dynamic program, is required to find H .

Property 6. With a shifted-spread coloring strategy, if
∆ ≤ C then P (H is colorful) = 1

We saw in Section 4 that the spread strategy gives a significant
improvement for small n which does not scale with n. When com-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



bined with a shifted-spread ordering strategy, this improve-
ment now depends on ∆ rather than n. Indeed, the probability that
H is colorful if G is colored with a shifted-spread strategy is
at least as good as the probability that H is colorful in a graph with
∆ vertices colored with a spread strategy. Algorithm 1 details the
complete la-and-shifted-spread color coding using our or-
dering and coloring strategies.

Algorithm 1 la-and-shifted-spread color coding

Input: #iterations, tmax
apply la ordering within time limit tmax→ x = (x1, ..., xn)
if ∆ ≤ C then #iterations← 1
for 1...#iterations do

apply a shifted-spread coloring:
for k : 1...C do
• color: draw Ci ∀i ∈ V using a spread coloring
• solve: apply an algorithm that finds H if colorful
• shift the ordering: x = (x1+k, ..., xn, x1, ..., xk)

7 Experimental results
We present experimental results for the color coding algorithm
applied to a minimum-weighted L-path problem. This problem
emerged from the pricing step of the column generation framework
solving the kidney exchange problem [22].

7.1 Protocol
Recall that our problem is to find an optimal path of length L in a
weighted directed graph. We want to measure how the coloring of
the first phase impacts the probability to find any optimal path in the
second phase. This happens each time an optimal path is colorful at
the end of the first phase and does not depend on the second phase.
As the performances of the dynamic program are not affected by our
strategies, our experiments focus only on the first phase. Thus, we do
not run the dynamic program and assume that the optimal paths are
known2, constituting the set of paths P . To assert the effectiveness of
the various coloring strategies, we only check if one path among P is
colorful. We execute 10 000 iterations of each strategy and compute
the number of times one of the optimal paths is colorful out of the
10 000 trials. This frequency estimates the probability of the first
phase to be successful.

Choice of the instances. We test our algorithms on two bench-
marks of graphs and with L in {10, 15, 20}.

The first benchmark, denoted by KBEA, contains graphs that
come from the pricing step of our column generation framework
solving the KEP. Initial KEP instances are created using a Saidman-
based generator [25] available at http://www.dcs.gla.ac.
uk/~jamest/kidney-webapp/#/generator using realis-
tic parameters, leading to sparse graphs. The size of the graphs varies
between 68 and 334 vertices. Depending on the two parameters |P|
and L, 18 or 21 instances are solved.

We use another benchmark to analyze our results on different and
structured instances that can be found online for reproducibility pur-
poses. It is composed by graphs designed for a tree-width problem
of the 2016 PACE challenge [10], available at http://bit.ly/

2 actually P is composed by random paths playing the role of optimal paths,
the optimality is not important here

pace16-tw-instances-20160307. We select graphs having
a size between 30 and 3300 vertices and containing enough paths of
the given lengthL. We decompose this benchmark into two parts: the
PACE-exact (up to 600 vertices) and the PACE-heuristic instances
which contains larger instances. Depending on the two parameters
|P| and L, 93 to 97 instances are solved.

Choice of the path set P . As none of the used strategies depends
on the weight function, any path can belong to the set P , so we draw
them randomly in the graph. Their number |P| varies in {3, 10, 50}.

Choice of the algorithms. We compare four strategies:
1. color coding with unif coloring (standard version)
2. color coding with uniform ordering and spread coloring
3. color coding with la ordering and spread coloring
4. la-and-shifted-spread color coding

The point of these experiments is mainly to establish the impact
of the spread coloring strategy and how a good ordering can affect
it. Thus, even if it is known that using more colors than L leads to a
higher chance that H is colorful, we stand in a simpler case where
C = L. For the same reason, the time limit given to the local search
of the la ordering is sufficiently long (5 minutes) to hope for a good
ordering. This time limit can be adapted to fit the need of the various
applications of the color coding. Note that both strategies 3 and 4 use
the same la ordering.

7.2 Analysis
Coloring spread versus unif. The spread coloring (strat-

egy 2) reveals moderately better results than the unif coloring. The
average frequency with which a path of P is found increases from
2.26% to 3.54%. As the ordering does not take profit from any struc-
ture and because of the size of our instances, the benefit of this color-
ing strategy alone is quite small. This is consistent with the analysis
made in Section 4 for large values of n.

la ordering versus uniform ordering. The frequencies with
which at least one path of P is colorful are denoted by fu, f3 and
f4 for strategies 1, 3 and 4 respectively. They estimate the probabil-
ity to find an optimal path within one iteration of the color coding.
The average frequencies on a set of instances are denoted by fu, f3
and f4. We also computed the minimum (resp. average) number of
ordering intervals I needed to cover a path of P , denoted by #Imu
(resp. #Iu) for the uniform ordering and #Imla (resp. #Ila) for la
ordering.

The gain on the frequencies estimates the gain on the probabil-
ity that an optimal path is colorful, which is, equivalently, a gain
on the number of color coding iterations needed to find an optimal
path. We are however interested in the gain on the number of calls to
the costly dynamic program. For the non shifted strategy, each iter-
ation calls only one dynamic program, so g3 = f3

/
fu. On the con-

trary, an iteration of la-and-shifted-spread callsC dynamic
programs, thus, we compute the gain of the normalized frequency
normf4 = f4

/
C and g4 = normf4

/
fu.

Tables 1, 2 and 3 show the aggregated results for the benchmarks
KBEA, PACE-exact and PACE-heuristic respectively: the average
frequency of unif coloring (fu), the average frequency and gain
for la ordering with spread (f3 and g3 ) and the average fre-
quency with its net gain for la-and-shifted-spread (f4 and
g4). They also display the average (over instances) minimum num-
ber of intervals covering a path of P for each ordering (#Imu and

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

http://www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator
http://www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator
http://bit.ly/pace16-tw-instances-20160307
http://bit.ly/pace16-tw-instances-20160307
http://bit.ly/pace16-tw-instances-20160307
http://bit.ly/pace16-tw-instances-20160307


#Imla ). In these tables, # denotes the number of instances of the
benchmark that were tested. We also detail individual results in Ta-
ble 4 for KBEA and PACE-exact benchmarks, L = C = 15 and
|P| = 3 (chosen as examples).

The bold values in Tables 1, 2 and 3, enlighten the significant
gain of our methods in almost every cases, so we can expect a
substantial reduction of the dynamic program executions to find
an optimal path. This gain sometimes reaches several orders of
magnitude, in particular for the PACE-exact benchmark (Table 2).
Note that la-and-shifted-spread gives very high frequen-
cies, but the third strategy has a slightly better net gain and the
shift seems unnecessary. In one configuration (out of 9), even these
high frequencies do not compensate this shifting technique and g4 is
smaller than 1. However, only la-and-shifted-spread pro-
vides the guarantee that a path is found in one iteration if ∆ ≤ C.
Actually, as discussed in Section 5, ∆ might big (see Figure 2),
la-and-shifted-spread still outperforms unif and we can
observe a number of instances with f4 = 1 but ∆ > C in Table 4.
This probability of one occurs when #Imla = 1, i.e., when our order-
ing sufficiently gathered the vertices of one path of P so that one of
the shifts puts them in a single coloring interval. This happens many
times for the PACE-exact benchmark, which explains the good per-
formance of la-and-shifted-spread. The side effect of the
normalization on values bounded by 1 explains the important gap
between g3 and g4 for this benchmark. More generally, when #Imla
is much smaller than #Imu , we observe a significant improvement of
the colorful frequency, for both strategies 3 and 4, since our ordering
clusters the vertices of the paths of P in a small number of intervals.
On the contrary, when #Imla and #Imu are close, our methods be-
have similarly to spread alone since the ordering strategy gathers
the vertices of the paths in almost as many intervals as a uniform or-
dering strategy. When this happens, the gain is attributable only to
spread and remains, therefore, rather small.

|P| L #
uniform ordering la ordering
unif

#Imu
spread shifted-spread #Im

la
fu f3 g3 f4 g4

3
10 21 0.0108 6.1 0.0278 2.6 0.1945 1.8 5.2
15 18 0.0001 7.2 0.0003 2.7 0.0051 2.6 6.3
20 18 3.7E−7 7.2 1E−5 27 0.0002 26.1 6.1

10
10 21 0.034 5.7 0.1088 3.2 0.4537 1.3 4.6
15 18 0.0004 6.5 0.0011 2.4 0.0159 2.4 5.8
20 18 6.7E−6 6.7 2.9E−5 4.3 0.0006 4.7 5.9

50
10 18 0.1571 4.8 0.2015 1.3 0.8918 0.57 4.6
15 18 0.0022 5.8 0.0053 2.4 0.0749 2.2 5.3
20 18 2.6E−5 6.1 0.0002 5.9 0.003 5.7 5.4

Table 1: Results for KBEA

0

200

400

600

0 200 400 600

n

∆

Figure 2: ∆ for each instance of size < 600 with L = 10

|P| L #
uniform ordering la ordering
unif

#Imu
spread shifted-spread #Im

la
fu f3 g3 f4 g4

3
10 40 0.0106 4.8 0.2419 22.8 0.6109 5.8 2
15 39 0.0001 4.8 0.0978 765.2 0.3803 198.3 2
20 39 1E−6 4.4 0.0859 83734 0.2261 11021 2.6

10
10 40 0.0336 4.4 0.4449 13.2 0.8904 2.6 1.7
15 39 0.0004 4.4 0.2435 568.7 0.5133 79.9 1.8
20 39 4.4E−6 4.2 0.1653 37184 0.3021 3399 2.3

50
10 39 0.1308 3.9 0.7907 6 0.9953 0.76 1.4
15 38 0.0019 4.2 0.4667 248.9 0.7251 25.8 1.7
20 36 1.9E−5 4.2 0.1954 10243 0.425 1114 2.1

Table 2: Results for PACE-exact

|P| L #
uniform ordering la ordering
unif

#Imu
spread shifted-spread #Im

la
fu f3 g3 f4 g4

3
10 55 0.0109 5.8 0.0187 1.7 0.1651 1.5 5
15 52 0.0001 6.3 0.0006 4.5 0.0077 4.1 5.6
20 52 1.2E−6 6.3 3.8E−5 33 0.0007 29 5.7

10
10 55 0.0355 5.3 0.0597 1.7 0.4327 1.7 4.5
15 52 0.0004 5.9 0.0019 4.3 0.0262 3.9 5.1
20 52 4.7E−6 6.1 0.0001 22.8 0.0021 22.3 5.3

50
10 55 0.1635 4.7 0.2568 1.6 0.921 0.66 4.1
15 52 0.0022 5.4 0.0089 4 0.1169 3.5 4.6
20 52 2.8E−5 5.5 0.0006 20.1 0.0111 20 4.9

Table 3: Results for PACE-heuristic

8 Conclusion

This paper introduced a new framework for the color coding ap-
proach including a new coloring strategy and a new ordering strategy.
The coloring strategy significantly improves the probability to find
a subgraph for small graphs by spreading colors uniformly. When
combined with the new ordering strategy based on the graph struc-
ture, the proposed algorithm dominates the original color coding, as
it preserves the improvement of the coloring strategy in graph with
small ∆, a parameter related to the bandwidth.

The complete framework also includes a shifting technique that
guarantees to find an optimal solution with only C calls to the dy-
namic program when the ordering step makes ∆ bounded by C.
With or without the shifting, a randomized color coding approach us-
ing our algorithm needs far fewer calls to the dynamic programming
step to expect the same chance to obtain an optimal solution than
in the standard version using a uniform coloring. These algorithms
were tested on realistic instances of the kidney exchange problem,
an application domain widely studied in recent years [8], but also on
graphs coming from structural problems [10]. Similar results can be
expected for graphs from other domains, particularly if the graphs
are sparse. We now intend to investigate the consequences of our
strategies for derandomization purposes.

ACKNOWLEDGEMENTS

We would like to thank our colleague Louis Esperet for his precious
advices and his hint about the graph bandwidth, as well as the three
anonymous reviewers who helped us improve this paper.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



uniform ordering la ordering
unif #Iu #Imu

spread shift ∆ #Ila #Imlainstance n m d fu f3 f4

K
B

E
A

-r
ea

lis
tic

fin
al

100-10-4-l12 112 731 0.059 0.0001 5.7 5 0.0004 0.0074 78 5 5
100-25-4-l12 134 834 0.047 0.0001 6 5 0.0004 0.0063 84 6 5
100-5-4-l12 106 679 0.061 0.0001 5 5 0.0007 0.0112 69 4.7 3
250-10-4-l12 279 4652 0.06 0.0001 9.7 9 0.0002 0.0029 238 10.7 8
250-25-4-l12 334 4670 0.042 0.0002 11 9 0.0001 0.0028 262 10.3 8
250-5-4-l12 264 4524 0.065 0.0001 9.7 9 0.0002 0.0032 230 9.3 8

fir
st

100-10-4-l12 112 731 0.059 0.0002 5.7 5 0.0005 0.0068 78 5 4
100-25-4-l12 134 834 0.047 0.0001 7 7 0.0005 0.0073 84 5.3 4
100-5-4-l12 106 679 0.061 0.0001 5 5 0.0007 0.0078 69 4.3 4
250-10-4-l12 279 4652 0.06 0.0001 9.7 9 0.0002 0.0026 238 10.7 9
250-25-4-l12 334 4670 0.042 0.0002 9.7 9 0.0002 0.0029 262 9.7 8
250-5-4-l12 264 4524 0.065 0.0001 10.3 9 0.0002 0.003 230 9.3 9

m
id

dl
e

100-10-4-l12 112 731 0.059 0.0002 5.7 5 0.0004 0.0059 78 5.3 5
100-25-4-l12 134 834 0.047 0.0002 6.3 6 0.0003 0.0068 84 5.7 5
100-5-4-l12 106 679 0.061 0.0001 5 5 0.0005 0.0063 69 5 4
250-10-4-l12 279 4652 0.06 0.0001 8.7 8 0.0002 0.0026 238 11 8
250-25-4-l12 334 4670 0.042 0.0001 11.3 10 0.0002 0.0025 265 11 8
250-5-4-l12 264 4524 0.065 0.0001 9.3 9 0.0002 0.0031 230 8.7 8

PA
C

E
-e

xa
ct

-e
as

y

co
nt

ik
i

cxmac-input-packet 91 284 0.035 0.0002 6 6 0.0022 0.0183 90 4 3
dhcpc-dhcpc-init 35 102 0.086 0.0001 3 3 0.1364 1 20 2 1
httpd-cfs-send-file 45 140 0.071 0.0001 3 3 0.0016 0.0219 44 3 3
ifft-ifft 173 532 0.018 0.0002 9 7 0.0009 0.0138 143 4 3
ircc-list-channel 71 222 0.045 0.0001 4.7 4 0.0265 0.0776 70 3.7 3
lpp-send-packet 117 356 0.026 0.0001 6.3 6 0.14 1 116 2.7 1
polite-announcement-send-timer 32 93 0.094 0.0001 2.3 2 0.0578 1 23 2 1
powertrace-add-stats 47 140 0.065 0.0001 3.3 3 0.0097 0.0627 46 2.7 2
powertrace-powertrace-print 324 969 0.009 0.0001 10.3 10 0.0064 1 162 2.3 1
profile-profile-episode-start 32 95 0.096 0.0001 2.7 2 1 1 29 2 1
psock-psock-generator-send 62 197 0.052 0.0001 2 3 0.0012 0.0155 61 3.7 3
rudolph1-rudolph1-send 31 88 0.095 0.0002 3 3 1 1 30 4 1
shell-shell-register-command 43 132 0.073 0.0001 3 3 0.0043 0.0338 42 2.7 2
shell-collect-view-process-thread

62 185 0.049 0.0001 4.7 4 0.0046 1 54 2.7 1
-collect-view-data-process
shell-rime-recv-collect 63 190 0.049 0.0001 4.3 4 0.0034 0.357 50 2 2
shell-rime-ping-recv-mesh 48 141 0.062 0.0001 3.7 3 0.1345 0.3154 47 3 2
tcpip-eventhandler 99 322 0.033 0.0001 6 5 0.0018 1 95 3.3 1
uip-neighbor-uip-neighbor-add 68 209 0.046 0.0001 4.7 4 0.002 0.0247 57 3 2
uip-over-mesh-recv-data 86 261 0.036 0.0002 5.7 5 0.0195 1 43 2.3 1
webclient-senddata 109 326 0.028 0.0001 7.3 6 0.0117 0.0521 72 2.3 2

fu
zi

x

devf-fd-transfer 120 377 0.026 0.0001 6.7 6 0.0038 0.0697 119 2.3 2
devio-kprintf 70 225 0.047 0.0002 5 5 0.0005 0.009 69 4.7 4
difftime-difftime 75 220 0.04 0.0001 4.7 4 0.0647 1 37 2 1
fgets-fgets 54 169 0.059 0.0002 4 4 0.0007 0.01 53 4 3
filesys-filename 46 141 0.068 0.0001 3 3 0.1343 0.3535 45 3 2
filesys-getinode 53 166 0.06 0.0001 4 4 0.0029 0.0345 52 3.3 2
filesys-i-open 130 415 0.025 0.0001 8.7 8 0.004 0.0539 129 3 2
getpass–gets 32 101 0.102 0.0001 3 3 0.0041 0.0701 31 2.7 2
malloc—insert-chunk 105 336 0.031 0.0001 6 6 0.0008 0.0182 104 4.7 4
process-getproc 33 102 0.097 0.0002 2.3 2 0.0022 0.0602 32 3 2
ran-rand 47 142 0.066 0.0001 4 4 0.0214 1 23 2 1
regexp-regcomp 119 376 0.027 0.0001 7.3 7 0.0007 0.0126 116 4 3
se-ycomp 84 275 0.039 0.0001 5.3 5 0.0009 0.0112 83 3.7 3
stat-statfix 53 154 0.056 0.0001 4 4 1 1 26 1.7 1
tty-tty-read 124 397 0.026 0.0001 6.7 6 0.0031 1 123 3 1

stdlib-sincoshf 111 344 0.028 0.0002 7 6 0.0016 0.0342 98 3.3 2
PACE-exact-hard-DoubleStarSnark 31 120 0.129 0.0001 12 11 0.0004 0.0051 30 6.3 4
PACE-exact-hard-contiki-dhcpc-handle-dhcp 277 902 0.012 0.0001 2 2 0.0046 0.0701 270 2 2
PACE-exact-hard-fuzix-vfscanf-vfscanf 588 1923 0.006 0.0001 12 12 0.0007 0.0268 584 4.7 2

Table 4: Results for L = C = 15 and |P| = 3
n = |V |, m = |E| and d = m

n(n−1) is the density of the graph G = (V,E)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



References

[1] D Adolphson and T Ch Hu, ‘Optimal linear ordering’, SIAM Journal
on Applied Mathematics, 25(3), 403–423, (1973).

[2] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdi-
ari, and S. Cenk Sahinalp, ‘Biomolecular network motif counting and
discovery by color coding’, Bioinformatics, 24, i241–i249, (2008).

[3] Noga Alon, Raphael Yuster, and Uri Zwick, ‘Color-coding’, Journal of
the ACM (JACM), 42(4), 844–856, (1995).

[4] Max Bannach, Christoph Stockhusen, and Till Tantau, ‘Fast paral-
lel fixed-parameter algorithms via color coding’. arXiv preprint
arXiv:1509.06984, 2015.

[5] Ralf Borndörfer, Martin Grötschel, and Marc E Pfetsch, ‘A column-
generation approach to line planning in public transport’, Transporta-
tion Science, 41(1), 123–132, (2007).

[6] Leizhen Cai, Siu Man Chan, and Siu On Chan, ‘Random separation:
A new method for solving fixed-cardinality optimization problems’, in
International Workshop on Parameterized and Exact Computation, pp.
239–250. Springer, (2006).

[7] Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan
Richter, Peter Rossmanith, Sing-Hoi Sze, and Fenghui Zhang, ‘Ran-
domized divide-and-conquer: Improved path, matching, and packing
algorithms’, SIAM Journal on Computing, 38(6), 2526–2547, (2009).

[8] COST. European network for collaboration on kidney exchange
programmes. http://www.cost.eu/COST_Actions/ca/
CA15210, 2016.

[9] Elizabeth Cuthill and James McKee, ‘Reducing the bandwidth of sparse
symmetric matrices’, in Proceedings of the 1969 24th national confer-
ence, pp. 157–172. ACM, (1969).

[10] Holger Dell, Thore Husfeldt, Bart MP Jansen, Petteri Kaski, Christian
Komusiewicz, and Frances A Rosamond, ‘The first parameterized algo-
rithms and computational experiments challenge’, in 11th International
Symposium on Parameterized and Exact Computation (IPEC 2016).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, (2017).

[11] Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna,
and Roded Sharan, ‘Qnet: a tool for querying protein interaction net-
works’, Journal of Computational Biology, 15(7), 913–925, (2008).

[12] Mosh Dror, ‘Note on the complexity of the shortest path models for
column generation in vrptw’, Operations Research, 42(5), 977–978,
(1994).

[13] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille
Gueguen, ‘An exact algorithm for the elementary shortest path prob-
lem with resource constraints: Application to some vehicle and rout-
ing problems’, Networks: An International Journal, 44(3), 216–229,
(2004).

[14] Michael R Fellows, Christian Knauer, Naomi Nishimura, Prabhakar
Ragde, F Rosamond, Ulrike Stege, Dimitrios M Thilikos, and Sue
Whitesides, ‘Faster fixed-parameter tractable algorithms for matching
and packing problems’, in European Symposium on Algorithms, pp.
311–322. Springer, (2004).

[15] Michael R Garey, David S Johnson, and Larry Stockmeyer, ‘Some sim-
plified np-complete problems’, in Proceedings of the sixth annual ACM
symposium on Theory of computing, pp. 47–63. ACM, (1974).

[16] J Alan George, ‘Computer implementation of the finite element
method’, Technical report, Stanford University, Computer Science De-
partment, (1971).

[17] Falk Hüffner, Sebastian Wernicke, and Thomas Zichner, ‘Algorithm en-
gineering for color-coding with applications to signaling pathway de-
tection’, Algorithmica, 52(2), 114–132, (2008).

[18] Joachim Kneis, Alexander Langer, and Peter Rossmanith, ‘Derandom-
izing non-uniform color-coding I’, Technical report, RWTH Aachen -
Department of Computer Science, (08 2011).

[19] Ioannis Koutis, ‘A faster parameterized algorithm for set packing’, In-
formation processing letters, 94(1), 7–9, (2005).

[20] Itay Mayrose, Tomer Shlomi, Nimrod D Rubinstein, Jonathan M Ger-
shoni, Eytan Ruppin, Roded Sharan, and Tal Pupko, ‘Epitope mapping
using combinatorial phage-display libraries: a graph-based algorithm’,
Nucleic acids research, 35(1), 69–78, (2006).

[21] Moni Naor, Leonard J Schulman, and Aravind Srinivasan, ‘Splitters and
near-optimal derandomization’, in Proceedings of IEEE 36th Annual
Foundations of Computer Science, pp. 182–191. IEEE, (1995).

[22] Lucie Pansart, Hadrien Cambazard, and Nicolas Catusse Gautier Stauf-
fer, ‘Column generation for the kidney exchange problem’, in 12th In-
ternational Conference on MOdeling, Optimization and SIMulation -

MOSIM18 - June 27-29 2018 Toulouse - France ”The rise of connected
systems in industry and services”, (2018).

[23] Ch H Papadimitriou, ‘The np-completeness of the bandwidth minimiza-
tion problem’, Computing, 16(3), 263–270, (1976).

[24] Benjamin Plaut, John P Dickerson, and Tuomas Sandholm, ‘Hardness
of the pricing problem for chains in barter exchanges’. arXiv preprint
arXiv:1606.00117, 2016.

[25] Susan L Saidman, Alvin E Roth, Tayfun Sönmez, M Utku Ünver, and
Francis L Delmonico, ‘Increasing the opportunity of live kidney dona-
tion by matching for two-and three-way exchanges’, Transplantation,
81(5), 773–782, (2006).

[26] Jacob Scott, Trey Ideker, Richard M Karp, and Roded Sharan, ‘Effi-
cient algorithms for detecting signaling pathways in protein interaction
networks’, Journal of Computational Biology, 13(2), 133–144, (2006).

[27] Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan, ‘Qpath:
a method for querying pathways in a protein-protein interaction net-
work’, BMC bioinformatics, 7(1), 199, (2006).

[28] Dekel Tsur, ‘Faster deterministic parameterized algorithm for k-path’.
arXiv preprint arXiv:1808.04185, 2018.

[29] Chen Wang, Chuan Xu, and Abdel Lisser, ‘Bandwidth minimization
problem’, in 10th International Conference on MOdeling, Optimiza-
tion and SIMulation - MOSIM14 - November 5-7 2014 Nancy - France
”From linear economy to circular economy.”, (2014).

[30] Meirav Zehavi, ‘Mixing color coding-related techniques’, in
Algorithms-ESA 2015, 1037–1049, Springer, (2015).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

http://www.cost.eu/COST_Actions/ca/CA15210
http://www.cost.eu/COST_Actions/ca/CA15210

	Introduction
	Literature review
	The color coding algorithm 
	Coloring by intervals
	Ordering strategy for connected subgraph isomorphism problems
	Order-and-shift technique 
	Experimental results 
	Protocol
	Analysis

	Conclusion

