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Tangled Program Graph (TPG) is a reinforcement learning technique based on genetic programming concepts. On state-of-the-art
learning environments, TPGs have been shown to offer comparable competence with Deep Neural Networks (DNNs), for a fraction of
their computational and storage cost. This lightness of TPGs, both for training and inference, makes them an interesting model to
implement Artificial Intelligences (AIs) on embedded systems with limited computational and storage resources.

In this paper, we introduce the Gegelati library for TPGs. Besides introducing the general concepts and features of the library,
two main contributions are detailed in the paper: 1/ The parallelization of the deterministic training process of TPGs, for supporting
heterogeneous Multiprocessor Systems-on-Chips (MPSoCs). 2/ The support for customizable instruction sets and data types within the
genetically evolved programs of the TPG model. The scalability of the parallel training process is demonstrated through experiments
on architectures ranging from a high-end 24-core processor to a low-power heterogeneous MPSoC. The impact of customizable
instructions on the outcome of a training process is demonstrated on a state-of-the-art reinforcement learning environment.
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1 INTRODUCTION

In less than a decade, Artificial Intelligences (AIs) powered by Deep Neural Networks (DNNs) have outperformed
and replaced man-made algorithms in many applicative domains, from computer vision [5] to Natural Language
Processing (NLP) [4]. This sudden breakthrough of DNNs is largely due to the availability of affordable and easily
programmable hardware offering important computing power, such as Graphics Processing Units (GPUs) [12]. Powered
by the ever-increasing computing power of commercial chips, the current race for omnipotent AIs leads to the creation
of more and more complex DNNs where millions [5] to hundreds of billions [4] parameters are needed.

Conversely to the increasing computational complexity of DNNs, the need for lightweight AIs is also growing.
Indeed, the ubiquity of Internet of Things (IoT) devices, and the tremendous amount of data they generate [6], call for
new paradigms where data processing is performed on-site, close to the data producer. The processing of data by AIs
on embedded IoT devices is not compatible with the use of compute, memory and power-hungry DNNs. A common
way to create lightweight AIs is to exploit the resilience of DNNs to approximation, and to simplify them as much as
possible while maintaining their accuracy to acceptable levels. Pruning techniques, customizable data precision, and
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approximate computing techniques are examples of techniques for reducing DNNs complexity. An alternative way to
create lightweight AIs is to develop new machine learning techniques that rely on light-by-construction models, such
as the TPG model studied in this paper.

TPG, which stands for Tangled Program Graph, is a machine learning model proposed by Kelly and Heywood in [10].
Building on state-of-the-art genetic programming techniques, Tangled Program Graphs (TPGs) are grown from scratch
for each learning environment in which they are trained. Hence, the topology and the complexity of the TPG adapt
themselves to the complexity of the learned task, without requiring an expert to select an appropriate network structure.
In recent works [8, 10, 11], TPGs have proven to be a very promising model for building AIs, being competitive with
state-of-the-art DNNs for a fraction of their computation and storage cost, both for training and inference.

This paper introduces Gegelati1, an open-source library for the learning and inference of AIs modeled with TPGs.
The objective of Gegelati, coded in C++, is to foster the development of efficient, lightweight and portable AIs,
supporting both general-purpose and embedded hardware. The modular structure of the library fosters its extensibility
and customizability to ease its evolutions and its adaptations for new learning tasks.

The principles of TPG-based AIs and related works are presented in Section 2. Section 3 presents the Gegelati library.
Two distinctive features of Gegelati are detailed in this section. First, the parallel, scalable, and yet deterministic
training of TPGs on heterogeneous multicore architectures is introduced in Section 3.1. Second, the support for
customizable instruction sets for easing the training of TPGs in diverse learning environments is detailed in Section 3.2.
Experiments on various learning environments are presented in Section 4, demonstrating the scalable performance and
the customizability of the library. Finally, Section 5 concludes this paper.

2 TANGLED PROGRAM GRAPHS

The TPG model studied in this paper, which builds on technique from the genetic programming domain, was introduced
by Kelly and Heywood [10] as a reinforcement learning technique. Principles of reinforcement learning and genetic
programming are presented in Section 2.1, and the TPG model is detailed in Section 2.2.

2.1 Background: Reinforcement Learning and Genetic Programming

Reinforcement learning is a branch of machine learning techniques where artificial intelligence learns, through trial
and error, how to interact with an environment. In reinforcement learning, artificial intelligence, called the learning
agent, observes the current state of its learning environment, and interacts with it trough a finite set of actions. As a
result of these actions, or because of external phenomena such as time or physics, the state of the learning environment
evolves. By observing the constantly evolving state of the environment, the learning agent has the possibility to react
and to build a meaningful sequence of actions. For the agent to learn which sequences of actions are useful, an additional
reward mechanism is implemented. By rewarding useful behavior of the learning agent, and penalizing harmful or
useless behavior, this reward mechanism helps the learning agent select the most appropriate behavior for each new
experience. Although TPGs have originally been developed for reinforcement learning purposes, the possibility to
adapt them for other kinds of learning environments has already been demonstrated [11].

Genetic programming is a subset of machine learning techniques that mimics the natural selection evolution
process to breed programs for a selected purpose. The iterative learning process of genetic programming can be
summarized in four steps: 1/ Create an initial population of 𝑛 ∈ N∗ random programs. Then, iteratively: 2/ Evaluate the

1Generic Evolvable Graphs for Efficient Learning of Artificial Tangled Intelligence (Gegelati)
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Fig. 1. Semantics of the Tangled Program Graphs (TPGs)

fitness of these programs against the learning environment. 3/ Discard the𝑚 < 𝑛,𝑚 ∈ N∗ programs of the population
with the worse fitnesses. 4/ Recreate𝑚 new programs from remaining programs by using genetic operations, like
mutations or crossovers. As detailed in [8, 10], TPGs add a compositional mechanism to this genetic learning process,
which favors the emergence of stable clusters of useful programs by building a hierarchical decision structure.

2.2 TPG: Model and Learning Algorithm

The semantics of the Tangled Program Graph (TPG) model, depicted in Figure 1, consists of three elements
composing a direct graph: programs, teams and actions. The teams and the actions are the vertices of the graph, teams

being internal vertices, and actions being the leaves of the graph. The programs, associated to the edges of the graph
that each connects a source team to a destination team or action vertex. Self-loops, that is an edge connecting a team to
itself, are not allowed in TPGs.

42.0e

Fig. 2. Program from a TPG. On the left, the learning environment state

fed to the program. In the middle, the sequence of instructions of the

program. On the right, the result produced by the program.

From afar, a program can be seen as a black box that
takes the current state of the learning environment
as an input, processes it, and produces a real number,
called a bid, as a result. In more detail, a program

is a sequence of simple arithmetic instructions, like
additions or exponents. As depicted in Figure 2, each
instruction takes as an operand either data coming
from the observed learning environment, or the value
stored in a register by a previous instruction. The last
value stored in a specific register, generally called R0,
is the result produced by the program.

The execution of a TPG starts from its unique root team, when a new state of the environment becomes available.
All programs associated to outgoing edges of the root team are executed with the current state of the environment as
their input. Once all programs have completed their execution, the edge associated to the largest bid is identified, and the
execution of the TPG continues following this edge. If another team is pointed by this edge, its outgoing programs are
executed, still with the same input state, and the execution continues along the edge with the largest bid2. Eventually,

2If a team is visited several times, previously taken edges are ignored to avoid infinite loops.
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the edge with the largest bid leads to an action vertex. In this case, the action is executed by the learning agent, a new
resulting state of the environment is received, and the TPG execution restarts from its root team.

The genetic evolution process of a TPG relies on a graph with several root teams. The initial TPG created for
the first generation only contains root teams whose outgoing edges each lead directly to an action vertex. At a given
generation of the learning process, each root team of the TPG represents a different policy whose fitness is evaluated.
Evaluating a root team consists of executing the TPG stemming from it a fixed number of times, or until a terminal state
of the learning environment is reached, like a game-over in a video game. The rewards obtained after evaluating each
root team of the TPG are used by the genetic evolution process. Worst-fitting root teams, which obtained the lowest
rewards, are deleted from the TPG.

To create new root teams for the next generation of the evolution process, randomly selected remaining teams from
the TPG are duplicated with all their outgoing edges. Then, these new edges undergo a random mutation process,
possibly altering their destination vertex, and modifying their programs by adding, removing, swapping, and changing
their instructions and operands. Surviving root teams from previous generations may become the destination of an edge
added during the mutation process, thus becoming internal vertices of the TPG. This mutation mechanism favors the
emergence of long-living valuable subgraphs of connected teams. Indeed, useful teams contributing to higher rewards
have a greater chance of becoming internal vertices of the TPG which can not be discarded unless they become root
teams again. Hence, complexity is added to the TPG adaptively, only if this complexity leads to better rewards for the
learning agent. A detailed description of this evolution process can be found in [8].

The capabilities of TPGs have been extensively demonstrated [8, 10] on the 55 video games from the Arcade
Learning Environment (ALE) [3]. In this learning environment, the adaptive complexity leads to TPG with diverse
sizes, depending on the complexity of the strategies developed to play each game. For example, there are two orders of
magnitude between the smallest and largest networks built within these learning environments. On the performance
side, TPGs have been shown to reach a level of competency comparable with state-of-the-art deep-learning techniques
on ALE games, for a fraction of their computational and storage cost. Compared to state-of-the-art techniques, TPGs
reach comparable competency with one to three orders of magnitude less computations, and two to ten orders of
magnitude less memory needed to store their inference model. Recently, an extension of the TPG model supporting
continuous action space was proposed in order to target new learning environments, like time-series predictions [11].

Implementations of learning frameworks for TPG, coded in C++, Java and Python, can be found in open-
source repositories. The main motivations behind the creation of the Gegelati library is the desire to have an efficient,
embeddable, portable, parallel and deterministic library. Because of the efficiency and embeddability objectives, C++ was
a natural choice for the development of Gegelati. Previous open-source C++ implementations, including the reference
C++ code from Kelly [10], were neither parallel nor deterministic. The creation of a new library from scratch was
further motivated by the low code quality of existing C++ implementation, notably due to a lack of code documentation
and a monolithic code.

The purpose of this paper is not to advocate the learning efficiency of TPGs against other machine learning
techniques, which was already done in [8, 10]. Instead, this paper intends to present the original contributions for
creating a customizable, scalable and deterministic implementation of TPGs.

3 GEGELATI: PARALLEL, EFFICIENT AND EMBEDDABLE LIBRARY FOR TPGS

Gegelati is an open-source framework, developed as a C++ library, for training and executing TPGs. From its inception,
the Gegelati library has been conceived to foster its adaptability to diverse learning environments, and its portability to
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various architectures, without sacrificing its performance. To this purpose, two original contributions have be integrated
to the library: the parallelization of the deterministic learning process, presented in Section 3.1; and the support for
customizable instructions, detailed in Section 3.2. An overview of additional features of the library is presented in
Section 3.3.

3.1 Deterministic Parallelism and Portability

What are the motivations? Portability of the Gegelati library enables using it both on general-purpose and embedded
architectures. Indeed, when training a learning agent intended to run on an embedded system, a common design
process is to prototype the agent first on a general-purpose processor before embedding it on the embedded target. The
portability also makes it possible to train a learning agent offline on a high-performance computing architecture, before
deploying it on a less performing architecture for inference.

Parallelism of the learning process is an essential feature to accelerate the training of new learning agents, which
fosters the adoption of new machine learning techniques. Indeed, the breakthrough of deep-learning models is largely
due to the acceleration of their training process with GPUs [12]. Support for parallel computations is useful for general-
purpose and high-performance computing architectures, but also for embedded systems which nowadays widely
integrate heterogeneous Multiprocessor Systems-on-Chips (MPSoCs).

Determinism of a learning process is the property that ensures that given a set of initial conditions, the learning
process will always end with the same result. Determinism can only be obtained under the assumption that the state of
the learning environment is itself changing deterministically, solely depending on the sequence of actions applied to it.
Determinism is a key feature, especially for a pseudo-stochastic learning process such as the training of TPGs. Indeed,
the result of training may partially depend on luck, which is exactly why being able to deterministically reproduce a
result is crucial.

The determinism is antagonistic with the parallelism and portability objectives, and with the stochastic nature of the
learning process, which makes all these objectives challenging to implement jointly. Indeed, parallelism is by nature a
source of non-determinism as the simultaneity of computations accessing and modifying shared resources, often in an
unknown order, tends to produce variable results.

How does the deterministic and scalable parallelism work? During the learning process of TPGs, the most compute-
intensive parts are the fitness evaluation of the policies, and the mutations of the programs added during the evolution
process. The fitness evaluation of individual policies can be deterministically executed in parallel, on the conditions that:
1/ the learning environment can be cloned to evaluate several policies concurrently, and 2/ any stochastic evolution of
the learning environment state can be controlled deterministically. Under these conditions, the parallel evaluation of
policies is possible, as the topology of the TPG, which is a shared resource for all policies, is fixed during this evaluation
process. Similarly, the mutation of programs can be applied deterministically in parallel. Two kinds of mutations are
applied to the TPG: mutations affecting the graph topology by inserting new root teams and edges; and mutations
affecting instructions of the programs associated with the new edges. While mutating the graph topology cannot be
done in parallel, the graph being a shared resource, individual programs are independent from each other and can be
mutated in parallel.

To control a stochastic process, a Pseudo-Random Number Generator (PRNG) must be used each time a random
number is needed. Given an initial seed, a PRNG produces a deterministic sequence of numbers. To ensure full
determinacy of the training of a TPG, a unique PRNG should be called in a fixed order during the whole training.
Letting the parallel parts of the training process call the PRNG directly is not possible, as the absolute order in which
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Procedure 1: EvaluateAllPolicies
Input: TPG: 𝐺 = ⟨Teams,Edges⟩
Data: PRNG: prngmaster

Job queue: JobQ
Result Queue: ResultQ

1 /* Prepare jobs */

2 idx = 0
3 for each root ∈ G.Teams do
4 seed = prngmaster .getNumber()
5 job = { idx++, seed, root }
6 jobQ.push(job)
7 endfor
8 /* Start parallel threads */

9 for i = 1 to NumPE − 1 do
10 Spawn thread: Worker(G, JobQ, ResultQ)
11 end
12 Call Worker(G, JobQ, resultQ)
13 Join all threads
14 /* Post-Process Results and Trace */

15 Sort ResultQ in result.jobId order
16 for each result ∈ resultQ do
17 Post-process result.trace // Archiving

[10]
18 ...
19 endfor

Procedure 2:Worker
Input: TPG: 𝐺 = ⟨Teams,Edges⟩

Job queue: JobQ
Result queue: ResultQ

Data: PRNG: prngworker

Learning environment twin: 𝐿𝐸
1 /* Poll for job */

2 while JobQ.hasJob() do
3 /* Setup for policy evaluation */

4 job = jobQ.getNextJob()
5 root = job.root
6 prngworker .reset(job.seed)
7 LE.reset(prngworker .getNumber())
8 /* Evaluate policy fitness */

9 trace = evaluate(G, root, LE, 𝑝𝑟𝑛𝑔𝑤𝑜𝑟𝑘𝑒𝑟 )
10 result.jobId = job.id
11 result.trace = trace
12 resultQ.push(result)
13 end

parallel computations occur is itself stochastic. It is also not possible to give a pre-computed list of pseudo-random
numbers to each parallel task, as the number of random numbers needed for each task is itself stochastic. For example,
when mutating a program, mutations are applied iteratively until the program behavior becomes “original” compared
to pre-existing programs in the TPG. Hence, giving a fixed number of pre-computed random numbers for the program
mutations is not feasible.

The parallelization strategy adopted in Gegelati is based on the master/worker principle, with a distributed PRNG.
The principle of the distributed PRNG is the use of two distinct PRNG instances: the prngmaster and the prngworker .
The prngmaster is exclusively used in the sequential parts of the learning process, which confers a deterministic nature
to its usage, given an initial seed. Besides being used for stochastic tasks performed sequentially, like TPG topology
mutations for example, the prngmaster is also used to generate a seed for each parallel worker task. In each worker
task, a private prngworker is instantiated, and initialized with the seed provided by the prngmaster . Since all calls to
the PRNG from the worker tasks exclusively use their private prngworker , the random number sequences generated in
each parallel task are deterministic.

The pseudo-code of the master and worker tasks for the policy fitness evaluation are presented in Procedures 1
and 2, respectively. Communications between the tasks and load balancing of the computations are supported by a
job queuing mechanism based on two queues: JobQ and ResultQ. Each policy evaluation job, prepared by the master
procedure, encapsulates a unique job identifier id, a seed provided by the prngmaster , and a root team from the TPG.
All jobs are pushed in the JobQ queue before spawning as many worker threads as the number of secondary Processing
Elements (PEs) in the target architecture. For each job it acquires from the jobQ queue, the worker procedure resets its
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prngworker using the seed contained in the job. Before evaluating the fitness of the root team contained in a job, the
worker procedure resets its private copy of the learning environment, using a number given by the prngworker . As a
result of the policy fitness evaluation, described in details in [10], a result object encapsulating execution traces for the
job is pushed in the resultQ. When all jobs have been processed, and all workers terminated, the master procedure is
responsible for post-processing the traces stored in the resultQ. To ensure determinism of this post-processing, results
stored in the resultQ are first sorted in ascending job.id order.

The master and worker procedures used for parallelizing the mutations of programs are similar to the one used
for policy fitness evaluation, with the difference that jobs encapsulate programs instead of root teams. In Section 4,
experiments on three different multicore architectures show the scalability and load balancing capability of the proposed
deterministic and parallel TPG implementation.

3.2 Customizable Instruction Set

What are the motivations? In the seminal work on TPGs [10], the instructions used in the programs are chosen exclusively
among the following eight instructions: 4 binary operators {+,−,×,÷}, 3 mathematical functions {𝑐𝑜𝑠, 𝑙𝑛, 𝑒𝑥𝑝}, and
1 conditional statement 𝑟𝑒𝑠 ← (𝑎 < 𝑏)? − 𝑎 : 𝑎. To further simplify the execution and mutation of programs, it was
assumed that instructions only handle double operands.

As shown in related genetic programming works [2, 14], using a broader set of instructions with diverse data types
can help improve the performance of learning agents, at the cost of longer training time. The extension of the instruction
set used in the programs of the TPGs has already been proposed in [9], where a set of instructions for 2D images
operands is added, and in [7], with instructions accepting thirteen operands tailored for predicting properties of the
learning environment. In Gegelati, both the number and types of operands, and the nature of instructions used in
programs can be fully customized. Besides making the training more efficient for specific learning environments, this
customization feature may also be used to increase the efficiency of the TPG execution on specific hardware. Indeed,
using an instruction set mirroring the instruction set of the architecture used for its execution may help increase the
speed and the power efficiency of the TPG execution.

How are customizable instructions supported? The support for customizable instructions within Gegelati is based on
the three classes presented in Figure 3. When creating a new training environment, a developer may create her own set
of instructions, by creating new classes inheriting from the Instruction class. With the operandTypes attribute, each
instruction declares the number and type of operands it accepts when calling its execute() method. Currently, to keep
the management of registers simple during program execution, only double results can be produced by the execute()
method. Each line of a program references an instruction from the set of available instructions, a destination register
to store the result of its execution, and the addresses of operands to process, selected among all available data sources.
The data sources accessible to the lines comprise both the registers used for storing instruction results, and the state
of the learning environment. Data sources classes must inherit from the DataSource class which acts as a wrapper
between the data and the program execution engine.

Procedure 3 presents the simplified pseudo-code for executing a programmodeled with the classes from Figure 3. The
core of the mechanism supporting customizable instructions lies between lines 5 and 14 of Procedure 3. For each operand
of each line, the algorithm checks whether the data sources can provide the requested operand type at the requested
address. If the data type can be provided by the data sources at the requested address, the data is fetched from the data
sources, and later used for executing the instruction of the current line of the program. Otherwise, the program
execution is terminated, which does not occur in practice, as the operand data types are taken into consideration when
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performing program mutations in Gegelati. It is important to note that the getData() method may return data whose
type differs from the native data type stored within the data source. For example, a data source storing screen pixels as
char values can automatically return an equivalent double value, or even a neighborhood of 3-by-3 pixels when an
operand of type char[3][3] is requested.

auto myInstruction = LambdaInstruction <int , char [2]>(

[]( int a, char [2] b)->double {return a*(b[0] + b[1]) ;});

Listing 1. LambdaInstruction usage example

To ease the creation of new instructions

for each training environment, a utility class
LambdaInstruction is proposed in Gegelati.
The template class LambdaInstruction sup-
ports the creation of instructions for any number of operands, and for operands with primitive and non-primitive types as
well as 1D and 2D C-Style arrays. A code snippet illustrating the creation of an instruction with the LambdaInstruction
class is given in Listing 1. In this example, an instruction taking an int operand, and a 1D array of char is declared,
using a simple C++ lambda function.

3.3 Library Features

In addition to the two contributions detailed in previous sections, the Gegelati library showcases several important
features for easing its integration in new projects.

Configuration and logging support. Interfacing a machine learning library with third-party tools, notably scripting and
data analysis tools, is an indispensable feature. To this purpose, Gegelati supports the import and export of information
in several standard file formats. A json importer is available for configuring the meta parameters of the TPG training
process. This json importer eases the exploration of many meta parameter configurations from a simple script, without
having to re-build the library code. A TPG exporter in the dot format can be used to visualize the topology of the graph
along the training process. The exported dot files also embed all the information needed to import a pre-trained TPG.

Instruction
+operandTypes[]

+execute(operands[])

ProgramLine
+instruction*

+operandAdresses[]

+register

DataSource
-data

+canProvide(address,type)

+getData(address,type)

+setData(address,data)

Fig. 3. Class diagrams of the data struc-

tures for customizable instructions.

Procedure 3: ExecuteProgram
Input: Program: p

Data sources: data
1 for each line ∈ 𝑝 do
2 instruction = line.instruction
3 operands[] = { ∅ }
4 nbOperands = instruction.operandTypes.size()
5 for 𝑖 = 0 to nbOperands-1 do
6 type = instruction.dataTypes[i]
7 address = line.operandAdress[i]
8 if data.canProvide(type, address) then
9 operand = data.getData(type, address)

10 operands.insert(operand)
11 else
12 Exit with an error
13 end
14 end
15 result = instruction.execute(operands)
16 data.set(line.register,result)
17 endfor
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A logging system exporting training statistics in the csv format is also implemented in Gegelati. Through a simple
class specialization mechanism, this logging system may be extended to export information specific to a user’s learning
environment.

Code quality.Maintaining a high quality of code is imperative to foster the maintainability, the evolutivity, and the
trustworthiness in a library. Strict coding rules are enforced in Gegelati, notably by automatically checking that all data
structures and functions are properly commented, and causing a build failure otherwise. Publicly hosted continuous
integration is used to ensure that code coverage of the unit tests cover 100% of the library code [1]. This continuous
integration also checks the portability of the library on Linux with gcc and clang, on Windows with MSVC19, on and
macOS with clang. Public continuous code quality analysis is also used to enforce the reliability, the security, and the
maintainability of the code [1].

Extension-friendly code modularity. Adopting a modular and hierarchical code organization of the code favors its
evolution and its extension, either by replacing existing modules, or by adjuncting new ones. In Gegelati, separate
modules with as few inter-dependencies as possible have been set up for each concept in the code. For example, classes
modeling the topology of a TPG do not depend on the code responsible for mutating it, or the code for executing it. This
separation of concern can be exploited to create specialization of a given module for a specific purpose. For example,
while the default learning algorithm assumes a classic reinforcement learning setup with one agent interacting with its
environment, an alternative algorithm has been implemented to train two or more agents to play competitive games.
Another alternative learning algorithm is also available for learning environments representing a classification problem.

Open source applications. The public availability of projects based on a library is a way to demonstrate in a reproducible
way the capabilities of this library. Existing projects can also serve as examples or even as a base, for a developer
starting a new project with a library. The public repository of Gegelati [1] hosts several projects with diverse learning
environments, including: a wrapper for the Arcade Learning Environment (ALE) [3], simple 2-player tic-tac-toe and
Nim games, a physical robotic arm control and an inverted pendulum environments, and a MNIST [13] classification
environment.

4 EXPERIMENTS

TheGegelati implementation of the TPG learning process is evaluated in different scenarios to assess its capabilities and
performance. Version 0.4.0 of the Gegelati was used in all experiments. In Section 4.1, the rapidity and the scalability
of the training process is evaluated on several multicore architectures. In Section 4.2, the potential of customizable
instructions is demonstrated on an inverted pendulum environment.

4.1 Sequential Performance and Scalability

Sequential. The implementation of the contributions presented in Section 3 incurs an additional complexity in the
code of Gegelati compared to the reference TPG implementation by Stephen Kelly [8, 10]. To assess the efficiency
of Gegelati compared to this reference implementation, the two codes have been used to train TPGs in the ALE
environment. The meta-parameters values defined in [8] have been used in all experiments, except the number of
games played per evaluation, which was set to 1 to accelerate the experiments. TPGs were trained for 50 generations
on 5 games with diverse complexities: alien, asteroids, centipede, fishing_derby, and frostbite. Due to the
non-deterministic stochastic nature of the Atari 2600 emulator powering the ALE [3], 5 runs were executed for each
game. This experiment was executed on one core of an Intel Xeon CPU E5-2690 processor, running with Linux.
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Fig. 4. Relative sequential training time of Gegelati (ours) and Kelly’s code (ref) [10]. On each game, TPGs were trained 5 times, for

50 generations. For each game and code couple, the vertical line spans from the minimum to the maximum training times, and the

horizontal line is the average training time. All times are relative to the average ref training time printed in the plot.

Training time of the TPGs measured in this experiment are plotted in Figure 4. For each game and implementation,
the plot illustrates the minimum, maximum, and average training time, relatively to the average training time of the
reference implementation. The absolute training time, in minutes, of the reference implementation is printed in the plot.

As can be seen in the experimental results in Figure 4, Gegelati is on average only 4.4% slower than the reference
code. In the best case, for the frostbite game, Gegelati is on average 11% faster than the reference code, while it is
on average 13% slower in the worst case, for the asteroids game. In these experiments, the variability of the training
times, revealed by the min-max ranges, seems to be more important with Gegelati, which indicates a greater sensibility
to variations of the TPG topology induced by the training process. The stochastic nature of the learning environment
impacts the fitness of the trained agent, the chances of reaching a game-over, and the topology of the TPG, which
are as many variables impacting the training time. Due to these numerous variables, an in-depth analysis of these
results is out of the scope of this paper. Nevertheless, a fair conclusion to this experiment is that, despite the overhead
of its additional mechanisms for supporting deterministic parallelism and customizable instructions, the sequential
performance of Gegelati are only slightly lower than the reference code.

Parallel scalability. To assess the efficiency, the portability, and the scalability of the parallelization strategy imple-
mented in Gegelati, experiments were conducted on 3 distinct architectures: 1/ a high-performance Intel Xeon CPU
E5-2690 processor with 24 cores, 2/ an Intel i7-8650U CPU with 4 cores, and 3/ a Samsung Exynos5422, an embedded
heterogeneous chip with four Arm A15 cores, and four A7 cores. To assess the scalability of the parallelism on each
target, the training time was measured for a number of thread varying between 1 and the number of physical core
of the architecture. No affinity constraint was set on the threads, thus letting the Linux operating system handle the
scheduling. On the Exynos chip, the taskset command was used to control the number of cores of each type, A15 and
A7, available to the threads. For each number of threads, and for each game on the Intel CPUs, the experiment was
repeated 5 times with different seeds.

On the Xeon and i7 CPUs, the ALE learning environment was used, with the same 5 games and meta-parameters as
in the sequential experiments. On the Exynos CPU, a more lightweight learning environment, the inverted pendulum
learning environment was used as a more realistic use case for an embedded processor. For each number of threads, the
experiment was conducted 5 times with different seeds. On the pendulum learning environment, full determinism of
the training process is observed, in all configurations.
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Fig. 5. Training Scalability on Homogeneous Multicore CPUs
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Figure 5 presents the results of the scalability evaluation of the
training process of Gegelati on the homogeneous multicore CPUs.
For each target architecture, the speedup compared to the sequential
training time is plotted for a varying number of threads running
the worker process. The thick line represents the average speedup
observed for all configurations, and the dotted lines represent the
minimum and maximum speedup observed. As can be seen in these
results, the parallelization of the learning process is highly scalable,
with an average speedup of 18.9 on the 24 cores of the Xeon CPU,
and a speedup of 2.61 on the 4 cores of the i7 CPU.

Figure 6 presents the experimental results for the Exynos chip.
On this heterogeneous chip, the average speedup is 4.12 when using
all 8 cores of the architecture, compared to a single A15 core. There
is a clear benefit in using the four A7 cores, in addition to the four
A15 cores, as the average speedup when using only the four A15
cores is only 2.32.

In experiments based on the ALE games, the training time is
dominated by the computation time needed to evaluate the fitness
of each policy by playing the game, which takes up 99.8% of all
training time. On the pendulum learning environment, 40% of the
training time is spent performing the graph mutations. In this en-
vironment, mutations are sped-up by a factor 3.80 on average, and
policy evaluation by a factor 4.41, on the 8 heterogeneous cores of
the Exynos chip.

4.2 Customizable Instruction Sets

To illustrate the utility of customizable instructions, Gegelati was trained for 400 generations on the frostbite game
from the ALE, using two different sets of instructions, namely ISetsimple and ISetcomplex . The ISetcomplex set contains
the eight instructions from Kelly’s work: {+,−,×,÷, 𝑐𝑜𝑠, 𝑙𝑛, 𝑒𝑥𝑝, <}, and the ISetcomplex contains only the following
five low-complexity instructions {+,−,×,÷, <}. For each instruction set, the training was performed with 5 different
seeds.
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For each instruction set, Figure 7 plots statistics of the score of the champion policies observed during training. The
thick lines represent the average score of the champion policies during the training process. The surrounding colored
zone covers the area between the minimum and maximum scores observed during the five trainings for each instruction
set. The trainings based on the ISetcomplex instruction set outperform the trainings based on the ISetsimple set. On
average, the score of the champion policies with the ISetsimple set plateau at 4626 points, whereas the champion policies
built with the ISetcomplex set reach 8042 points. The gap between the training efficiencies with the two instruction
sets is also revealed by the distance between the best score obtained after 400 generations for the ISetsimple set: 5470
points, which is far below the worst score obtained with the ISetcomplex set: 6450 points. This experiment shows that by
providing support for customizable instruction sets, Gegelati unlocks the possibility to tailor the training instruction
set to maximize the training efficiency.

5 CONCLUSION

The Gegelati C++ library for the training of AIs based on TPGs was introduced in this paper. Two original features of
the library, namely its scalable and deterministic parallelism, and its customizable instructions, confer Gegelati great
portability on various types of architectures. The raw performance, the scalability, and the customizable efficiency of
the training process of TPGs was assessed experimentally using state-of-the-art reinforcement learning environments.
A direction for future work is the creation of a methodology for selecting appropriate instruction sets to maximize the
efficiency of the training process, while jointly optimizing the time and energy efficiency of selected instructions.
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