
HAL Id: hal-03054568
https://hal.science/hal-03054568v1

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entanglement dynamics in dissipative photonic Mott
insulators

Kaelan Donatella, Alberto Biella, Alexandre Le Boité, Cristiano Ciuti

To cite this version:
Kaelan Donatella, Alberto Biella, Alexandre Le Boité, Cristiano Ciuti. Entanglement dynamics in
dissipative photonic Mott insulators. Physical Review Research, 2020, 2 (4), �10.1103/PhysRevRe-
search.2.043232�. �hal-03054568�

https://hal.science/hal-03054568v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW RESEARCH 2, 043232 (2020)

Entanglement dynamics in dissipative photonic Mott insulators

Kaelan Donatella ,1 Alberto Biella ,2,1 Alexandre Le Boité ,1 and Cristiano Ciuti 1

1Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS-UMR7162, 75013 Paris, France
2JEIP, USR 3573 CNRS, Collège de France, PSL Research University, 11 Place Marcelin Berthelot, 75321 Paris Cedex 05, France

(Received 27 April 2020; accepted 20 October 2020; published 13 November 2020)

We theoretically investigate the entanglement dynamics in photonic Mott insulators in the presence of particle
losses and dephasing. We explore two configurations where entanglement is generated following the injection
or extraction of a photon in the central site of a chain of cavity resonators. We study the entanglement negativity
of two-site reduced density matrices as a function of time and intersite distance. Our findings show that in
spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation
speeds related to the different quasiparticles that are involved in the dynamics, namely photonic doublons and
holons respectively. Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two
configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.

DOI: 10.1103/PhysRevResearch.2.043232

I. INTRODUCTION

After being a subject of early intense debate at the dawn
of quantum mechanics [1,2], entanglement is now recog-
nized as a key feature of quantum physics [3]. The efforts
towards building a complete mathematical description of this
notion were instrumental in the development of quantum in-
formation. In this context, the core of the theory is centered
around three main tasks: detecting [4], quantifying [5], and
manipulating entanglement [6]. The progress made on these
three fronts would allow outperforming classical methods in
the fields of metrology [7], cryptography [8], and computa-
tion [9].

In addition to providing sound foundations to the field
of quantum information, entanglement theory has also paved
the way to new discoveries in other areas of physics. As
anticipated at the beginning of the millennium [10], quan-
tities such as the entanglement entropy have proved to be
very valuable tools for characterizing the ground-state wave
function of many-body quantum systems [11–13]. The study
of entanglement in many-body systems has not been restricted
to their ground-state properties: entanglement dynamics and
its propagation in space in quantum systems has also been the
subject of intense research activities for spin chains [14–16]
and fermionic [17] and bosonic systems [18–21]. These works
were important in inspecting the validity and limits of predic-
tions about Lieb-Robinson bounds in lattice systems, as well
as providing information about the properties and excitations
of complex many-body systems.
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Extending these investigations to open quantum systems
represents a timely frontier of research [22] that is of funda-
mental importance because much less is known with respect
to the state of the art in isolated quantum many-body sys-
tems at thermal equilibrium or exhibiting unitary Hamiltonian
dynamics. Whereas in general experimentalists try to pro-
tect their system from interacting with its environment, other
approaches based on the general concept of “reservoir en-
gineering” try to exploit the openness of a system and take
advantage of judiciously designed dissipation to reach non-
trivial quantum states in the transient regime [23] or in the
steady state [24]. In recent years, experimental progress in
tailoring effective photon-photon interactions in cavity and
circuit quantum electrodynamics (QED) devices has lead to
the emergence of controllable quantum optical many-body
systems [25–27]. Unlike most condensed matter setups where
the system is close to thermal equilibrium, this new class of
systems are open quantum platforms in which intrinsic losses,
due to the photon finite lifetime, have to be compensated by
an external coherent or incoherent driving.

In the past years, several works have been devoted to
transport properties of strongly correlated photonic plat-
forms [28–31]. However, only a few exist regarding en-
tanglement and correlation propagation in driven-dissipative
systems, which mainly focus on free fermion systems [17,32].
The recent experimental demonstration of dissipatively stabi-
lized photonic Mott insulators [24] in chains of superconduct-
ing microwave resonators paves the way to the exploration of
such an exciting frontier.

In this paper, we theoretically explore the physics of
entanglement propagation in photonic Mott insulators, show-
ing genuine physical effects associated to the openness of
such systems. In contrast to most works about correlation
propagation in interacting bosonic systems, here we do not
consider global quenches of the system that typically consist
in abruptly changing the value of the interaction strength in
all the lattice [19,21]. Instead, we consider two configurations
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where one photon is injected or removed from one cavity
in the middle of a chain and investigate the propagation of
entanglement that is produced between distant sites as a func-
tion of time and of their spatial separation. Such a study is
achieved by monitoring the negativity of two-site reduced
density matrices, that witnesses entanglement. We show a
strikingly different role of photon dissipation in the two con-
figurations.

II. SETUP

Let us consider a chain of L coupled nonlinear electromag-
netic resonators described by a Bose-Hubbard Hamiltonian:

H =
L∑

i=1

(ωcb†
i bi + U

2
b†

i b†
i bibi ) − J

L−1∑

i=1

(b†
i bi+1 + H.c.), (1)

with ωc the cavity mode frequency, U the photon-photon
(Kerr) on-site interaction, J the nearest-neighbor photon hop-
ping coupling, and bi (b†

i ) the annihilation (creation) photon
operators for each site. The physical systems described by
the Bose-Hubbard Hamiltonian include, but are not limited
to, lattices of microwave resonators in circuit QED plat-
forms [25,33–37], semiconductor microcavities [25,38] and
ultracold gases in optical lattices [39,40]. These systems
exhibit dissipation and dephasing due to the coupling to
the environment. In cold atom systems dephasing is dom-
inant [21] while for microwave photons in circuit QED
platforms particle loss is typically the most important chan-
nel [35,41]. Within an open quantum systems approach, the
time evolution of the system density matrix ρ can be described
by the following Lindblad master equation [42]:

dρ

dt
= −i[H, ρ] + 1

2

L∑

i=1

∑

C
2J (C)

i ρJ (C)†
i − {

J (C)†
i J (C)

i , ρ
}
,

(2)
with J (C)

i the jump operator for the ith site and the dissipation
channel C. When the temperature is low enough and the ther-
mal photon occupancy is negligible, the jump operator for the
particle loss channel (C = l) due to the finite photon lifetime
reads J (l )

i = √
γ bi, where γ is the photon loss rate. The pure

dephasing channel (C = d) due to fluctuations in the environ-
ment is described by the jump operator J (d )

i = √
2�d b†

i bi, with
�d the pure dephasing rate.

A. Strongly correlated regime

In this work we will focus on the strongly correlated limit
U � J . In such a regime, in order to describe the physics
of a photonic Mott insulator with one photon per site, we
can safely truncate the local Hilbert space to two photons
per site by retaining only the |0〉, |1〉, and |2〉 Fock number
states. The validity of this assumption was carefully tested
numerically by increasing the local Hilbert space cutoff. A
Mott insulator phase corresponding to one photon per site for
U � J is approximately described by the factorized state

|�Mott〉 = |1〉1 ⊗ |1〉2 ⊗ · · · ⊗ |1〉L = |11 · · · 1〉 . (3)

In the regime of strong interactions, the Hamiltonian can be
diagonalized by using generalized Jordan-Wigner and Bo-
goliubov transformations [19], via a mapping to a spin-1

model. This leads to a quasiparticle picture containing two
types of fermionic-like excitations: doublons and holons. The
ground state (quasiparticle vacuum) corresponds to the Mott
insulator |�Mott〉 on top of which quasiparticles propagate.
These fermionic quasiparticles are described by local creation
operators d†

i and h†
i for doublons and holons respectively, such

that d†
i |1〉i = |2〉i , h†

i |1〉i = |0〉i.

B. Entanglement generation protocol

Since |�Mott〉 is a factorized state, an interesting question
is how to perturb such a photonic Mott insulator in order to
create entanglement in a simple way and study its propagation
in a direct fashion. In the following we will show that this
is possible by injecting (or removing) one photon from an
occupied site. As shown in the upper panels of Figs. 1 and 2,
we will consider such manipulation on the central site of a
linear chain of resonators. In the case of a photonic insulator
with a large U , this can be achieved simply by applying a
coherent π -pulse drive on the central site that induces a Rabi
rotation from the |1〉 to the |2〉 (or to the |0〉) Fock number state
in the considered site. We have explicitly verified that such
operation can be performed with fidelity close to 1 thanks to
the strong anharmonicity produced by the large on-site inter-
action U . This way, it is possible to prepare the state |�D〉 =
|1 · · · 2 · · · 1〉 (|�H 〉 = |1 · · · 0 · · · 1〉) where D (H) stands for
doublon (holon), corresponding to the injection of a single
localized excitation on top of the quasiparticle vacuum. In the
doublon case, the excess photon in the central site can hop to
the right nearest-neighbor site or, with the same probability,
to the left site. Due to the symmetry of the chain with respect
to the central site and the lack of which-path information,
such propagation creates an entangled state that can propagate
along the chain. For circuit QED platforms, a Mott insulator
can be prepared and maintained through an active stabilization
process [24]. In the following, we will consider the dissipative
dynamics of the system after the creation of the localized
doublon (holon) in the absence of stabilization.

C. Entanglement detection

In order to witness bipartite entanglement between two
partitions A and B of the system, we have considered the nega-
tivity function [43], defined as N (ρAB) = ∑

λ<0 |λ|, where the
sum is taken over the negative eigenvalues λ of ρ

�A
AB, which

is the partial transpose with respect to subsystem A of the
joint density matrix ρAB. In the following, A and B will be
two resonators at a distance r from the central cavity (i = ic).
The time-dependent negativity of the reduced density matrix
for these two sites at the positions ic−r and ic+r will be denoted
by Nr (t ). For systems with a relatively moderate Hilbert space
dimension, we can compute the time evolution of the full
density matrix of the system via an exact integration of the
master equation. Once we get the full density matrix, we can
trace out with respect to the degrees of freedom of all the sites
except the two sites under study.

In the regime where we can consider only the |0〉, |1〉, and
|2〉 states as local basis for a given site, we can reconstruct a
two-site reduced density matrix by exploiting the fact that any
Hermitian operator can be decomposed over the generators of

043232-2



ENTANGLEMENT DYNAMICS IN DISSIPATIVE PHOTONIC … PHYSICAL REVIEW RESEARCH 2, 043232 (2020)

0.0 0.1 0.2 0.3 0.4 0.5

Jt

0.00

0.05

0.10

0.15

0.20

0.25

N
eg

at
iv

it
y

r = 1

injectionDoublon

r = 2

r = 3
r = 4

γ/J = 0

γ/J = 0.08

γ/J = 0.17

γ/J = 0.25

γ/J = 0.33

J
ici1 ic+1ic−1 iL

γ
U

J

γ γ γγ

γ

J

γ γ γγ
U U

JT
im

e

t = 0

FIG. 1. Upper panel: sketch of the considered system, a chain
of coupled photonic resonators with on-site photon-photon inter-
action U and nearest-neighbor hopping coupling J . The top chain
depicts the initial time configuration with a Mott insulator of photons
(one photon per cavity) where a double occupation (doublon) has
been created in the central site i = ic. The bottom chain depicts
the configuration at a later observation time t , with entanglement
existing between distant sites. The photonic modes are subject to
losses and dephasing. Lower panel: entanglement negativity Nr (t )
between sites ic−r and ic+r as a function of time t for different
values of the spatial separation r = {1, 2, 3, 4} from the central site
ic. The shade of the lines gradually decreases going from r = 1 to
r = 4. Calculations were performed via MPO simulations (bond link
dimension χ = 200) on a chain of L = 20 cavity sites. For each
value of r, results for different values of the photon loss rate γ in
units of the hopping J are shown. The initial state at t = 0 is |�D〉
(see the text) corresponding to a doublon excitation localized in the
central site. In this figure, the pure dephasing rate �d is 0. The on-site
interaction for all the cavities is U/J = 33.3.

the group associated to its Hilbert space [44]. As we truncated
the local Hilbert space to states with up to two photons, the
generators of the SU(3)⊗ SU(3) group allows us to recon-
struct the reduced density matrix as

ρ
(2)
3 = 1

9

8∑

i1,i2=0

ri1i2

(i1 ) ⊗ 
(i2 ), (4)

with 
(i) the generators1 of the SU(3) group and

ri1i2 = 9〈
(i1 ) ⊗ 
(i2 )〉
tr[(
(i1 ) ⊗ 
(i1 ) )2]

.

Using this method we can reconstruct the two-site density
matrix for all times and obtain the entanglement negativity.
Since the Hermitian operators 
(i) can also be expressed as

1The nonzero matrix elements of the Hermitian 
(i) matrices, such
that 
(i)

r,s = (
(i)
s,r )�, are the following ones: 


(0)
11 = 


(0)
22 = 


(0)
33 = 1,



(1)
12 = 1, 
(2)

12 = −i, 
(3)
11 = −


(3)
22 = 1, 
(4)

13 = 1,
(5)
13 = −i, 
(6)

23 =
1, 


(7)
23 = −i, 


(8)
22 = 1/

√
3, and 


(8)
33 = −2/

√
3.
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FIG. 2. Upper panel: a sketch like Fig. 1, but where the initial
state has an empty central site (holon). Lower panel: temporal dy-
namics of the negativity with the same parameters as in Fig. 1, but
with an initial state |�H 〉 corresponding to a holon localized in the
central site.

a function of the bosonic creation and annihilation operators
up to their third-order power,2 this tomographic method can
be used in experiments to measure the two-site entanglement
negativity. Indeed, the measurement of expectation values of
moments of the photon fields has become a rather standard
procedure in circuit QED platforms (see, e.g., [45]). Note that
we have conveniently developed and used this approach for
numerical simulations based on the matrix product operator
(MPO) technique [28,46,47]. Indeed, MPO simulations are
effective to simulate longer chains of cavities but do not allow
for a direct access to the full system density matrix, an issue
that we bypassed with the procedure described above.

III. RESULTS AND DISCUSSION

In Fig. 1, we report results for the negativity Nr (t ) for
different values of r and of the photon loss rate γ (here no pure
dephasing is considered, �d = 0). The negativity shows a well
resolved peak for most values of the spatial separation r and
γ /J: increasing r delays the negativity peak, showing a clear
entanglement propagation. A revival peak of entanglement
is visible in the r = 1 curve at longer times.3 The value of

2The eight generators 
(i) can be expressed in terms of the bosonic
annihilation and creation operators. Namely, 
(1) = 1

2 (bb†2 + b2b†),

(2) = i

2 (b2b† − bb†2), 
(3) = 3
4 b2b†2 − 1

2 bb†, 
(4) = 1√
2
(b†2 + b2),


(5) = i√
2
(b2 − b†2), 
(6) = 1√

2
(b†2b + b†b2), 
(7) = i√

2
(b†b2 −

b†2b), and 
(8) = 1√
3
(bb† − b†b).

3Previous studies of two-qubit systems with non-Markovian envi-
ronments have revealed entanglement revival effects [48,49]. In our
system, the two-site dynamics is nonunitary and non-Markovian even
for γ = 0 since the other sites of the chain have been traced out for
the calculation of the negativity.
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FIG. 3. Entanglement propagation speed (units of J) versus the
normalized hopping J/U . Filled (blue) circles: entanglement speed
for the configuration corresponding to the injection of one additional
photon (doublon injection). Empty (red) circles: entanglement speed
for the holon injection. Solid (blue) thick line: maximal speed for
doublon quasiparticles in a closed Hamiltonian system. Thin (red)
solid line: maximal holon speed. Dashed lines are polynomial fits
with linear and quadratic terms in J/U . Error bars were estimated
taking into account uncertainty due to time discretization and to
the finite bond link dimension in the MPO calculations. Parameters:
γ /J = 0.1 and for the doublon (holon) configuration U/γ = 100
(1000).

the negativity peaks decreases with increasing dissipation γ .
However, it is remarkable that the entanglement propagation
speed is negligibly influenced by dissipation and remains es-
sentially ballistic. In Fig. 2, we report the analogous dynamics
of negativity for the other configuration where the holon state
|�H 〉 is prepared. With the same parameters as in Fig. 1, in
the holon case not only the propagation speed is slower, but
the role of dissipation is more dramatic, as we do not see any
peaks for the chosen values of γ /J as soon as r > 1.

A. Propagation speed

In Fig. 3, we report the calculated entanglement prop-
agation speeds versus J/U both for the case of photon
injection (doublon excitation) and extraction (holon excita-
tion). In the same plot, we have also reported the maximal
propagation speed of doublons and that of holons for
a closed system, namely vD

max = 4J[1 − 4J2

U 2 ] + O( J3

U 4 ) and

vH
max = 2J[1 + 17J2

2U 2 ] + O( J3

U 4 ). The fact that the predicted en-
tanglement speed for a closed system remains close to what
we observed in the dissipative case is striking. This means
that even in the presence of losses, the properties of the quasi-
particle picture remain valid.

B. Particle-hole asymmetry

The effect of dissipation for the two considered config-
urations is presented in Fig. 4 in which the peak value of
Nr=1 is plotted. To compare the genuine effect of dissipa-
tion and dephasing, we considered a holon propagation in a
chain with hopping coupling 2J and a doublon propagation
in a chain with hopping J in order to have the same speed
(for U/J � 1 the speeds differ by a factor 2). From the
peak value of the negativity (occurring at the same time),
we see that pure dephasing acts on the two cases in the
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FIG. 4. Peak value of Nr=1 (logarithmic scale) as a function of
the photon dissipation rate γ or dephasing �d . Thick (thin) solid
line: curve for the doublon (holon) configuration versus γ when
only photon particle losses are present (�d = 0). The holon injection
case has been calculated for a chain with a hopping coupling 2J to
have the same maximal speed of a doublon in a chain with hopping
coupling J (see text). Dashed (doublon) and dotted (holon) lines:
negativity peak versus �d when there is only the pure dephasing
channel (γ = 0). Parameters: L = 5, U/J = 100.

same identical way (dashed lines), with an exponential decay
of the negativity. Indeed, pure dephasing conserves the total
number of particles and does not break the particle-hole sym-
metry. On the other hand, in the presence of photon losses,
our investigation reveals a striking asymmetry between the
doublon (thick solid line) and holon (thin solid line) cases.
Indeed, the negativity vanishes much faster for the holon
configuration even when the speed is the same. The asym-
metry can be qualitatively understood if we consider the
quantum jump picture [50] for two sites that are entangled.
In the quantum jump picture, the density matrix is seen as
the statistical mixture of time-dependent quantum trajectories.
These quantum trajectories represent the time evolution of
the wave function of the system along with sudden changes
(quantum jumps) in the state of the wave function due to
physical processes such as particle losses, that are inherently
stochastic. In the holon case, by diagonalizing the reduced
density matrix associated to two entangled sites, we have
found that the entanglement is mostly due to the Bell state
|ψH,+〉 = 1√

2
(|0〉ic−r |1〉ic+r + |1〉ic−r |0〉ic+r ). In a single quantum

trajectory picture, a single quantum jump due to photon decay
in one of the two sites transforms such state into the factorized
state |0〉ic−r ⊗ |0〉ic+r . By contrast, in the doublon configura-
tion, the entanglement is mostly due to the state |ψD,+〉 =

1√
2
(|2〉ic−r |1〉ic+r + |1〉ic−r |2〉ic+r ). In this case, the quantum

jump produced by a photon loss in site ic−r produces the
(normalized) state 1√

3
(
√

2|1〉ic−r |1〉ic+r + |0〉ic−r |2〉ic+r ), which
is still entangled. A photon loss in site ic+r produces an
analogous state. The quantitative results in Fig. 4 show a
remarkable nonexponential dependence on both doublon and
holon negativity as a function of the dissipation rate. The
holon negativity becomes exactly zero for a finite value of the
dissipation γ whereas the decay in the doublon case slows
down for increasing values of γ . Indeed, the two-site reduced
density matrix satisfies an effective master equation, which is
in general non-Markovian as obtained by tracing out the other
degrees of freedom of the chain, whose dynamics is nontrivial.
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IV. CONCLUSION

In this paper, we have theoretically explored the physics of
entanglement propagation in photonic Mott insulators in the
presence of photon particle losses and dephasing. We have
investigated a scheme where the entanglement is generated by
injecting (or extracting) a photon from a site of a photonic
Mott insulator. We have introduced a relatively simple quan-
tum state tomography protocol, valid in the limit of strong
photon-photon interactions, to study the bipartite entangle-
ment properties. Our scheme is particularly suited for circuit
QED platforms exhibiting strong photon-photon interactions
and allowing the measurement of quantum optical correlation
functions between distant sites. In spite of the losses, the prop-
agation of the negativity peak exhibits a speed, which is close
to the doublon (holon) quasiparticle propagation speed respec-
tively in the case of the injection (extraction) of a photon.
Remarkably, the impact of particle losses is highly asymmet-
ric for these two configurations, while pure dephasing does

not break the doublon-holon symmetry. Our work paves the
way to new investigations on the entanglement propagation
in open quantum systems. A future interesting research direc-
tion is the characterization of the entanglement dynamics at
long times (diffusive vs ballistic) and the quest for universal
features underlying the dynamics of correlations in this class
of systems. Another challenging problem to be investigated
in the future, given the recent experimental success in the
dissipative stabilization of photonic Mott insulators [51], is
the search for protocols to stabilize entanglement propagation
in open quantum systems.
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