
HAL Id: hal-03054987
https://hal.science/hal-03054987

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Artificial intelligence solution to classify pulmonary
nodules on CT

D. Blanc, V. Racine, A. Khalil, M. Deloche, J.-A. Broyelle, I. Hammouamri,
E. Sinitambirivoutin, M. Fiammante, E. Verdier, T. Besson, et al.

To cite this version:
D. Blanc, V. Racine, A. Khalil, M. Deloche, J.-A. Broyelle, et al.. Artificial intelligence solution to
classify pulmonary nodules on CT. Diagnostic and Interventional Imaging, 2020, 101 (12), pp.803-810.
�10.1016/j.diii.2020.10.004�. �hal-03054987�

https://hal.science/hal-03054987
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Artificial	intelligence	solution	to	

classify	pulmonary	nodules	on	CT		
 

Damien BLANCa, Victor RACINEa, Antoine KHALILb, Maxime DELOCHEc, Jean-Armand BROYELLEc, Ilyass 

HAMMOUAMRIc, Emrick SINITAMBIRIVOUTINc, Marc FIAMMANTEd, Emmanuel VERDIERd, Thibaud 

BESSONd, Alexandre SADATEe, Mathieu LEDERLINf, François LAURENTg, Guillaume CHASSAGNONh, 

Gilbert FERRETTIi, Yann DIASCORNj, Pierre-Yves BRILLETk, Lucie CASSAGNESl, Caroline CARAMELLAm, 

Antoine LOUBETn, Neelem ABASSEBAYo, Philippe CUINGNETo, Mickael OHANAp, Julien BEHRq, 

Angeline GINZACr,s,t, Hugo VEYSSIEREr,s,t, Xavier DURANDOr,s,t,u, Imad BOUSAÏDv, Nathalie LASSAUw, 

Julien BREHANTx 

Affiliations 

a. QuantaCell, IRMB, Hôpital Saint Eloi, 80 Avenue Augustin Fliche, 34090 Montpellier, France 

b. Department of Imaging, Neuroradiology unit, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital 

Bichat Claude Bernard, 75018 Paris, France 

c. IBM Cognitive Systems Lab, 34000 Montpellier, France 

d. IBM Cognitive Systems France, 92270 Bois-Colombes, France 

e. Department of Radiology and medical imaging, CHU Nîmes, Univ. Montpellier, EA2415, 30029 Nîmes, 

France 

f. Department of Radiology, Hôpital universitaire Pontchaillou, 35000 Rennes, France 

g. Department of thoracic and cardiovascular Imaging, Respiratory Diseases Service, Respiratory 

Functional Exploration Service, Hôpital universitaire de  Bordeaux, CIC 1401, F-33600, Pessac, France 

h. Department of radiology,  Hôpital Cochin, APHP. Université de Paris, 27 rue du Faubourg Saint Jacques, 

75014 Paris, France 

i. Department of Radiology and medical imaging, CHU Grenoble Alpes, 38700 Grenoble, France 

j. Department of radiology, Hôpital Universitaire Pasteur, Nice, France  

k. INSERM UMR 1272, Université Sorbonne Paris Nord, Bobigny, France; AP-HP, Department of radiology, 

Hôpital Avicenne, 93430 Bobigny, France 

l. Department of radiology B, CHU Gabriel Montpied, 63003 Clermont-Ferrand, France 

m.  Department of radiology, Institut Gustave ROUSSY, 94800 Villejuif,  France 

n. Department of neuroradiology, Hôpital Gui-de-Chauliac, CHRU de Montpellier, 34000 Montpellier, 

France  

o. Department of radiology, CH Douai, 59507 Douai, France 

p. Department of radiology, Nouvel Hôpital Civil, 67000 Strasbourg, France 

q. Department of radiology, CHRU de Jean-Minjoz Besançon, 25030 Besançon, France 

r. Clinical Research Unit,  Clinical Research and Innovation Delegation, Centre de Lutte contre le Cancer, 

Centre Jean PERRIN, 58, rue Montalembert, 63011, Clermont-Ferrand Cedex 1, France 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2211568420302497
Manuscript_40d044d85f6cba2add7d36218c224779

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2211568420302497
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2211568420302497


s.  Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 

Centre Jean PERRIN, 63011, Clermont-Ferrand, France 

t.  Clinical Investigation Centre, UMR501, 63011, Clermont-Ferrand, France 

u.  Department of medical oncology, Centre Jean PERRIN, 58, rue Montalembert, 63011 Clermont-

Ferrand, France  

v.  Digital Transformation and Information Systems Division, Gustave Roussy, 94800 Villejuif, France. 

w. Multimodal Biomedical Imaging Laboratory Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, 

Inserm, CNRS, CEA, 94800 Villejuif, France; Département d’imagerie, Institut Gustave Roussy, 94800 

Villejuif, France  

x.  Department of radiology, Centre Jean PERRIN, 58, rue Montalembert, 63011 Clermont-Ferrand, France 

 

 

Declaration of interest: None 

 

Corresponding author:  

Julien BREHANT  

Julien.brehant@clermont.unicancer.fr  



1 

 

Abstract 

Purpose: The purpose of this study was to create an algorithm to detect and classify 

pulmonary nodules in two categories based on their volume greater than 100 mm³ or not, 

using machine learning and deep learning techniques.  

Materials and methods: The dataset used to train the model was provided by the organization 

team of the SFR (French Radiological Society) Data Challenge 2019. An asynchronous and 

parallel 3-stages pipeline was developed to process all the data (a data “pre-processing” stage; 

a "nodule detection" stage; a “classifier” stage). Lung segmentation was achieved using 3D 

U-NET algorithm; nodule detection was done using 3D Retina-UNET and classifier stage 

with a support vector machine algorithm on selected features. Performances were assessed 

using area under receiver operating characteristics curve (AUROC). 

Results: The pipeline showed good performance for pathological nodule detection and patient 

diagnosis. With the preparation dataset, an AUROC of 0.9058 (95% confidence interval [CI]: 

0.8746-0.9362) was obtained, 87% yielding accuracy (95% CI: 84.83%-91.03%) for the 

"nodule detection" stage, corresponding to 86% specificity (95% CI: 82%-92%) and 89% 

sensitivity (95% CI: 84.83%-91.03%).  

Conclusion: A fully functional pipeline using 3D U-NET, 3D Retina-UNET and classifier 

stage with a support vector machine algorithm was developed, resulting in high capabilities 

for pulmonary nodule classification.  

Keywords: Lung cancer; Pulmonary nodule; Support vector machine; Deep learning; 

Machine learning. 

 

List of abbreviations 

2D: two-dimensional;  

3D: Three-dimensional;  

AI: Artificial intelligence;  

AUC: Area under the curve;  

AUROC: area under receiver operating characteristics curve;  

CAD: Computer-aided diagnostic;  
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CNN: convolutional neural network;  

CPU: Central processing units;  

CT: Computed tomography;  

FN: False negative;  

FP: False positive;  

GPU: Graphics processing units;  

HU: Hounsfield unit;  

LIDC: Lung Image Database Consortium;  

R-CNN: Region-based convolutional neural network;  

RFE: Recursive feature elimination;  

ROC: Receiver operating characteristics;  

SVM: Support vector machine 

Introduction 

 Lung cancer has the highest mortality rate among all malignant tumors [1]. It is an 

aggressive disease carrying a dismal prognosis with a 5-year survival rate at 18%. In France, 

lung cancer remains a major public health problem because of its frequency, but especially the 

severity of the disease [2]. The key to reduce lung cancer mortality is the accurate diagnosis 

of pulmonary nodules at early-stage. Early detection and examination of lung nodules, which 

might be malignant, is necessary [3].  

 The National Lung Screening Trial study found in more than 53,000 (former-) heavy 

smokers that annual screening with low-dose computed tomography (CT) reduced lung 

cancer mortality and overall mortality by 20% and 6.7% respectively [4]. Screening studies 

using semi-automated volume measurements have shown higher accuracy and reproducibility 

compared to diameter measurements, and it has been shown that small nodules (those with a 

volume < 100 mm3 or diameter < 5 mm) are not predictive for lung cancer [5]. Radiologists 

spend countless hours carefully detecting small spherical-shaped nodules on CT images [6].  

 Artificial intelligence (AI) algorithms have demonstrated remarkable progress in 

image-recognition tasks. Methods ranging from convolutional neural networks (CNN) to 

variational auto encoders have found myriad applications in the field of medical image 
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analysis, propelling it forward at a rapid pace [7–11]. Computer-aided diagnostic (CAD) 

techniques are considered to have potential beyond human experts for accurate diagnosis of 

early pulmonary nodules. The sensitivity of all the selected works’ ability to detect pulmonary 

nodule ranges from 68.9% to 100%, and the false positive rates range from 0.138 to 38.8 per 

CT examination [12]. Some selected works achieved a sensitivity of greater than 90%, 

however, high sensitivity is usually associated with a high false positive rate. The CAD 

system has inherent limitations concerning the detection of advanced lung tumors, and the 

human eye is still necessary in these patients. Most recently, conventional CAD solutions that 

require visual confirmation to reduce false-positive calls [13] are being challenged by deep 

learning algorithms that have an inherent advantage of automatic feature exploitation [14]. 

The detection and classification of pulmonary nodules based on deep learning technology can 

continuously improve the accuracy of diagnosis through self-learning, and is an important 

means to achieve CAD [15].  

 The purpose of this study was to create an algorithm to detect and classify pulmonary 

nodules in two categories based on their volumes greater than 100 mm3 or not, using machine 

learning and deep learning techniques.  

Material and methods 

 This study has been entirely designed following the General Data Protection 

Regulation, as ensured by the French regulation office. Members of the AI groups who 

provided CT examinations have signed an ethical charter. All images were anonymized and 

pseudonymized. 

Dataset 

 The dataset used to train the model was provided by the Data Challenge 2019 group. It 

was composed by 1056 * 3D-DICOM CT images, with various resolutions and size (from 512 

× 512 × 130 to 512 × 512 × 1300). This dataset access was provided in three batches: 343 

DICOM patients with their related nodules annotation for the first month of development, 344 

DICOM patients with annotation 3 days before the final and 344 DICOM patients without 

annotation for the 2 hours final round. The whole dataset size was about 243 Gigabytes in 

total. 

 The methods for annotation were not consistent across the dataset. The location and 

size of the nodules were labelled as: 
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• a mark of a single voxel in the middle of the nodule  

• a larger spot in the middle of nodules on one single two-dimensional (2D) CT slice 

• a circle surrounding nodules on one single 2D CT slice  

• a 3D volume to segment the selected nodules 

• A few DICOM also annotated nodules smaller than 100 mm³ while it was below the 

challenge detection criteria. 

Processing pipeline 

 Our solution was based on a three-stage multithreaded pipeline implementing inter-

steps communication by asynchronous message passing (Figure 1). The first stage, named 

“pre-processing”, uniformed the DICOM data and generated lung segmentation, the second 

stage, named “deep learning”, detected potential nodules, the third stage, named 

“classification”, to classify nodules larger than 100 mm³ and classify if the patient had 

abnormal findings or not based on selected nodules features. 

 An orchestration mechanism managed the whole pipeline data workflow and 

supervised the underlying daemon processes. The main function of this scheduler was to 

parallelize across our 3-node cluster: efficiently dispatch images across the available 

resources (central processing units [CPUs] and graphics processing units [GPUs]) for parallel 

processing. The scheduler was based on bash scripts (Linux flock locking system) to ensure 

each file was only treated once by a job. It maintained a list of all the jobs that were 

completed, running or pending: a pre-processing job and an inference job for each image in 

the test dataset. It then checked availability of resources on the worker nodes and scheduled 

jobs on these resources when idle (through SSH connections to the worker nodes).  

 The pipeline was developed using a single IBM Power AC922 server offering 22 IBM 

POWER9 cores, 512 GB of system memory,4 Volta V100 NVIDIA GPU with 32 GB of 

graphical memory. This server was purposely designed for machine learning and deep 

learning tasks, providing good performance and robustness. We used additional machine for 

the final round of the data challenge.  

 Due to time constraint a parallelized processing by deploying the solution on a cluster 

of three IBM AC922 for a total for 60 POWER9 cores and 14 Volta 100 GPUs. The 

interconnection between the jobs was achieved using a fast networking interconnection 
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technology (InfiniBand EDR switch and adapters). The spectrum scale file system had three 

advantages: first, it removed the need to perform file transfers that was time consuming for 

larger 3D CT datasets. Second, it ensured consistency of data. Third it provided sustained 

high performances required during the challenge and better than network file system. 

Preprocessing 

 The pre-processing phases consist in images normalization and lungs segmentation. 

CT intensities (in Hounsfield unit [HU]) were clipped between -1200 and 600 to keep air, 

lungs up to bones densities. Lung segmentation was obtained with a 3D U-NET and CT 

intensities were normalized to HU. 

 Pre-processing is a powerful way to improve the accuracy of the nodule detection 

model, it helps remove unnecessary data information, by allowing the next pipeline stages to 

focus on relevant features for their task. Thus, we implemented a complex preprocessing stage 

for nodule region proposal network, mostly inspired from state of the art techniques. Lung 

mask was computed using a 3D semantic segmentation CNN model. A last scan intensity 

normalization step was performed to end the pre-processing phase.  

Lung segmentation using a 3D CNN model 

 The aim of the lung segmentation was to reduce the volume to explore for the next 

‘nodule detection’ pipeline stage and to improve the overall response time and avoid wrong 

detections of nodules outside lungs. It was implemented using a 3D CNN U-Net model and 

standards Python Computer Vision Techniques, provided by packages such as Pydicom, 

SimpleITK, nibabel and OpenCV. We have also used the IBM AC922 technology to train this 

network, which allowed increasing image resolution of the training dataset by 256³ instead of 

128³, which was initial the limit related to 32 gigabits graphical processing unit memory of 

NVIDIA V100. Once the model has inferred the lungs segmentation map from the resampled 

scan, a morphological closing was applied to the model’s output in order to prevent eventual 

holes in the lungs (Figures 2, 3) 

CT data transformation 

 The goal of this phase was to clean and normalize the initial 3D image and also 

remove unnecessary information for the next pipeline stage (Figure 4). Every processed 

image was then written on spectrum scale shared file system for robustness in case of failure. 
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A completion signal was sent to the scheduler, which marked the inference phase for the 

image as ready.  

 We resized the 878 CT data sets from Lung Image Database Consortium (LIDC) data 

to a pixel size of 1.4 × 0.7 × 0.7 mm3. The LIDC dataset were split in 80/20, giving 700 

patients for training, and 178 for validation. For each batch generated, patients were randomly 

picked and kept according to the presence or absence of one or more nodules in the 

corresponding scan. Then, for each chosen patient, a random crop of size 128 × 128 × 64 was 

performed. Data augmentation operations were then applied while respecting a constraint of 

distance between nodules and the edge of the image. The complete training of the algorithm 

lasted during 400 epochs. Each of the epochs corresponded to 150 iterations of the batch 

generation process. Since the network outputs were of different natures, the Retina UNet was 

trained using a combination of loss used for both segmentation and object detection problem. 

Nodule detection  

A deep learning pipeline was setup to identify nodules candidates for each DICOM dataset. 

Each candidates’ regions have been classified to determine whether it contains a nodule with 

a volume greater than 100 mm³. We used a Retina-UNet model that showed good 

performance for object detection [16]. This network takes advantage of the U-Net architecture 

and has been transferred successfully into 3D [17,18] and cancer detection (Figure 5). The 

network architecture is described in Figure 2. Most important meta-parameters are the patch 

size taken for tiling: 128 × 128 × 64. The U-shape of the algorithm has 5 steps (ResBlock) for 

down sampling then up-sampling. Models are trained using Adam optimizer with a 10^-4 

learning rate. For each batch generated, patients were randomly picked and kept according to 

the presence or absence of one or more nodules in the corresponding scan. Then, for each 

chosen patient, a random crop of size 128 x 128 x 64 is performed with a constraint of 

balancing crop without nodules (50%) and crop with nodules (50%). 

 Since the network outputs are of different natures, the Retina Unet was trained using a 

combination of loss used for both segmentation and object detection problem:  

 

LatexCommand : $\mathscr{L}_{Glob} = \mathscr{L}_{CE_{Box}} 

+\mathscr{L}_{Huber} + \frac{\mathscr{L}_{CE_{Pix}}+\mathscr{L}_{Dice}}{2}}$ 
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Where:  

• L_{CE_{Box}}(resp. L_{CE_{Pix}}): is the cross-entropy function for anchor boxes 

classification (resp. pixel classification). Minimizing this function is essential to 

improve the quality of the anchor box classifier (and pixel classification).  

• \mathscr{L}_{Huber} is the Huber loss function and reflects the distance between the 

true box coordinates and the predicted ones [19]. 

• \mathscr{L}_{Dice}} is the Dice loss function: this loss allows penalizing false 

positive pixel classification and is specially used for medical application [20].  

Feature extraction and nodule classification 

Nodule classification was only applied on Data Challenge data. Thirty-nine features were 

extracted from detected 3D regions (Figure 5):  

• Probability given by the deep learning detection (one feature) 

• Bounding box center, size and volume (7 features) 

• Minimum, maximum and median of pixel intensities (3 features) 

• For 7 different 3D segmentations: ratio of pixel above the threshold, volume of 

pixels above the threshold, ratio between average intensity above and below the 

threshold, number of objects above the threshold. 6 segmentations correspond to 6 

intensity thresholds (named T0 to T5) uniformly spread between minimum and 

maximum intensity values and the 6th segmentation is the segmentation obtained in 

the deep learning step (4 × 7 = 28 features)  

 The SVM allowed classify the status of patients in the Data Challenge. To classify 

positive nodules according to the annotation, a support vector machine (SVM) classifier was 

used and the posterior probabilities for each nodule were extracted. A linear kernel was used 

in order to avoid overfitting. To measure the performance of the classifier, a cross validation 

(5 folds) procedure was setup (Figure 6). Feature selection algorithm was used to eliminate 

unnecessary features. Recursive feature elimination (RFE) was used [21]. Area under ROC 

curve (AUROC) was used as performance metric over the cross validation, considering that 

AUROC indicates general performance of the classifier [23]. The confident intervals were 

calculated using a 10-fold cross validation. 
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Results 

 During the Data Challenge, we had two hours to process 344 new patients, including 

extracting the ZIP archive containing the dataset. The workload itself was mostly hold by 

CPUs units. As each AC922 server had 36 physical cores, hence allowing to pre-process more 

than 100 images in parallel on three servers. Pre-processing required 3.5 min per DICOM, 

mostly used for lung segmentation. Data heterogeneity and data format were handled using 

dedicated DICOM and annotation loader. The training of the deep learning step lasted 4 days. 

The training process was stopped earlier in order to respect time constraint. For object 

detection problem, both classification and localization of bounding boxes outputs needed to 

be evaluated. The best model used for the challenge was selected by maximizing the average 

precision up to 0.87 [22].  

 The AUROC for patient classification (based on linear SVM) using all 39 features was 

0.8811. To optimize it, a feature selection algorithm was used: recursive feature elimination 

(RFE) [21]. The AUC was maximized at 0.9022 after removing 30 features. Ten features were 

kept with 1 feature giving the probability of presence from the deep learning algorithm, 2 

features describing the width of the nodule candidate, 2 features describing the UNet Mask 

Segmentation and the 5-remaining described the segmentation at different thresholds. On 10 

remaining features, several optimizations were applied, leading to an AUROC of 0.9058. First 

a fixed threshold T was applied to remove nodule candidates with a probability score lower 

than the threshold. Then we defined a weight for the two classes in the SVM parameter to 1 

for the benign nodules and C for the malignant one. Both parameters T and C were optimized 

using force brut strategies learning to optimal parameters T = 0.1 and C = 2.1. Finally, we 

tried to improve the AUROC by increasing the order of the polynomial kernel up to 2 to 5 

while it was originally set to 1 (1 corresponding to a linear kernel). We found that increasing 

the order did not improve AUROC, and then we kept 1 as kernel order. 

 Finally, we obtain an AUROC of 0.9058 (95% confidence interval [CI]: 0.8746-

0.9362). Considering false negative and false positive findings as equally problematic, the 

specificity was 86% (95% CI: 82%-92%), sensitivity 89% (95% CI: 88.70-92.72%) and 

accuracy 87% (95% CI: 84.83%-91.03%). On the 687 patients, number of true positives was 

301, number of false-negatives was 43, number of true negatives was 297 and number of 

false-positives was 46. We found 4 non-solid or part-solid pulmonary nodules and 3 were 

accurately detected while one was missed. 
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Discussion 

 In four weeks, we have built a fully functional solution leveraging open source 

frameworks, algorithms to win the Data Challenge 2019. This study shows good 

performances to detect pulmonary nodules greater than 100 mm3 in a very limited time. Based 

on observations in high-risk patients from lung cancer screening trials a cut diameter below 6 

mm (100 mm3) is proposed by most recent guidelines as an indicator of acceptably low cancer 

risk (< 1%). AI can help us to tackle this challenge by creating an “augmented radiologist”. 

Machine-learning classifiers are used to predict the malignance and after deep learning, 

especially the convolutional neural network, who might be suitable for pulmonary nodule 

classification when characterized by small medical datasets and small targets [15,24-27]. 

 This study gives good performances in terms of all metrics measured including 

AUROC (0.9058), sensitivity (89%) and specificity (86%). The developed system presents 

excellent performance using various databases coming from different hospitals, and with 

different data acquisition protocols. An improved approach might have been to provide more 

annotated data, or using GPU with larger memory. With larger memory size, tile size can be 

larger, and more spatial information can be captured by deep learning algorithms. We did not 

manage to train correctly the network with tile size of 256 × 256 × 64. With that tile size, we 

could not load more than 4 tiles on the GPU in the network. With such small batch size, the 

training procedure would have converged too slowly, but this will probably be possible with 

GPUs next generation. In this study we have used tile size of 128 × 128 × 64 tiles with a batch 

size of 26. A larger batch size would allow reducing the iteration noise and would converge 

faster. Detection can be improved by segmenting more precisely the lung because some errors 

rise from true nodules localized on the pleura leading the preprocessing algorithm to consider 

the nodule outside of the lung. Another way to improve the system is the classification of the 

nodule candidates. In this study we used machine learning technique because the number of 

patients was low. With a larger dataset we would be able to use 3D deep-learning system 

classifiers that show good performance in 3D medical imaging [28,29]. Finally, some 

improvements can be obtained by focusing on some situation leading to errors like pulmonary 

condensations or non-solid and part-solid pulmonary nodules. Those situations should be 

considered as additional classes and separated for the rest of nodules such as their confusion 

is decreased [30]. To meet the schedule of the JFR data Challenge, we could manually 

segment the images in the JFR datasets. Therefore, we decided to use the LUNA16- LIDC 

DataSet for deep learning model training to detect nodules [31]. LIDC dataset is similar to 
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JFR one but with high quality segmentation nodules. However, we used the JFR dataset to 

learn the final status of the patients.  

 Researchers have developed an AI scheme to predict the invasive degree of ground-

glass nodules by using a residual learning architecture [31]. They showed that deep learning 

scheme yielded equivalent or even higher performance when compared with the radiologists, 

and residual learning–based CNN model could improve the performance in classifying 

between invasive adenocarcinoma and non- invasive adenocarcinoma nodules [31]. 

Radiomics is also useful to detect lung nodules, and allows examining large volumes of 

complex data to identify precise characteristics or outcomes. In the setting of lung nodules 

and lung cancer, radiomics is aimed at deriving automated quantitative imaging features that 

can predict nodule and tumor behavior non-invasively [32]. 

 Our study has some limitations. First, we were only interested in nodules greater than 

100 mm3. The quality of the deep learning detection is highly dependent on the diversity 

learned in the training dataset, and then nodules will be correctly detected only if closed 

examples are found in the training dataset. 

 In conclusion, our results are very encouraging, in particular for a precise and fast 

detection of pulmonary nodules using CT examination. This will need further cooperation 

between engineers specializing in deep learning, data scientists and radiologists to build 

solutions suitable to clinical practice. 

Acknowledgments 

The authors acknowledge all radiologists who supplied chest CT examinations for the data 

challenge and the Clinical Research Department of Jean PERRIN Cente.  

Human rights 

The authors declare that the work described has been carried out in accordance with the 

Declaration of Helsinki of the World Medical Association revised in 2013 for experiments 

involving humans. 

Informed consent and patient details 

The authors declare that this report does not contain any personal information that could lead 

to the identification of the patients. 



11 

 

Funding 

This work did not receive any grant from funding agencies in the public, commercial, or not-

for-profit sectors. 

Disclosure of interest 

The authors declare that they have no competing interest. 

Author contributions 

All authors attest that they meet the current International Committee of Medical Journal 

Editors (ICMJE) criteria for Authorship. 

  



12 

 

References 

 

[1] Chassagnon G, Revel MP. Lung cancer screening: Current status and perspective. 

Diagn Interv Imaging 2016;97:949–53. 

[2] Gounant V, Khalil A, Créquit P, Lavole A, Ruppert AM, Antoine M, et al. 2014 update 

on non-small cell lung cancer (excluding diagnosis). Diagn Interv Imaging 2014;95:721–5. 

[3] Winer-Muram HT. The solitary pulmonary nodule. Radiology 2006;239:34–49. 

[4] Aberle DR, DeMello S, Berg CD, Black WC, Brewer B, Church TR, et al. Results of 

the Two Incidence Screenings in the National Lung Screening Trial. N Engl J Med 

2013;369:920–31. 

[5] Horeweg N, van Rosmalen J, Heuvelmans MA, van der Aalst CM, Vliegenthart R, 

Scholten ET, et al. Lung cancer probability in patients with CT-detected pulmonary nodules: a 

prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol 

2014;15:1332–41.  

[6] Jung H, Kim B, Lee I, Lee J, Kang J. Classification of lung nodules in CT scans using 

three-dimensional deep convolutional neural networks with a checkpoint ensemble method. 

BMC Med Imaging 2018;18:48.  

[7] Lassau N, Bousaid I, Chouzenoux E, Lamarque JP, Charmettant B, Azoulay M, et al. 

Three artificial intelligence data challenges based on CT and MRI. Diagn Interv Imaging 

2020; doi:10.1016/j.diii.2020.03.006. 

[8] Beregi J-P, Zins M, Masson J-P, Cart P, Bartoli J-M, Silberman B, et al. Radiology and 

artificial intelligence: An opportunity for our specialty. Diagn Interv Imaging 2018;99:677–8. 

[9] Waymel Q, Badr S, Demondion X, Cotten A, Jacques T. Impact of the rise of artificial 

intelligence in radiology: what do radiologists think? Diagn Interv Imaging 2019;100:327–36. 

[10] Lassau N, Estienne T, de Vomecourt P, Azoulay M, Cagnol J, Garcia G, et al. Five 

simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI. Diagn Interv 

Imaging 2019;100:199–209. 

[11] Artificial intelligence and medical imaging 2018: French Radiology Community white 

paper. Diagn Interv Imaging 2018;99:727–42. 



13 

 

[12] Zhang G, Jiang S, Yang Z, Gong L, Ma X, Zhou Z, et al. Automatic nodule detection 

for lung cancer in CT images: a review. Comput Biol Med 2018;103:287–300. 

[13] National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, 

Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed 

tomographic screening. N Engl J Med 2011;365:395–409. 

[14] International Early Lung Cancer Action Program Investigators, Henschke CI, 

Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, et al. Survival of patients with stage I 

lung cancer detected on CT screening. N Engl J Med 2006;355:1763–71. 

[15] Zhao X, Liu L, Qi S, Teng Y, Li J, Qian W. Agile convolutional neural network for 

pulmonary nodule classification using CT images. Int J Comput Assist Radiol Surg 

2018;13:585–95. 

[16] Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. 

IEEE Trans Pattern Anal Mach Intell 2020;42:318–27. 

[17] Liao F, Liang M, Li Z, Hu X, Song S. Evaluate the malignancy of pulmonary nodules 

using the 3-D deep leaky noisy-OR network. IEEE Trans Neural Netw Learn Syst 

2019;30:3484–95.. 

[18] Jaeger PF, Kohl SAA, Bickelhaupt S, Isensee F, Kuder TA, Schlemmer HP, et al. 

Retina U-net: embarrassingly simple exploitation of segmentation supervision for medical 

object detection. PMLR 2019;116:171–83. 

[19] Huber PJ. Robust estimation of a location parameter. Ann Math Statist 1964;35:73–

101. 

[20] Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC. Morphometric analysis of 

white matter lesions in MR images: method and validation. IEEE Transactions on Medical 

Imaging 1994;13:716–24.. 

[21] Sanz H, Valim C, Vegas E, Oller JM, Reverter F. SVM-RFE: selection and 

visualization of the most relevant features through non-linear kernels. BMC Bioinformatics 

2018;19:432. 

[22] Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A. The Pascal Visual 

Object Classes (VOC) Challenge. Int J Comput Vis 2010;88:303–38.  



14 

 

[23] Nibali A, He Z, Wollersheim D. Pulmonary nodule classification with deep residual 

networks. Int J Comput Assist Radiol Surg 2017;12:1799–808.  

[24] Baldwin DR, Gustafson J, Pickup L, Arteta C, Novotny P, Declerck J, et al. External 

validation of a convolutional neural network artificial intelligence tool to predict malignancy 

in pulmonary nodules. Thorax 2020;75:306–12. 

[25] Li D, Mikela VB, Carlsen FJ, Albrecht-Beste E, Lauridsen C, Bachmann Nielsen M, 

et al. The performance of deep learning algorithms on automatic pulmonary nodule detection 

and classification tested on different datasets that are not derived from LIDC-IDRI: a 

systematic review. Diagnostics 2019;9. 

[26] El-Bana S, Al-Kabbany A, Sharkas M. A two-stage framework for automated 

malignant pulmonary nodule detection in CT scans. Diagnostics 2020; 

doi:10.3390/diagnostics10030131. 

[27] González Maldonado S, Delorme S, Hüsing A, Motsch E, Kauczor H-U, Heussel CP, 

et al. Evaluation of prediction models for identifying malignancy in pulmonary nodules 

detected via low-dose computed tomography. JAMA Netw Open 2020;3:e1921221. 

[28] Oh K, Chung YC, Kim KW, Kim WS, Oh IS. Classification and visualization of 

Alzheimer disease using volumetric convolutional neural network and transfer learning. Sci 

Rep 2019;9:18150. 

[29] Feng C, Elazab A, Yang P, Wang T, Zhou F, Hu H, et al. Deep learning framework for 

Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access 2019;7:63605–18. 

[30] Tu X, Xie M, Gao J, Ma Z, Chen D, Wang Q, et al. Automatic categorization and 

scoring of solid, part-solid and non-solid pulmonary nodules in CT images with convolutional 

neural network. Sci Rep 2017;7:8533. 

[31] Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard C van den, Cerello P, et al. 

Validation, comparison, and combination of algorithms for automatic detection of pulmonary 

nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 

2017;42:1–13. 

[31] Gong J, Liu J, Hao W, Nie S, Zheng B, Wang S, et al. A deep residual learning 

network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT 

images. Eur Radiol 2020;30:1847–55. 



15 

 

[32] Wilson R, Devaraj A. Radiomics of pulmonary nodules and lung cancer. Transl Lung 

Cancer Res 2017;6:86–91. 

 

  



16 

 

FIGURE CAPTIONS  

Figure 1. Figure shows proposed solution as a 3-stage pipeline. 

Figure 2. Figure shows effect of morphological closing on lung mask 

Figure 3. Figure shows segmentation process from CT data to obtain three-dimensional 3D view 

of lungs in an individual patient. 

Figure 4. Figure shows iterative steps of pre-processing. The initial scan intensities (A) are 

loaded and normalized in Hounsfield Unit (HU). They are resampled to match a given slice 

thickness that correspond roughly to the average slice thickness of the dataset and are clipped 

within a given range to limit the impact of extreme values. Then the lung mask (B) is dilated (C) 

and every pixel outside this dilated version is set to some padding value matching the HU 

intensity of a normal tissue (C) to remove everything outside the patient’s lungs, yet keeping the 

context that characterizes the nodules at the edges of the lungs. Finally, remaining bones (E) are 

removed using voxel intensity thresholds (based on the known HU range for bones) in the 

dilated lung mask version and padded to the same HU value matching normal tissues (F).  

Figure 5. Figure shows retina-UNet architecture. Retina-UNet architecture consists of different 

unified blocks of networks and subnetworks. The block (A) is a Feature Pyramid Network (FPN) 

based on ResNet architecture and it composes of a bottom-up (A) and a top-down pathway. The 

bottom-up pathway allows feature extraction while decreasing successively the features maps 

resolution. Then the top-down pathway applies an upsampling operation to each layer and 

merges it with the previous layer. The last layer of the top-down pathway is used to output a 

segmentation mask (C) while less resolved layers generate the features maps inputs for the 

second block used for object detection (C). Boxes are detected by applying block (D) at different 

resolution. During this stage, anchor boxes of different size are generated on the input feature 

map. Regions of interest correspond to a positive bounding box with shift, computed through an 

anchor boxes classifier and an anchor boxes coordinates regressor. Block (E) details operations 

represented by different arrows.  

Figure 6. Figure shows feature extraction and nodule classification. The patient based cross 

validation is showed in A. AUC calculation from a patient list in B. The feature selection process 

with RFE showing the iterative in blue in C. The X labels correspond (from left to right) to the 

ordered list of features iteratively removed. Thus, the first feature removed is InitScoreFeature, 

and then BBCenterX. The red point in C corresponds to the optimal RFE iteration. This iteration 

corresponds to the removal of the features located on the red point’s left: features from 

InitScoreFeature up to BBWidthY are removed. In D, the different feature optimization are 

displayed, starting with the full set of features (InitScoreFeature), then set of feature after RFE 

(ScoreFeatureSelection), then optimization of the weight and threshold on low probability 

(ScoreBestThreshold&Weight) and finally the optimization on the polynomial order 

(ScoreBestPolyOrder). 
















