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Preterm birth affects 11% of pregnancies globally, and is the 
leading cause of death in children younger than 5 yr of age1,2. 
Despite technical and medical advances in NICUs in recent 

decades, complications related to preterm birth remain a major 
cause of neonatal death1. Among these complications, nosocomial 
late-onset sepsis (LOS, occurring 3 d after birth), mainly involving 
skin commensal coagulase-negative staphylococci (CoNS)3, repre-
sents a frequent cause of morbidity and mortality in newborns3–5. 
Rates of such nosocomial infections are grouping in relation to  
the improved survival of increasing numbers of small and vulner-
able newborns along with the need for use of invasive devices for 
these patients.

A single multidrug-resistant Staphylococcus capitis clone, named 
NRCS-A, has recently emerged as a major pathogen among new-
borns in NICUs. This clone has been isolated in 17 countries 
throughout the world, almost exclusively in NICUs, and with a high 
prevalence in some settings6–9, indicating a global dissemination 
that is highly specific to the NICU environment. The extensive dif-
fusion of the NRCS-A clone is a major concern given its multidrug 
resistance profile, including resistance to methicillin, aminoglyco-
sides, fosfomycin and reduced susceptibility to vancomycin, which 
raises the issue of potential therapeutic failure in infected newborns. 
Moreover, the implication of S. capitis species in late-onset sepsis 

has been reported as an independent risk factor for severe morbid-
ity in preterm infants10. This unique epidemiology represents the 
first example of worldwide diffusion of a CoNS clone, a phenome-
non usually described for Staphylococcus aureus clones and recently 
reported for three globally disseminated multidrug-resistant 
Staphylococcus epidermidis clones11.

Despite available epidemiological and phenotypical descrip-
tion of the NRCS-A clone, the spatiotemporal dynamics of its 
spread and the genetic basis that favoured its high specificity for 
newborns remain poorly understood. In this study, we performed 
whole-genome sequencing analysis of a unique set of 250 S. capitis 
clinical isolates, collected between 1994 and 2015—including the 
oldest and most recent isolates from newborns and adults avail-
able—from 22 countries in Europe, the Americas, southern Asia 
and Oceania. We combined phylogenomics and molecular clock 
analyses to reconstruct the evolutionary history and spatiotemporal 
emergence of the NRCS-A clone. We also explored genetic and phe-
notypic determinants that may underlie its epidemiological success 
and specificity for newborns.

Results
Overall population structure of S. capitis. To reconstruct the 
overall population structure and mode of evolution of S. capitis, we 
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The multidrug-resistant Staphylococcus capitis NRCS-A clone is responsible for sepsis in preterm infants in neonatal intensive 
care units (NICUs) worldwide. Here, to retrace the spread of this clone and to identify drivers of its specific success, we inves-
tigated a representative collection of 250 S. capitis isolates from adults and newborns. Bayesian analyses confirmed the spread 
of the NRCS-A clone and enabled us to date its emergence in the late 1960s and its expansion during the 1980s, coinciding with 
the establishment of NICUs and the increasing use of vancomycin in these units, respectively. This dynamic was accompanied 
by the acquisition of mutations in antimicrobial resistance- and bacteriocin-encoding genes. Furthermore, combined statistical 
tools and a genome-wide association study convergently point to vancomycin resistance as a major driver of NRCS-A success. 
We also identified another S. capitis subclade (alpha clade) that emerged independently, showing parallel evolution towards 
NICU specialization and non-susceptibility to vancomycin, indicating convergent evolution in NICU-associated pathogens. 
These findings illustrate how the broad use of antibiotics can repeatedly lead initially commensal drug-susceptible bacteria to 
evolve into multidrug-resistant clones that are able to successfully spread worldwide and become pathogenic for highly vulner-
able patients.
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first aligned the genome sequences of the 250 isolates against the 
NRCS-A reference genome CR01, resulting in a total of 22,621 sin-
gle nucleotide polymorphisms (SNPs). To quantify recombination, 
we used ClonalFrameML12, which is specifically aimed at analys-
ing whole-genome sequence data (see Supplementary Information). 
The results indicated that the impact of recombination (r) on the 
genome-wide substitution rate in S. capitis overall is almost equal to 
the impact of mutation (m), with r/m = 0.85. ClonalFrameML iden-
tified 190 recombination events in the global genealogy (Extended 
Data Fig. 1). The largest detected events (up to 26 kb) are probably 
products of horizontal gene transfer, some of which correspond to 
the insertion of pathogenicity islands.

Clonal specialization and geographical dispersion of NRCS-A. 
The reconstructed maximum-likelihood tree (Fig. 1a) enabled us 
to draw a clear distinction between NRCS-A isolates that harbour 
the previously described specific NRCS-A pulsed-field gel electro-
phoresis pattern8 (n = 197) and all the other strains found in basal 
positions (n = 53; hereafter ‘basal’). These reconstructions revealed 
that this NRCS-A population is composed of at least three sublin-
eages, which we named in chronological order of divergence on the 
basis of the observed branching order in the tree: ‘proto-outbreak 
1’ (n = 18), ‘proto-outbreak 2’ (n = 17) and ‘outbreak’ (n = 162) 
(Fig. 1a,b). These three clades are supported both by bootstrap 
values greater than 95% and by the trimodal distribution of the  
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Fig. 1 | Phylogenetic inference of the global S. capitis strain collection and expansion of the multidrug-resistant NRCS-A clone. a, Maximum-likelihood 
tree based on the SNPs identified from 250 clinical isolates originating from 22 countries, using CR01 as the reference genome. Strain codes include 
patient type (New, newborns; Adu, adults) and country of isolation. NRCS-A isolates that are part of the proto-outbreak 1 and 2 lineages are shown in 
pink and green, respectively. Isolates of the alpha clone in the basal strain group are shown in blue. b, Circular maximum-likelihood tree based on the 197 
NRCS-A isolates. Overlaid are the geographical source of the strains (outer ring), the type of human host (middle ring) and the year of isolation (inner 
ring). Colour codes used in the three rings are shown on the right. The three needles and stars pinpoint the putative role of Norway as the source of the 
successive propagation waves of the outbreak clone. The scale bars indicate the number of nucleotide substitutions per site in the maximum-likelihood 
tree. Proto-outbreak 1 and 2 lineages are shown in pink and green, respectively.
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pairwise SNP distances between all NRCS-A strains (Extended 
Data Fig. 2c).

The proportions of neonatal isolates differed markedly among 
the (sub)lineages, as visualized in a circular maximum-likelihood 
tree (Fig. 1b), a minimum-spanning tree (Extended Data Fig. 2a) 
and a principal component analysis (Extended Data Fig. 2b). While 
the neonatal isolates only comprised 43% (23/53) of the basal strains 
and 50% (9/18) of the proto-outbreak 1 isolates, they represented 
100% (17/17) and 94% (153/162) of the proto-outbreak 2 and 
outbreak strains, respectively (Extended Data Fig. 2d), indicating 
a specialization of the most recent or outbreak branches. In addi-
tion, geographical structuring was also apparent in the outbreak 
part of the reconstructed NRCS-A phylogeny, comprising two large 
subgroups enriched in isolates originating from French-speaking 
countries (Canada, Belgium, France and Switzerland) and 
English-speaking countries (Australia, England, United States of 
America and Wales), respectively (Fig. 1b). Notably, Norwegian 
strains branched at the deepest nodes of each of these geographical 
subgroups. Furthermore, the two most basal strains in the entire 
outbreak part of the tree are also from Norway, suggesting a putative 
sourcing effect.

Moreover, a particular subgroup in the basal strain clade, which 
we called alpha, appears to follow a similar emergence pattern as the 
NRCS-A outbreak clone (Fig. 1a). The alpha clade shows extremely 
restricted genetic diversity and apparent enrichment in neonatal 
isolates, with nine recent isolates from a single NICU setting in 
France (in 2013 and 2014) (Supplementary Table 1).

Temporal emergence and dispersion of NRCS-A. To date the 
emergence and reconstruct the temporal evolution of NRCS-A, we 
used a Bayesian approach. As a critical prerequisite, we checked 
whether the NRCS-A isolates represent a measurably evolving 
population. Critically, none of the runs with randomized molecu-
lar data had substitution rate estimates that overlap with the rates 
inferred with the real molecular data, supporting a conclusion of 
measurable genome evolution and robustness of our temporal infer-
ences (Fig. 2a). The best-fitting evolutionary model for the NRCS-A 
population was obtained under a Bayesian skyline model with a 
relaxed clock, leading to a rate of 1.51 × 10−6 substitutions per posi-
tion per year (Fig. 2c), or 1.7 mutations per genome per year. This 
mutation rate is close to the rate inferred from S. aureus genomic 
datasets, also in the range of 1 × 10−6 substitution per nucleotide 
per year13,14. According to the coalescence-based reconstructions of 
demographic variation, the NRCS-A clone population experienced 
a tenfold expansion in the late 1980s, followed by minor fluctua-
tions and a sharp final decline that initiated in 2013 (Fig. 2d). The 
time of emergence of the most recent common ancestor (TMRCA) 
of the NRCS-A clone (Fig. 2b) was estimated to be 1969 (95% high-
est posterior density, 1952–1986) and that of the outbreak sublin-
eage was estimated to be 1982 (1974–1993).

Genomic specificities of NRCS-A and alpha clades. To identify 
genomic specificities potentially underlying the global success 
of the NRCS-A clone, we first focused on 55 genes previously 
identified as specifically present in NRCS-A S. capitis strains15. 
Among these 55 genes, 28 were detected both in outbreak strains 
and in proto-outbreak 1 and proto-outbreak 2 strains, notably  
including the gene nsr encoding for nisin resistance and the 
additional cell-wall teichoic-acids-associated cluster (tarFIJL) 
(Supplementary Table 1). The other 27 genes were found only 
in the outbreak strains and were absent from the proto-outbreak 
strains. These 27 genes are carried by a specific composite staph-
ylococcal chromosomic cassette (SCC), the SCCmec-SCCcad/
ars/cop cassette16, associating a type V SCCmec cassette and a 
SCCcad/ars/cop cassette carrying genes conferring resistance to 
heavy metals, with a total of nine genes associated with the type 

III-A clustered regularly interspaced short palindromic repeats 
(CRISPR) element (Fig. 3a).

Because of SCCmec cassette- and CRISPR-related genomic 
specificity of the outbreak group, we further searched for and char-
acterized SCC cassettes and CRISPR elements in all 250 genomes  
(Fig. 3a). This revealed that this composite SCC locus with the 
type III-A CRISPR element is a unique genomic feature of the out-
break group. By contrast, the proto-outbreak 1 and proto-outbreak  
2 strains harbour two unrelated types of SCCmec cassettes, type IV 
and type II, respectively, and no CRISPR element. Notably, alpha 
clade isolates all harbour a type IV SCCmec cassette, identical to the 
one found in proto-outbreak 1 isolates (Fig. 3a).

Positive selection signatures of NRCS-A and alpha clades. In 
order to detect potential signatures of positive selection of the 
outbreak strains, we performed a genome scan analysis using a 
Bayesian model17,18 that detects the structure and clustering of 
individuals in a population. On the basis of the Bayesian princi-
pal component analysis, principal component 2 (PC2) segregated 
the outbreak strains from the rest of the NRCS-A strain collection 
(including the proto-outbreak 1 and proto-outbreak 2 isolates) 
(Extended Data Fig. 3). A total of 32 SNPs were associated with 
PC2 and displayed the highest Mahalanobis distances (reflecting 
correlations between SNPs most related to the genetic structure), 
including 18 non-synonymous SNPs potentially involved in diversi-
fying selection. These genes are shown in Extended Data Fig. 4 and 
notably include rpsJ, involved in tigecyclin resistance19, and glnQ, 
a glutamine ABC transporter that may be involved in vancomy-
cin resistance20, as well as a gene coding for the lipase LipA, which 
has recently been shown to be a suppressor of macrophage activa-
tion, rendering these cells inefficient at controlling infection by  
S. aureus21,22 (Extended Data Fig. 5).

Likewise, 17 SNPs were identified that distinguish isolates of 
alpha clade from the other basal isolates (Extended Data Fig. 4), 
notably including one that results in a nonsense mutation (creating 
a stop codon) in the murR gene, which was previously described 
as related to peptidoglycan synthesis and vancomycin resistance23, 
and a second that results in a non-synonymous mutation in the 
pgcA gene, which is involved in cell-wall properties23 (Extended 
Data Fig. 5).

Phenotypic specificities including antimicrobial resistance. Most 
of the outbreak isolates harboured multidrug-resistant phenotypes, 
including resistance to oxacillin (96% of the isolates), aminoglyco-
sides (99%) and resistance or heteroresistance to vancomycin (99%) 
(Extended Data Figs. 6 and 3b). This profile is broadly consistent 
with the preferential use of these antimicrobials in NICUs24 (see 
Supplementary Information for further details). Multidrug resis-
tance levels were also much higher in alpha clade isolates than in the 
basal group isolates (Extended Data Fig. 6). All alpha clade isolates 
exhibited resistance to vancomycin, oxacillin and aminoglycosides, 
consistent with the dominant use of these compounds in NICUs.

However, no statistically significant differences were observed 
between the outbreak strains and other groups for the additional 
tested phenotypes, including phagocytosis, cytotoxicity assay, toler-
ance to desiccation, kinetics of bacterial growth in standard condi-
tions and under oxidative stress, and biofilm production (Extended 
Data Fig. 7 and Supplementary Information).

Genetic determinants of antimicrobial resistance. Genotypes of 
resistance were largely consistent with the observed resistance phe-
notypes, as well-established resistance determinants were identi-
fied in many strains, such as mecA in methicillin-resistant isolates, 
aac(6ʹ)-aph(2ʹʹ) gene in aminoglycoside-resistant isolates, and the 
grlA-gyrA mutation in ciprofloxacin-resistant proto-outbreak 2 
strains (Extended Data Fig. 6 and Supplementary Table 1). To 
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search for additional potential mutation candidates, we performed 
a genome-wide association study (GWAS) search on the out-
break clade isolates, selected as the largest strain group to maxi-
mize statistical power, using vancomycin MICs as quantitative 
traits. Consistently, vancomycin minimum inhibitory concentra-
tion (MIC) was found to be significantly associated with several 
independent genomic variants (Fig. 4 and Extended Data Fig. 8), 
involving, for instance, the global regulator gene sarA (harmonic 
mean of P value (HMP) = 1.7 × 10−7), the DNA mismatch repair 
system-associated gene mutL (HMP = 2.5 × 10−7) and genes related 
to bacterial survival and growth such as rsmE (HMP = 7.6 × 10−9) 
and citB (HMP = 3.4 × 10−7).

Specific resistance patterns correlate with S. capitis epidemic 
success in newborns. Acquisition of increased drug resistance is 
an expected key adaptive advantage for the spread of nosocomial 
pathogens, especially for those such as S. capitis, that are exposed to 
the high drug selection pressure that prevails in NICUs. Thus, the 

specific resistance pattern of outbreak and alpha strains (Fig. 3b)  
led us to hypothesize that resistance to drugs widely used in NICUs, 
especially vancomycin, might drive their epidemic success. To 
test this, we searched for genomic signatures of epidemic success 
in our dataset and analysed their correlation with resistance pat-
terns. Epidemic success was inferred using the recently described 
time-scaled haplotypic density (THD) approach25, which assigns a 
relative index of success over time to each isolate in a population on 
the basis of the distribution of genetic distances.

The highest THD success indices were found in isolates of the 
outbreak clade, followed by proto-outbreak 2, proto-outbreak 1, 
alpha and basal groups (Fig. 5b and Supplementary Table 1). In 
bivariate analysis, the success index correlated with higher MICs of 
β-lactams, gentamicin and glycopeptides, and lower MICs of cipro-
floxacin (Fig. 5a, bivariate model), reflecting the specific resistance 
profile of the successful outbreak clade (Fig. 3b). After controlling 
for population structure by introducing the isolate’s clade as an 
additional covariate (Fig. 5a, controlled model), the associations 
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between the success index and MICs were nearly abolished for 
β-lactams, gentamicin and ciprofloxacin, indicating that resistance 
to these drugs correlated with success variations between clades but 
not within them. Likewise, the strong association of success index 
with high rifampicin MICs (Fig. 5a) was probably driven by a very 
dense and specific cluster of rifampicin-resistant isolates within the 
outbreak clade only (Fig. 3b).

Interestingly, the association between success and glycopeptide 
MICs remained highly significant after controlling for population 
structure (Fig. 5a), indicating that higher glycopeptide MICs pre-
dicted variations of strain success both between and within clades 
(Fig. 5a). Indeed, in a subgroup analysis of each clade and group, 
higher vancomycin MICs correlated with success among isolates 
of the NICU-adapted outbreak and alpha clades, whereas these 
MICs negatively correlated with success within proto-outbreak  
1 and basal strain clades (Fig. 5b). This suggests that vancomycin 
resistance is only beneficial in the NICU setting. As an indepen-
dent approach to further assess the role of vancomycin resistance in 
the epidemic success, we performed a second GWAS screen of the 
outbreak clade isolates using the THD success index as a quantita-
tive trait (Fig. 4 and Extended Data Fig. 8). Variants in sarA and 
mutL, previously suspected to influence vancomycin resistance26,27, 
were found to be significantly associated with epidemic success, 
consistently supporting a pivotal role of vancomycin resistance 
acquisition in the epidemic expansion of NRCS-A. Of note, the 
small number of alpha clade isolates prevented us using a parallel 
GWAS analysis to detect a convergent evolution signal. In addition, 
the success-associated substitutions found in the outbreak clade 
were not present in alpha clade isolates based on protein sequence 
alignment. This suggests that the observed phenotype conver-
gence between these clades, in terms of vancomycin resistance and 

NICU-associated success, involved different evolutionary pathways 
rather than genetic homoplasy.

Further in line with the hypothesis of the selective benefit of van-
comycin resistance in NICUs, higher glycopeptide MICs correlated 
with a neonatal origin of the isolates, both in bivariate analysis and 
after controlling for population structure (Fig. 5c), indicating that 
vancomycin resistance and a NICU setting co-occur in the same 
strains, irrespective of their lineage. Collectively, these findings 
point to vancomycin selective pressure as a major driving force of 
the NRCS-A epidemic in NICUs, and to a triangular interaction 
between elevated glycopeptide MICs, adaptation to NICU setting 
and epidemic success.

Discussion
Using the largest genome set of S. capitis from multiple countries 
ever investigated, we unravelled the evolutionary history and main 
drivers of the global spread of the S. capitis NRCS-A clone, which is 
highly associated with neonatal sepsis. We estimated that the com-
mon ancestor of this NICU-associated clone emerged around 1969. 
Despite the relatively large confidence interval around this estima-
tion, this predicted date is consistent with the establishment of the 
first NICUs in North America and Europe in the 1960s (first in 
Yale New-Haven, USA in 1960, then in Paris, France in 1966 and 
Lausanne, Switzerland in 1967). This emergence was followed by a 
sharp increase in effective population size of the NRCS-A lineage 
in the mid 1980s. The results of THD analysis point to vancomycin 
resistance as a main driver of this expansion, as they reveal a tri-
angular correlation between epidemic success of S. capitis strains, 
level of vancomycin resistance and neonatal infection. The driv-
ing role of vancomycin resistance in the success of the clone is 
further supported by results of the GWAS identifying vancomycin 
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resistance-related genes as associated with the success index of out-
break strains (such as sarA)26, and results from Bayesian principal 
component analysis revealing an outbreak clade-specific SNP in the 
glnQ gene, which is also associated with vancomycin resistance20.

These findings and conclusions are consistent with (1) the 
accelerated use of vancomycin in the 1980s24,28,29, which may have 
favoured the wide dissemination of the vancomycin non-susceptible 
NRCS-A clone; (2) the extensive use of vancomycin, particularly 
in NICU settings30, since cases of late-onset sepsis are frequent in 
hospitalized newborns and have the specificity to mainly involve 
methicillin-resistant CoNS31; (3) previous in vitro data demonstrat-
ing that NRCS-A is able to rapidly adapt under vancomycin selec-
tive pressure32.

Strikingly, these patterns of epidemic success in a neonatal con-
text associated with glycopeptide resistance emerge both in the 
outbreak clade and the independent alpha clade. In addition, alpha 
clade isolates also show high glycopeptide MICs and a specific 
non-synonymous SNP in a gene related to glycopeptide resistance 
(murR)23. This exceptional example of parallel phenotypic evolution 
in independent clades evolving in similar environments further 
supports the scenario that the epidemic success of NICU-adapted  
S. capitis lineages is mainly driven by vancomycin selection pres-
sure. Moreover, the alpha clade strains acquired the same SCCmec 
type IV cassette as that found in the proto-outbreak 1 strains.

While vancomycin use appears to be the major determinant 
of success among NRCS-A isolates within a clade, the high levels  
of (additional) resistance to other antistaphylococcal drugs of fre-
quent use in NICUs30 (such as β-lactams and aminoglycosides) were 
also associated with differential epidemic success between S. capitis  
main clades as revealed by THD analysis. Furthermore, some 
country-specific patterns of NRCS-A strain success were consistent 
with specific local drug-selective pressure related to local practices 
of antimicrobial agent use. For instance, strong associations of THD 
success index with high rifampicin MIC was driven by a compact 

cluster of rifampicin-resistant isolates in the outbreak clade, mostly 
isolated in 2013–2014 in a NICU in Lyon, France. This specific 
pattern is consistent with high consumption of rifampicin from 
the 2010s in this NICU (F.L., personal communication). Similarly, 
fusidic acid resistance was specifically identified in NICU isolates 
from New Zealand, reflecting a local antibiotic selective pressure33, 
as recently reported by Carter et  al.9. In sum, the above observa-
tions represent strong indications that the successful specialization 
of NRCS-A for NICU environments results from its remarkable 
adaptation to antimicrobial selection pressures specific to NICUs. 
This conclusion is reminiscent of recent findings indicating that the 
emergence and global spread of nosocomial multidrug-resistant 
lineages of S. epidermidis has been driven by positive selection 
due to exposure to hospital environments and practices, such as 
single-antibiotic-impregnated medical devices11.

Other genes and SNPs were identified as conserved in and 
unique to NRCS-A isolates, notably nsr, which encodes resistance 
to nisin. This bacteriocin is produced by lactococci and other bacte-
ria involved in the early colonization of the gut, and is usually active 
against a wide range of gram-positive bacteria, including staphylo-
cocci and enterococci34. The establishment of NRCS-A in the gut 
microflora of newborns, which was shown to affect one third of 
newborns in a single-NICU prospective study35, may therefore be 
favoured by nisin resistance. Another prominent candidate is the 
tarJ gene, involved in the biosynthesis of wall teichoic acids36, which 
may therefore be involved in the ability of NRCS-A to colonize 
environmental surfaces in NICU settings and escape eradication 
by disinfection procedures. Furthermore, the exclusive presence 
of a composite SCC cassette (SCCmec type V and SCCcad/ars/cop) 
including a CRISPR element in the outbreak strains suggests a 
potential role of its acquisition in enhancing the success of this lin-
eage. Further studies are needed to explore these hypotheses.

The origin of the NRCS-A clone and the paths of its worldwide 
dissemination remain unknown. A scenario of continuous and 
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repeated global seeding from the same, single source of contamina-
tion of globally used equipment or products as previously reported37 
had been initially evoked. This hypothesis is unsupported by our 
findings, as it would have induced a different tree topology and 
would have been expected to abolish the temporal signal in the 
evolutionary clock calculations. Nevertheless, the detection of some 
phylogeographical patterns based on the present genome analyses 
raises intriguing questions. Although the power of the present study 
is probably limited in terms of providing a definitive answer, the 
recurrent presence of isolates originating from Norway in the deep-
est nodes of the entire outbreak group as well as its two major sub-
clades, dominated by French-speaking and Anglo-Saxon countries, 
respectively, points towards a putative source and plausible bifurcat-
ing directions of European dissemination.

Our Bayesian skyline analyses suggest some decline in the 
effective population size of NRCS-A from 2011 onwards. Because 
NRCS-A has been shown to colonize the NICU environment, 
especially in incubators9, we hypothesize that this decline could 
be the consequence of recent general reinforcement of standard 
hygiene precautions and improvement in the routine disinfection 
of incubators38.

In conclusion, our global framework provides the scientific 
community with a robust basis for further study of the evolution-
ary processes leading to the switch from poorly-virulent commen-
sal and highly susceptible bacteria to multidrug-resistant clones 
that are able to infect vulnerable patients and to disseminate world-
wide. This worrisome situation calls for urgent upscaling and sus-
tained maintenance in the worldwide standards of antimicrobial 
stewardship, to prevent additional, repeated emergence of other 
multidrug-resistant clones.

Methods
Sample collection. The study collection was designed to be representative of the 
temporal, geographical and clinical diversity of S. capitis species. Therefore, a 
panel of clinical microbiology laboratories worldwide were contacted to send a 
sample of their own collection of clinical S. capitis isolates collected from blood 
culture to the French National Reference Center for Staphylococci, Hospices 
Civils de Lyon, France. In some laboratories, the absence of identification at the 
species level for CoNS strains, collected in blood cultures from newborns, did not 
allow for sampling of S. capitis in their collection, somewhat limiting the potential 
extent of the study sample. Each laboratory was asked to include their oldest 
and most recent strains still available. The French National Reference Center for 
Staphylococci subsequently selected representative isolates from each laboratory, 
including isolates from adults and newborns (when both were available) and 
covering the largest possible period of isolation. Of note, isolates from the NICU of 
Lyon, France, were relatively overrepresented to enhanced the search for possible 
local signals of evolution.

The species identification of each isolate was confirmed using matrix-assisted 
laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS).  
After genomic analysis (see below), several isolates were excluded because of 
a misidentification (n = 3) or because of poor sequence data quality (n = 4). 
Two-hundred-and-fifty isolates were included in the final analysis, collected 
from blood cultures of newborns and adult patients, from 22 countries 
throughout the world between 1994 and 2015 (collection composition detailed in 
Supplementary Table 1).

DNA extraction, library preparation and sequencing. DNA extraction was 
carried out using a modified protocol for the QIAsymphony DSP DNA mini 
kit (Qiagen). In brief, a single colony of each test isolate was cultured on blood 
agar incubated overnight at 37 °C in aerobic conditions. As a pre-lysis step, 1 μl 
of bacterial growth was suspended in 230 μl lysis buffer comprising 203.6 μl of 
P1 buffer (Qiagen), 10 μl of 100 mg ml−1 lysozyme (Sigma), 10 μl of 1 mg ml−1 
lysostaphin (Sigma), 2.4 μl of Triton X-100 (Sigma) and 4 μl RNAse A (Qiagen). 
The suspension was incubated for 30 min at 37 °C followed by digestion with 20 μl 
of proteinase K (from DSP DNA mini kit, Qiagen) and incubation at 56 °C for 2 h. 
Extraction of DNA from the treated cells was performed on the QIAsymphony 
SP platform (Qiagen) using the DSP DNA mini kit and eluted in 100 μl of ATE 
buffer (Qiagen).

Paired-end libraries of 100 bp read length were prepared using the Nextera  
XT DNA Sample Preparation kit (Illumina) and sequenced on an Illumina  
HiSeq 2500 platform under rapid run mode according to the manufacturer’s 
instructions.

Mapping and genome analysis. Quality of Illumina paired-end reads was assessed 
with FastQC v.0.11.7. Potential contamination during the library preparation and/
or sequencing was assessed using Kraken 239 to assign taxonomic labels to each 
read and check whether they were mainly (>90%) attributable to S. capitis. Kraken 
2 was used with MiniKraken DB_8GB database. Three additional genomes were 
removed from the study because they were not identified as S. capitis.

Illumina paired-end reads were de novo assembled using the Unicycler v.0.4.5 
pipeline40 with default parameters that performed reads correction and trimming, 
assembly, scaffolding, removing overlap and bridging. Assemblies quality was 
assessed with QUAST v.4.6.341. Four additional genomes were further excluded 
from our study due to low coverage. Genome annotation was performed with 
Prokka v.1.13. A previous study has highlighted 59 genes specifically present in S. 
capitis strains belonging to the NRCS-A clone15. The presence or absence of these 
genes in all the 250 sequenced strains was determined using SRST242 against a 
database made up of these 59 NRCS-A-specific genes.

A 90% threshold was retained to define the presence or the absence of a gene 
from a group of strains (that is proto-outbreak 1, proto-outbreak 2, outbeak and 
others). Thus, a gene was considered to be present in a group if it was found in 
more than 90% of strains in the group. In the same way, a gene was considered as 
absent if was not found in at least 90% of strains in the group. The type of SCCmec 
elements was determined using SCCmecFinder43 or by blast analyses targeting 
mec element and ccr genes of the ccr cassettes from assembled genomes (SPAdes 
v.3.8.0). To confirm the presence status (complete, incomplete or absent) of the 
composite cassette previously described in the reference NRCS-A strain CR0116, 
we used Bowtie244 to map the reads from all 250 sequenced strains against the full 
composite SCCmec-SCCcad/cop/ars element of strain CR01. The presence and 
typing of CRISPR elements was performed using CRISPRcasFinder45.

Phylogenetics. The phylogenetic signal of the dataset was investigated using the 
likelihood-mapping method implemented in Tree-Puzzle 7.146 by analysing 10,000 
random quartets. This method proceeds by evaluating, using maximum-likelihood 
groups of four randomly chosen sequences (quartets). The three possible unrooted 
tree topologies for each quartet are weighted, and the posterior weights are then 
plotted using triangular coordinates, such that each corner represents a fully 
resolved tree topology. Thus, the resulting distribution of the points shows whether 
the data are suitable for a phylogenetic reconstruction or not.

Phylogenetic relationships were reconstructed using the maximum-likelihood 
approach implemented in Phyml 3.41247. The robustness of the maximum-likelihood 
tree topology was assessed with bootstrapping analyses of 1,000 pseudoreplicated 
datasets. Phylogenies were rooted with the midpoint rooting option using FigTree 
software v.1.4. The profiles of drug resistances for each strain and cassette element 
were plotted on the maximum-likelihood tree using Itol48. Linear regression 
analysis of the root-to-tip distances against sampling time was performed using 
TempEst1.549. To assess the robustness of our root-to-tip regression, we performed 
a permutation test of 5,000 replicates using the lmPerm package50 in R, which 
was confirmed by tip randomization (see below). For the coalescent-based 
analyses, evolutionary rates and tree topologies were analysed using the general 
time-reversible and Hasegawa–Kishino–Yano substitution models with gamma 
distributed among-site rate variation with four rate categories (Γ4). The 
substitution rate was estimated under different demographic and clock models 
using Beast v.2.3.251, taking advantage of a sampling timeframe from  
1994 to 2015. We tested both a strict molecular clock (which assumes the 
same evolutionary rates for all branches in the tree) and a relaxed clock that 
allows different rates among branches. To assess the robustness of the temporal 
inference, we performed ten additional runs after randomization of the sampling 
dates. Constant-sized and Bayesian skyline plot models, based on a general, 
non-parametric prior that enforces no particular demographic history, were 
used. For each model, two independent chains were conducted for 200 million 
generations and convergence was assessed by checking effective sample size 
values for key parameters using Tracer v.1.6. We used Tracer 1.6 to calculate the 
log10 Bayes factors to compare the models after a burning of 10% of the chain. 
Bayes factors represent the ratio of the marginal likelihood of the models being 
compared. Approximate marginal likelihoods for each coalescent model were 
calculated via importance sampling (1,000 bootstraps) using the harmonic  
mean of the sampled likelihoods. A ratio between 3 and 10 indicates moderate 
support that one model better fits the data than another, whereas values greater 
than 10 indicate strong support.

Recombination detection. We first initiated a visual inspection with the algorithm 
Splitstree352, followed by the Phi test. In a second step, ClonalFrame1.253 was 
run for 50,000 iterations on the whole-genome nucleotide alignment; the initial 
half was discarded as Markov chain Monte Carlo burn-in. Runs of ClonalFrame 
were performed three independent times and showed high congruence in their 
reconstructed phylogenies and recombination events. Numbers of mutation and 
recombination events were computed for each reconstructed branch substitution 
event introduced by either mutation or recombination. We then estimated the 
relative effect of recombination and mutation on genetic change (r/m) and the 
relative rate of mutation and recombination (ρ/θ, respectively) estimated by 
ClonalFrame, as previously described54.
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Selection signatures. Additionally, to capture SNPs that may explain the outbreak 
success, we used the R version of the software Pcadapt17 to perform a genome 
scan on the basis of a Bayesian factor model. We chose K = 4 factors and selected 
SNPs with the highest Mahalanobis distance and associated with the principal 
component 2, separating basal strains (proto-outbreak 1 and 2) from the NRCS-A 
proper outbreak. The factor analysis was performed on the centred genotype 
matrix that was not scaled. The Markov chain Monte Carlo algorithm was 
initialized using singular value decomposition, and the total number of steps was 
equal to 400 with a burn-in of 200 steps.

Protein structure. The mutated protein structures were predicted by Phyre2 
software online (http://www.sbg.bio.ic.ac.uk/phyre2)55 and visualized with  
UCSF Chimera56.

Genotypes and phenotypes of antibiotic resistance. The of antibiotics (penicillin, 
oxacillin, ciprofloxacin, moxifloxacin, erythromycin, clindamycin, tetracycline, 
daptomycin, fusidic acid, gentamicin, linezolid, quinupristin-dalfopristin, 
rifampicin, teicoplanin and vancomycin) were determined by agar dilution57 
and interpreted in accordance with European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) guidelines (http://www.eucast.org). Susceptibility 
to cefoxitin was assessed by Etest (Biomérieux) and the results were interpreted 
using EUCAST criteria. Heteroresistance to vancomycin was assessed as  
described previously58.

Biomarkers of antibiotic resistance were detected using GeneFinder  
(M. Doumith, unpublished). In brief, sequence reads were mapped against a set of 
reference sequences using Bowtie2. The criteria for gene detection were (1) read 
coverage 100% of reference length, (2) >90% homology to reference sequence 
and (3) mean depth of sequencing > 10% of mean depth of chromosomal region 
controls (as a measure of possible contamination). Non-synonymous chromosomal 
mutations were reported as amino acid position except for 23S rRNA, where they 
were reported as nucleotide position.

Next, THD analysis was performed. THD success index was computed as 
described25 on the basis of the matrix of genetic distances between isolates (SNP 
counts). The THD approach converts genetic distances to a density measure in 
the space of haplotypes, which captures the number of putative between-host 
transmission events in the isolate’s ancestry during a user-specified time window or 
timescale. This approach was previously shown to accurately capture the influence 
of well-established drivers of epidemic transmission of Mycobacterium tuberculosis 
and to detect novel potential drivers25,59. User-defined parameters were a mutation 
rate of 1.51 × 10−6 substitutions per position per year, as defined under the 
best-fitting evolutionary model (Fig. 2c); a genome size of 2.52 × 106 bp as defined 
previously in the S. capitis NRCS-A prototype strain CR0115, and a timescale of 
20 yr, reflecting the approximate duration of the 1990–2010 period of maximal 
effective population size in the sampled collection (Fig. 2d). The resulting THD 
success index was then used as a response variable in linear regression models 
including antibiotic MICs as predictors and, where specified, the phylogenetic 
group as a covariate to control for population structure. All analyses were 
conducted using R v.3.3.2.

GWAS. DBGWAS60 was used to identify coding-sequence variations associated 
with: (1) vancomycin MIC and (2) the THD epidemic success index. DBGWAS 
is a recently introduced GWAS method that tests the association between the 
phenotype and the presence of fixed-length subsequences (termed k-mers) in 
the genome. k-Mer presence can denote genetic variants ranging from SNPs 
to large mobile genetic elements, making k-mer based GWAS a flexible and 
hypothesis-free approach. DBGWAS agglomerates sets of overlapping k-mers as 
single components using a De Bruijn graph and annotates the k-mers to enable 
gene-level interpretation.

Due to the strong population structure of our complete collection and the 
dominance of the outbreak isolates, a GWAS analysis of the entire dataset would 
have identified genes canonical to the outbreak clade rather than genes truly 
associated with the outcome. Thus, GWAS analyses were restricted to the outbreak 
clade isolates to better identify within-clade determinants of success and resistance.

We ran DBGWAS 0.5.4 with default settings and no P value-based selection 
threshold to preserve all the potential k-mers. All k-mers connected to the same 
gene were agglomerated via their HMP using the R package Harmonicmeanp. 
Clusters of orthologous groups (COG) annotation for each gene was performed 
using MaGe61. A box plot of the −log10[HMP] significance values was constructed 
with COG categories as groups to identify associations between COG categories 
and the model outcome. To identify gene variants associated with vancomycin 
MIC, epidemic success or both, we constructed a scatter plot of each gene where 
the X and Y axis represented the -log10[HMP] in the vancomycin MIC and 
epidemic success GWAS, respectively. Genes with a -log10[HMP] > 7.5 on either 
axis, or >5 on both axes, were deemed significant.

Phenotypic assays. To identify the phenotypic features of the outbreak clade 
that have led to its success in NICUs worldwide, several phenotypic assays were 
performed on a subset of representative isolates. Three to eight isolates (depending 
on the experiments) were randomly selected from each of the four subgroups 

identified by the phylogeographical analysis (outbreak group, proto-outbreak 
1 group, proto-outbreak 2 group and ‘other isolates’ group). First, because a 
previous study has reported the higher morbidity of S. capitis NRCS-A-related 
neonatal sepsis when compared to other CoNS10, we investigated the virulence 
of 12 representative S. capitis isolates using the culture supernatants cytotoxicity 
assay, as described elsewhere, using THP1 cells62. Second, S. capitis has been 
shown to persist in the inert environment of NICUs9, which is why the tolerance to 
desiccation of 12 isolates was investigated using a previously described method63. 
The kinetics of bacterial growth of 24 representative isolates were also tested in 
standard conditions64 and under oxidative stress using an ethanol-supplemented 
medium to a final concentration of 6.5%, as previously described65.

In addition, several phenotypic tests were targeted on the basis of the identified 
discriminant SNPs. Since a specific SNP was identified in the gene fruK, previously 
shown to be essential for biofilm formation66, the biofilm production was evaluated 
on 24 representative isolates using crystal violet method in standard conditions 
and in 1% glucose supplemented media67. Finally, the phagocytosis by leukocytes 
(monocytes, granulocytes, CD16+ neutrophils and CD16+CD11b+ neutrophils) 
from whole cord blood was investigated for a subset of five representative isolates 
of outbreak and basal strain groups, as described elsewhere68.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets supporting the results of this article are available from the Sequence 
Read Archive under accession no. PRJNA493527. Additional data on the 250 
strains are available in Supplementary Table 1.
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Extended Data Fig. 1 | CLONALFRAMEML analysis of recombination in S. capitis. Analysis was based on 55 genomes: all non-NRCS-A strains were 
included, however the clone NRCS-A was undersampled to avoid a statistical bias in favor of mutational changes. Dark blue horizontal bars indicate 
recombination events detected by the analysis.
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Extended Data Fig. 2 | NRCS-A host types and genetic structure. a, NRCS-A isolates within an MSTREE based on the whole genome sequencing data. 
Each strain is represented by a circle or a fraction of a circle, colors correspond to different host types. Numbers indicate the mutational steps between the 
strains. b, Same data as above but represented in an MDS plot. c, Within NRCS-A diversity as assessed by mean pairwise SNP distances (N=197).  
d, Graphical chart representing the fraction of strains obtained from newborns in the basal, Proto-outbreak 1 and 2 and Outbreak strains.
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Extended Data Fig. 3 | Genome scan analysis of NRCS-A strains for detecting SNPs involved in local adaptation. a, Plot of the first 2 principal 
components (PC). The 197 NRCS-A strains are represented by points and colorized according to their phylogenic origin (Proto-outbreak 1 and 2 in blue, 
and Outbreak in red). PC 2 is the one separating the basal proto-outbreak 1 and 2 strains from the outbreak strains. b, Manhattan plot representing the 
3,658 SNPs and values obtained after performing Mahalanobis distances. The SNPs are colorized according to the PC to which they correlate most  
(PC1 = black, PC2 = red, PC3 = green and PC4 = blue).
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Extended Data Fig. 4 | Specific SNPs in Outbreak and Alpha isolates. Respectively 32 and 17 SNPs were specifically identified in Outbreak strains among 
NRCS-A strains (n=197) or in clade Alpha strains among Basal strains (n=53). Those SNPs were identified using PCADAPT.
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Extended Data Fig. 5 | Tertiary protein structures. a, Positions on the tertiary protein structure of outbreak specific non-synonymous mutations detected 
via PCADAPT and involved in antibiotic resistance (tigecycline and vancomycin). b, Positions on the tertiary protein structure of alpha-clone specific 
non-synonymous mutations for a set of two genes involved in cell wall synthesis. Visualization and predictions were executed by PHYRE2 software  
(http://www.sbg.bio.ic.ac.uk/phyre2).
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Extended Data Fig. 6 | Phenotypic and genotypic resistance patterns of S. capitis isolates. Phenotypic data of S. capitis isolates (n=250) were obtained 
from agar dilution and biomarkers of antibiotic resistance were detected using GENEFINDER. Comparison between groups of isolates was performed using 
two-sided Fisher exact test.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Phenotypic assays comparing a subset of representative isolates of each of the four subgroups identified by the 
phylogeographical analysis (Outbreak, Proto-outbreak 1, Proto-outbreak 2 and ‘other isolates’). In all 6 graphs, center values represent means. 
a, Culture supernatants cytotoxicity assay using THP1 cells, adjusted on a positive control (Triton) of 12 representative S. capitis isolates (two 
independent experiments in triplicate for each strains). b, Survival of strains (n=12) after 24 hours of persistence in desiccation conditions (two 
independent experiments in triplicate for each strains). c, Comparison of the doubling time of bacterial growth during the exponential phase in standard 
conditions (BHI) of 24 representative S. capitis isolates (three independent experiments in triplicate for each strains) and d, Under oxidative stress 
(ethanol-supplemented medium to a final concentration of 6.5%) (n=24 strains, three independent experiments in triplicate for each strains).  
e, Quantification of biofilm production of 24 representative S. capitis isolates using crystal violet method (expressed as optic densitometry at 590nm) 
(three independent experiments in triplicate for each strains). f, Phagocytosis index of monocytes and granulocytes from cord blood for a subset of  
5 representative isolates of “Outbreak” and “Basal” isolates (four independent experiments). Of note, results of phagocytosis of neutrophils and activated 
neutrophils are not represented here because they were similar to those with granulocytes.
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Extended Data Fig. 8 | Genes associated with vancomycin MIC and/or THD success index using DBGWAS. Here are represented genes with a -log10 
(HMP) > 7.5 on either axis, and/or > 5 on both axes, thus considered significant.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Prokka v 1.13

Data analysis The following software have been used to perform analyses, the references are cited in the manuscript: 
ClonalFrame ML 
SRST2 
SCCmecFinder 
SPAdes v3.8.0 
Bowtie2 
CRISPRcasFinder 
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PHYRE2 software online (http://www.sbg.bio.ic.ac.uk/phyre2) 
UCSF Chimera 
GeneFinder 
R version 3.3.2 
DBGWAS 0.5.4 
R package HARMONICMEANP 
MaGe 
NeighborNet
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data sets supporting the results of this article are available from the Sequence Read Archive (SRA) under BioProject no PRJNA493527
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We studied genomes and phenotypical features of a collection of 250 S. capitis isolates from adults, children and neonates from 22 
countries, including multiple representatives of the endemic NRCS-A clone, in order to retrace its spread and identify drivers of its 
specific success in NICUs. 

Research sample A collection of 250 Staphylococcus capitis strains has been built. This collection aimed to represent the diversity within S. capitis 
species among strains found in clinical samples.

Sampling strategy Microbiological laboratories worldwide (thanks to International consortium for Staphylococcus capitis neonatal sepsis) were asked to 
send a sample of their own collection of clinical S. capitis isolates to the French National Reference Center for Staphylococci, 
Hospices Civils de Lyon, France.  
All strains collected were included in the dataset.

Data collection Collection was obtained in the National Reference Center for Staphylococci, Hospices Civils de Lyon, France. DNA extractions were 
performed in England (Public HEalth England, London, UK). Genome sequencing was performed in Lille (Institut PAsteur, Lille, 
France). Sequence and dataset analysis were performed both in National Museum of Natural History, Paris, France and in National 
Reference Center for Staphylococci, Lyon, France. Phenotypical tests were performed in Public HEalth England, London, UK, in he 
National Reference Center for Staphylococci, Hospices Civils de Lyon, France, and in Institut de Biologie de la cellule (I2BC-UMR9198), 
Paris, France.

Timing and spatial scale Collection step was completed in 2015 that is why the more recent strain was isolated in 2015. Moreover, the oldest strain available 
in all laboratories contacted for the study was isolated in 1994. 
The spatial scale of the collection was as large as possible but was limited by the absence of Staphylococcus identification at the 
species scale in some countries (especially African countries, some laboratories in USA, some Asian countries).

Data exclusions After sequencing, several isolates were excluded from the analysis because of a misidentification of bacterial species (n=3) or 
because of a lack of sequence data quality (n=4). These exclusion criteria were pre-established to ensure high quality of the database.

Reproducibility not relevant in our study

Randomization not relevant in our study design

Blinding not relevant in our study design

Did the study involve field work? Yes No
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