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ABSTRACT 

 

We propose an algorithm based on marker-controlled watershed and 

the monogenic signal phase asymmetry for the segmentation of bone 

and micro-vessels in mouse bone. The images are acquired using 

synchrotron radiation micro-computed tomography (SR-µCT). The 

marker image is generated with hysteresis thresholding and 

morphological filters. The control surface is generated using the 

phase asymmetry of the monogenic signal in order to detect edge-

like structures only, as well as improving detection in low contrast 

areas, such as bone-vessel interfaces. The quality of segmentation is 

evaluated by comparing to manually segmented images using the 

Dice coefficient. The proposed method shows substantial 

improvement compared to a previously proposed method based on 

hysteresis thresholding, as well as compared to using the gradient 

image as control surface. The algorithm was applied to images of 

healthy and metastatic bone, permitting quantification of both bone 

and vessel structures. 
 

Index Terms— synchrotron radiation, micro-tomography, 

watershed, monogenic signal, vessel segmentation. 
 

1. INTRODUCTION 
 

Breast cancer is one of the most common cancer in women, with 

approximately 508,000 deaths annually worldwide [1][2]. Around 

70% of patients with breast cancer develop bone metastases, leading 

to osteolytic and osteoblastic lesions [3]. Bone metastasis is 

currently incurable, and median overall survival times have been 

reported in the range of 24-65 months [4]–[6]. The vessel networks 

in bone is thought to play an important role in cancer and metastasis 

growth. In breast cancer bone metastasis, there is an abnormal 

growth of blood vessels in the bone [7]. 

Previously, three-dimensional (3D) X-ray µCT with a contrast 

agent has been used to visualize the bone vascularization [8]. This 

required demineralization of the bone however, precluding 

simultaneous quantitative analysis of bone and vessels.  

SR X-ray phase contrast CT has been used for the simultaneous 

visualization of calcified bone tissue and vasculature in C57BL/6 

mice post mortem without any staining or contrast agent [9]. 

However, due to the high resolution necessary for this imaging 

protocol, the field of view is limited. Further, the phase contrast in 

vessels was relatively weak, so that vessels had to be segmented 

manually, making the applicability to large data sets limited.  

X-ray µCT has been used to examine alterations in cortical 

bone micro-porosity, mineralization, and cancellous bone 

architecture due to estrogen deficiency in an ovariectomized rat 

model of postmenopausal osteoporosis [10]. In this study, the 

vessels were not directly imaged, but only cortical vascular canals. 

 
                       Fig. 1. Schematic of the imaging setup. 

 

We previously developed a protocol to simultaneously analyze in 

3D the micro-vascularization and bone structure in rat bone using 

SR-µCT images [11]. This protocol was based on hysteresis 

thresholding and morphological filtering, and permitted the 

quantification of large data sets.  

The aim of this work is to quantify bone and vascularization in 

mouse bone based on SR-µCT images. Transition from rats to mice 

makes models of many pathologies available, but presents a number 

of challenges. In mice bone, as opposed to rat, at the chosen imaging 

resolution (3.5 µm voxel size), vessels appear to be in contact with 

the bone surface, precluding the use of hysteresis thresholding for 

the separation of bone and vessels. In addition, the contrast between 

bone and vessels contrast agent may be weaker. 

To this aim, we present a 3D segmentation method based on 

the marker-controlled watershed algorithm [12] to separate bone and 

vessel compartments. An important step for this algorithm is the 

generation of markers. Here, we assume three segments: bone, 

vessels and background. Ideally, the marker image should contain 

no false positives, while including a marker in each connected 

component of each compartment. For this purpose, we used 

hysteresis thresholding and morphological filters. The other 

essential step is the generation of a control surface image from the 

image to be segmented, where the “flooding” of the watershed 

algorithm happens. Classically, the gradient of the original image is 

used. Due to the relatively low contrast between bone and vessel 

compared to vessel or bone to background, the gradient image does 

not yield a satisfying segmentation. Therefore, we propose to use the 

local phase asymmetry derived from the monogenic signal to 

generate the control surface, which quantifies whether the image is 

locally odd (edge-like) or even (line-like). This measure has the 

interesting property of invariance to signal intensity [13][14].  

The algorithm was evaluated using manually segmented 

volumes extracted from the original data. Segmentation quality was 

measured using the Dice coefficient. The method was compared to 

our previous method based on hysteresis thresholding as well as 

marker-controlled watershed on the gradient. The proposed method 

shows substantial improvement. The algorithm was used to extract 

parameters to characterize bone and vessel structure in healthy and 

metastatic bone. 



 

Fig. 2. Generation of the marker image for the marker-controlled watershed. 

2. MATERIALS AND METHODS 
 

2.1. Sample preparation and image acquisition 

 

8 week-old female Balb/c nude mice were inoculated with 

luciferase-expressing human B02 breast cancer cells in the tail artery 

[15]. 22 days after the inoculation of tumor cells, the mice were 

sacrificed. The mice were perfused with contrast agent in the 

vascular system for imaging. We consider here two groups of 

samples: healthy and metastatic, with 5 mice per group. 

Imaging was performed using SR-μCT at the European 

Synchrotron Radiation Facility (ESRF) on the ID19 beamline. A 

sketch of the experimental setup is shown in Fig. 1. The X-ray 

energy was set to 26 keV using the first harmonic of undulator 

radiation. Exposure time was set to 0.15 s per radiograph for 

approximately 8 minutes acquisition for one sample. 2000 

radiographs of the sample were recorded using a 2048×2048 pixel 

CCD-based detector at evenly spaced angles of view over a 360° 

rotation. This gave a field of view (FOV) as a cylinder of diameter 

7 mm. At the end, 2000×2000×1200 voxels 3D images with an 

isotropic voxel size of 3.5 μm were reconstructed from the 

projections using filtered back-projection. 

 

2.2. Marker based watershed 
 

The marker-controlled watershed algorithm permits to initialize the 

watershed from seeds in the image, which are known by some means 

[12]. This can reduce the number of iterations of the watershed 

algorithm, and simplifies the merging the resulting segments. The 

marker image should ideally contain at least one segment in each 

connected component of each class, while having a false positive 

rate close to zero. Here, we propose to use hysteresis thresholding 

and morphological thinning to generate the marker image. 

Markers are generated for three segments in the image: bone, 

vessels and background. The procedure for the segmentation of the 

markers are given in Fig. 2. Background markers are given by blue 

arrows. Hysteresis thresholding is used to make an initial 

segmentation of the background. In order to ensure a low false-

positive rate, one iteration of morphological thinning is applied. 

Vessels markers are given by red arrows (Fig. 2). As with the 

background markers, an initial segmentation is performed using 

hysteresis thresholding which is followed by one iteration of 

morphological thinning. Bone markers are given by green arrows 

(Fig. 2). First, both bone and vessels are segmented together using 

hysteresis thresholding. Then, the vessel markers are subtracted and 

morphological opening is used to remove isolated small particles. 

Finally, one iteration of morphological thinning is applied to 

minimize false positives. Background markers, vessel markers, and 

bone markers are shown in blue, red and green respectively in the 

final marker image (Fig. 2). 

 

2.3. Monogenic signal phase 
 

To steer the watershed algorithm, a control surface is generated from 

the original image. This can be the image itself, but is often based 

on the magnitude of the gradient. Here, the magnitude of the 

gradient does not perform satisfactory, due to the relatively low 

contrast at interfaces between bone and vessel, compared to vessel 

or bone to background. To alleviate this problem, we propose to use 

the local phase asymmetry of the 3D monogenic signal as the control 

surface for the watershed algorithm. The monogenic signal phase 

has the interesting property of being invariant to signal intensity: it 

only depends on the local shape of the signal. Here, we want to 

detect edge like structures only, so that a line yields two edge 

responses. For this purpose, we use the phase asymmetry measure, 

which quantifies whether the signal is locally odd (edge like) or even 

(line like).  

The monogenic signal is the isotropic and multidimensional 

extension of 1-D analytic signal [14]. The 3D monogenic signal is 

formed by the combination of the original signal and and three 

components that are Riesz transforms of the original signal [16]:      

                𝑓𝑚(𝒙) = (𝑓(𝒙), 𝑅1𝑓(𝒙), 𝑅2𝑓(𝒙), 𝑅3𝑓(𝒙))                   (1) 

𝑹𝑓(𝒙) = (𝑅1𝑓(𝒙), 𝑅2𝑓(𝒙), 𝑅3𝑓(𝒙))                                (2) 

where 𝑓(𝒙) is the original image, 𝑹 is the Riesz transform and 𝒙 =
(𝑥1, 𝑥2, 𝑥3) ∈  ℝ3 are the spatial coordinates. The Riesz operator 

component 𝑅𝛼: ℝ3 ⟼ ℝ is characterized by its frequency response  

 

Fig. 3. Illustration of 3D edge detection. (a) zoom in an original gray 

level image, (b) gradient magnitude image. (c) multiscale 3D 

asymmetry computed from the monogenic signal; 



                 ℱ[𝑅𝛼𝑓](𝝎) =  −𝑗
𝜔𝛼

‖𝝎‖
𝑓(𝝎), 𝛼 = 1, … ,3         (3) 

where 𝝎 = (𝜔1, 𝜔2, 𝜔3) ∈  ℝ3 is the angular frequency variable 

conjugate to 𝒙. 𝛼 gives the 3D direction of the Riesz transformed 

components, corresponding to the directions of the basis vectors. ℱ 

is the Fourier transform operator. Since structure may be scale 

dependent, features at a useful scale have to be isolated, usually by 

the use of bandpass filters [13]. Here we use log-Gabor filters. Thus, 

the 3D monogenic signal 𝑓𝑚𝑔(𝒙) is constructed as: 

𝑓𝑚𝑔(𝒙) = 

(𝑓(𝒙) ∗ 𝑔(𝒙), 𝑅1𝑓(𝒙) ∗ 𝑔(𝒙), 𝑅2𝑓(𝒙) ∗ 𝑔(𝒙), 𝑅3𝑓(𝒙) ∗ 𝑔(𝒙))    (4) 

where 𝑔(𝒙) is the spatial domain representation of the log-Gabor 

filter, and ∗ denotes convolution operation. The 3D monogenic 

signal can also be expressed in terms of its even and odd 

components, which yields [17]: 

                        𝑓𝑚𝑔(𝒙) = 𝑓𝑚𝑔𝑒(𝒙) + 𝑖 ∗  𝑓𝑚𝑔𝑜(𝒙)                                (5) 

where the even component is  

                      𝑓𝑚𝑔𝑒(𝒙) = 𝑓(𝒙) ∗ 𝑔(𝒙),         (6) 

and the odd component 

                      𝑓𝑚𝑔𝑜(𝒙) = (∑ |𝑅𝛼𝑓(𝒙) ∗ 𝑔(𝒙)|23
𝛼=1 )1/2                       (7) 

For the detection of edges in the image, we use the multiscale 

phase asymmetry measure, which is given by [13]:                           

𝐴(𝒙) = ∑
⌊|𝑓𝑚𝑔𝑜,𝜆𝑖

(𝒙)|−|𝑓𝑚𝑔𝑒,𝜆𝑖
(𝒙)|−𝑇⌋

√(𝑓𝑚𝑔𝑜,𝜆𝑖
(𝒙))2+(𝑓𝑚𝑔𝑒,𝜆𝑖

(𝒙))2+𝜖
𝑖                             (8) 

where T is a threshold for setting the sensitivity and suppressing 

noisy signals, ⌊. ⌋ is an operator which replaces negative values with 

zero, 𝜖 is small number to avoid division by zero, and {𝜆𝑖} are a set 

of center-wavelengths (𝜆𝑖=2𝜋 𝜔𝑖⁄ ) of the log-Gabor filters. 

 

3. RESULTS 

 

Qualitative results of the 3D edge detection are shown in Fig. 3: (a) 

shows the original image, which is a zoom on a 2D slice from the 

3D volume. The red arrows show low contrast interfaces between 

bone and vessel. Fig. 3 (b) shows the magnitude of the gradient. The 

boundary between bone and vessel can not be detected due to the 

low contrast. Fig. 3 (c) shows the multiscale 3D phase asymmetry 

of the original image using (λ=6,7,8). Lower scales contain too 

much edge details so that useful structures can not be recognized. 
Conversely, higher scales miss too many details. Edge detection at 

the low contrast interfaces between bone and vessel is substantially 

improved using the phase asymmetry, compared to the magnitude 

of the gradient. There are some spurious edges detected in 

homogeneous areas in the vessels. The contrast is relatively weak, 

however, and these edges, being inside solid areas, are always 

covered by a marker. Hence they do not influence the segmentation.  

Fig. 4 illustrates the relationship between markers and control 

surfaces, and shows segmentation using hysteresis and watershed 

using a gradient based control surface. Fig. 4 (a) shows the original 

image, (b) shows the markers superposed on the gradient based 

control surface. Vessel markers are shown in red, bone markers in 

green, and background markers in blue. Fig. 4 (c) shows the markers 

 
Fig. 4. Illustration of 3D segmentation results. (a) original image, 

(b) vessels marker (red), bone marker (green), background marker 

(blue) and the gradient based control surface. (c) markers and the 

monogenic signal phase based control surface. (d) segmentation 

result using hysteresis thresholding. (e) segmentation using gradient 

control surface based marker watershed. (f) segmentation with the 

proposed method using marker-controlled watershed and 

monogenic phase asymmetry. 

 

overlayed on the monogenic phase asymmetry based control 

surface. Fig. 4 (d) shows the segmentation result using hysteresis 

thresholding, (e) shows the segmentation using the gradient based 

control surface watershed, and (f) shows the segmentation using the 

monogenic phase asymmetry based control surface watershed.  

To validate the segmentation results, a representative volume 

(64×64×64 voxels) was manually segmented using VGStudio Max 

(Volume Graphics GmbH, Heidelberg, Germany). 

Segmentation quality was measured using the Dice coefficient. 

The proposed method was compared to our previous protocol based 

on hysteresis thresholding as well as to marker-controlled watershed 

using a control surface based on the magnitude of the gradient. A 

comparison is shown in Tab. 1. The proposed method substantially 

improved segmentation in terms of the Dice coefficient.  

 

 
Fig. 5. 3D rendering volumes. (a) bone and vessel rendering in 

healthy group. (b) bone and vessel rendering in metastases group. 

(c) vessel rendering in healthy group. (d) vessel rendering in 

metastases group. 



TABLE 1. Dice coefficient for the different methods 

Dice Vessel Bone Background 

Hysteresis 

thresholding 

0.8434 0.8055 0.8517 

Gradient + 

watershed 

0.9234 0.9127 0.9300 

Monogenic + 

watershed 

0.9695 0.9240 0.9711 

 

3D renderings of a healthy sample and a sample with 

metastases segmented using the proposed method are shown in Fig. 

5. The metastatic sample shows evident large bones lesions. 

Comparing (c) and (d), vessels in the metastatic sample appear 

thicker than in the healthy sample, which indicates an increased and 

abnormal vascularization, as expected. 

Bone volume (BV) and vessel volume (VV) were measured by 

counting voxels in the corresponding compartments. Total volume 

(TV) of the samples was considered as the volume spanned by the 

outer contour of the bone. In order to compare the different samples, 

the normalized ratios: BV/TV, VV/TV were calculated. Mean vessel 

thickness (V.Th) was also extracted. Box plots of these parameters 

are shown in Fig. 6. Normal distribution of the parameters was 

verified using the Lilliefors test (p > 0.05). BV/TV was significantly 

lower in the metastatic group (ANOVA F-test, p < 0.05), which is 

consistent with the apparent large metastatic lesions visible in Fig. 5 

(b). Although there was no significant difference in VV/TV (p = 

0.30) and V.Th (p = 0.09), possibly due to the limited sample size, 

the box plots in Fig. 6 still indicate that VV/TV and V.Th is 

increased in the metastatic bone, meaning there are both more and 

thicker vessels in the metastatic bone.  
 

4. CONCLUSION  
 

We presented an algorithm to segment bone and vessels in 3D SR-

μCT images of mouse bone with contrast agent, using the marker-

controlled watershed on the monogenic signal phase asymmetry. 

The marker-controlled watershed permitted to address the problem 

of having vessels in contact to the bone surface, which precludes the 

correct use of hysteresis thresholding. In addition, the introduction 

of the monogenic signal phase asymmetry as control surface brought 

a substantial improvement of the segmentation of the relatively 

weakly contrasted bone and vessel interfaces. Our evaluation using 

manually segmented images showed substantial improvement in 

segmentation quality using the proposed method, compared to using 

hysteresis thresholding as well as using a gradient based control 

surface in the marker-controlled watershed. The algorithm was used 

to analyze healthy and metastatic bone. Several quantitative 

parameters were extracted to characterize bone and vessel structure. 

Statistical analysis revealed a decrease in bone volume, and 

indicated an increase in vessel volume and thickness in metastatic 

bone, as expected. The proposed protocol will be used to study the 

effects of anti-angiogenic drugs in bone metastasis. 
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