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We statistically study vortex reconnections in quantum fluids by evolving different realizations of vortex
Hopf links using the Gross–Pitaevskii model. Despite the time reversibility of the model, we report clear
evidence that the dynamics of the reconnection process is time irreversible, as reconnecting vortices tend to
separate faster than they approach. Thanks to a matching theory devised concurrently by Proment and
Krstulovic [Phys. Rev. Fluids 5, 104701 (2020)], we quantitatively relate the origin of this asymmetry
to the generation of a sound pulse after the reconnection event. Our results have the prospect of being tested
in several quantum fluid experiments and, theoretically, may shed new light on the energy transfer
mechanisms in both classical and quantum turbulent fluids.
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Introduction.—Irreversibility emerges naturally in most
interacting systems characterized by a huge number of
degrees of freedom. Its manifestation is associated to a
time-symmetry breaking: the arrow of time appears inher-
ently defined in the dynamics and an experienced observer
is able to distinguish what are before and after.
In dissipative systems the arrow of time naturally reflects

the dynamics that minimizes the energy. Classical viscous
fluids present valuable examples. When no external forces
are applied, an initial laminar flow decays in time until its
kinetic energy is totally converted into heat. A less simple
example is the particle pair dispersion in turbulent flows.
Although two tracers separate from each other backward
and forward in time with the same Richardson scaling, their
rates are different [1]: particles separate slower forward in
time than backward.
Conservative (energy-preserving) systems are more

subtle. The arrow of time is defined only in a statistical
sense by exploiting an entropy function that approaches its
extremal as time progresses. The simplest example of this
kind is the free-expansion experiment of a gas: even if the
gas particles interact microscopically through conservative
collisions, on average their macroscopic position and
velocity distribution obeys the Boltzmann kinetic equation
which is time irreversible.
Quantum fluids are exotic types of fluids characterized

by the total absence of viscosity, thus being conservative.
Examples of such systems are superfluid liquid helium [2]

and Bose-Einstein condensates (BECs) made of dilute
gases of bosons [3], Cooper-paired fermions [4], or massive
photons [5]. As a consequence of the wave nature of their
bosonic constituents, quantum fluids have two striking
properties: vortices arise as topological defects in the order
parameter and their circulation takes only discrete multiples
of the quantum of circulation Γ ¼ h=m, where h is the
Planck constant and m is the boson’s mass. These defects,
referred to in the following as vortex filaments, present a
complicated dynamics which still misses a general solution.
A key point in such dynamics is the occurrence of
reconnection events. A vortex reconnection is the process
of interchange of two sections of different filaments; see the
sketch in Fig. 1(a). It happens at small spatial and fast
timescales [6], and allows the filament topology to vary.
For the sake of simplicity, we consider in this Letter a

quantum fluid described by a single scalar order parameter.
In the limit of zero temperature, this quantum fluid
accommodates only two distinct excitation families:
vortex-type excitations, in the form of filaments, and
compressible density-phase excitations, that is sound
waves. While the full dynamics is energy preserving, the
energy may continually flow between these two excitation
families. In this perspective, we provide a statistical
analysis over many realizations of vortex reconnections,
unveiling an inherent irreversible dynamics of the
reconnection process. Moreover, we show how the linear
momentum and energy transfers, from vortex-type
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excitations to compressible density-phase excitations, are
related to the geometrical parameters (macroscopic recon-
nection angle and concavity parameter) of the reconnecting
filaments, explaining the origin of such irreversibility.
Main results.—We choose an initial configuration char-

acterized by a Hopf link vortex filament, see Fig. 1(b),
where (almost) all the superfluid kinetic energy is stored
into the vortex-type excitations. Similarly to vortex knots,
the Hopf links naturally decay into topologically simpler
configurations [7–9] by performing a set of vortex recon-
nections. To study the Hopf link evolution, we use the
Gross-Pitaevskii (GP) model, a nonlinear partial differ-
ential equation formally derived to mimic the order
parameter ψ of a BEC made of dilute locally interacting
bosons, but qualitatively able to mimic a generic quantum
fluid [10]. The GP equation, cast in terms of the healing
length ξ and the sound velocity c, reads

i
∂ψ
∂t ¼ c

ffiffiffi
2

p
ξ

�
−ξ2∇2ψ þ m

ρ0
jψ j2ψ

�
; ð1Þ

where ρ0 is the bulk superfluid density and m the mass of a
boson. When the GP equation is linearized about the
uniform bulk value jψ0j ¼

ffiffiffiffiffiffiffiffiffiffiffi
ρ0=m

p
, dispersive effects arise

at scales smaller than ξ and (large-scale) sound waves
effectively propagate at speed c. In this Letter lengths and
times are expressed in units of ξ and τ ¼ ξ=c, respectively.
Thanks to the Madelung transformation, ψðx; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ=mp

exp½iϕðx; tÞ=ð ffiffiffi
2

p
cξÞ�, Eq. (1) can be inter-

preted as a model for an irrotational inviscid barotropic
fluid of density ρ and velocity v ¼ ∇ϕ. Vortices arise as
topological defects of circulation Γ ¼ h=m ¼ 2

ffiffiffi
2

p
πcξ and

vanishing density core size order of ξ [11]. In the previous
formula, h is the Planck constant.
We evolve a Hopf link prepared by superimposing two

rings of radius R ¼ 18ξ, obtained by using a Newton-
Raphson and biconjugate-gradient technique [12] to ensure
a minimal amount of compressible energy; details on the
numerical scheme and on the generation of the initial
condition are in the Supplemental Material [13]. A set of 49
different realizations are obtained by changing the offsets
ðd1; d2Þ of one ring as sketched in Fig. 1(b), taking di ∈
½−9ξ; 9ξ� with unit step of 3ξ. During the evolution one or

more reconnection events occur. It has been shown [14–17]
that about the reconnection event, the distance between the
two filaments behaves as

δ�ðtÞ ¼ A�ðΓjt − trjÞ1=2; ð2Þ

where A� are dimensionless prefactors and tr is the
reconnection time; the superscripts − and þ label the cases
before and after the reconnection, respectively. In each
Hopf link realization, we carefully track [18] all reconnect-
ing events and measure A�. The measured values of δ2ðtÞ
for all the 71 analyzed reconnections are shown in Fig. 2;
the best-fit A� are plotted in red dots in the inset of Fig. 2.
Remarkably, the reconnecting filaments always separate
faster (or at an almost equal rate) than they approach; that
is, Aþ ≥ A−. The clear asymmetry recorded in the δ2 versus
t − tr and in the distribution of the A�’s is the fingerprint of
the irreversible dynamics characterizing the vortex recon-
nection process. For completeness, we also report in the
inset of Fig. 2, using different symbols, the prefactor
measurements obtained in previous works [15,16], which
corroborate even further our results. Finally note that in a

FIG. 1. (a) Sketch of a vortex reconnection event in quantum fluids. At the reconnection time tr the reconnecting filaments are locally
tangent to the plane xOy, here depicted in gray, and form the reconnecting angle ϕþ. The vorticity of the filaments is depicted with
gray arrows. (b) The Hopf link initial condition used to create the different realizations, with visual indication of the offset
parameters ðd1; d2Þ.
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FIG. 2. Squared distances versus time of the reconnecting
filaments measured in all the 49 realizations. The gray-scale
color indicates the estimated value of Aþ=A− in each case. Inset:
values of approach and separation prefactors Aþ and A−. Red
points correspond to data of the present work. Gray left- and
right-facing triangles correspond to reconnections of free and
trapped vortices, respectively, from Galantucci et al. [16]; other
symbols from Villois et al. [15].
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recent work [19], it has been reported that vortex recon-
nections in the Navier-Stokes equation also display a clear
t1=2 scaling, a coefficient A− ∼ 0.3–0.4 and the same time
asymmetry Aþ > A−. Note that the Biot-Savart (BS)
analytical calculations of Ref. [20] and the local induction
approximation based ones of Ref. [21] predict A− ∼ 0.47
and A− ¼ 0.427, respectively, which are in agreement with
our GP measurements. In what follows, we quantitatively
relate the asymmetry in the distribution of the prefactors
with the irreversible energy transfer between the vortex-
type and density or phase excitation families occurring
during a reconnection event. Previous numerical studies of
the GP model have indeed reported the clear emission of a
sound pulse during reconnection events [22,23]. A series of
snapshots showing the sound pulse emitted during the
decay of the Hopf link in one of our realizations is reported
in Ref. [24].
The simple linear theory neglecting the nonlinear term of

the GP model [14,15], valid in the limit δ� → 0, provides
insight into the dynamics of reconnecting parameters as the
order parameter can be found analytically. It predicts that
the filaments reconnect tangent to a plane, in our reference
frame the z ¼ 0, see Fig. 1(a), and that the projections of
the filaments onto it approach and separate following
the branches of a hyperbola. The macroscopic (post)
reconnection angle, formed by the hyperbola asymptotes,
results in

ϕþ ¼ 2arccotðArÞ; where Ar ¼ Aþ=A−: ð3Þ

the projections of the filaments onto the orthogonal plane
y ¼ 0 form a parabola (not shown in here; see Ref. [24] for
more details). Without any loss of generality, we set Λ=ζ
the concavity of such a parabola, and we refer to Λ as the
concavity parameter, where ζ is an arbitrary length scale,
whose value is not important in the following discussion.
In all the reconnection events detected, we observe a

distinct sound pulse generated after the reconnection
and propagating toward the positive z axis, as shown in
Figs. 3(a) and 3(b). Figure 3(c) shows the behavior of the
superfluid density along the z direction versus times t − tr.
A (depression) sound pulse is generated soon after the
reconnection and propagates toward the positive z direction
at a speed qualitatively close to the speed of sound in the
bulk; refer to the green dashed line z ¼ cðt − trÞ, with c
defined in Eq. (1). Note that the other low density regions,
corresponding to the density depletions of the vortex cores,
move much slower.
To explain the generation and directionality of such a

pulse, we devise a novel theoretical approach, detailed in
Ref. [24], and summarize in the following. Let us denote
by R�

1 ðs; tÞ and R�
2 ðs; tÞ the reconnecting filaments, with

s being their spatial parametrization variable. Far from
the reconnection point (both before and after), the
dynamics of the vortex filaments are mostly driven by

the Biot-Savart model, which describes the motion of
δ-supported vorticity in an incompressible inviscid
flow [25]; note that this limit can be formally derived
from GP [26]. In our realizations, BS is valid at distances
δ�ðtÞ ≫ δlin, whereas for δ�ðtÞ ≪ δlin the dynamics is
determined by the linear approximation, given δlin is a
crossover scale of order of the healing length. We assume
both descriptions approximately valid when the filaments
are at the distance δ�ðt�Þ ≈ δlin. This hypothesis, vali-
dated by previous GP simulations [15,16], allows us to
perform an asymptotic matching.
We can therefore compute the difference, before and

after the reconnection, of BS linear momentum ΔPfil using
the positions of the filaments R�

1 ðs; t�Þ and R�
2 ðs; t�Þ

coming from the linear approximation. As shown in
Ref. [24], note that these depend only on the reconnection
angle ϕþ (or equivalently Ar) and the concavity param-
eter Λ. Within BS, the linear momentum is given as the line
integral PfilðtÞ ¼ ðρ0=2ÞΓ

H
Rðs; tÞ × dRðs; tÞ [27]. As the

total linear momentum of the superfluid is conserved in GP
[28], the linear momentum carried by the sound pulse
created after the reconnection must compensate the loss of
linear momentum accounted by ΔPfil and reads [24]

Ppulse ¼ −ΔPfil ∝ ð0; 0; 2 cscϕþÞ; ð4Þ

independently of the δlin chosen. This result is remarkable:
the sound pulse linear momentum is (overall) nonzero only
in the positive z direction, as observed in all our recon-
nection events, and its amplitude is independent of Λ and
minimal for ϕþ ¼ π=2.

FIG. 3. Three-dimensional rendering of the density field. White
contours display the vortices and density fluctuations are ren-
dered in blue-redish colors: (a) reconnection time and (b) at
t − tr ≈ 40τ. (b) The positive direction of the z axis is also
depicted with a white arrow. (c) Spatiotemporal plot of density
along the z axis about the reconnection event denoted by the blue
central point. The two dashed green lines are z ¼ cðt − trÞ; here,
the reconnection point (0,0) is represented by the blue dot.
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The same matching theory can be applied to estimate the
amount of energy transferred to the sound pulse. Following
the standard energy splitting protocol in GP [29], the
superfluid kinetic energy is decomposed into a compress-
ible component EC

kin, associated to sound excitations, and
an incompressible component EI

kin, associated to vortex-
type excitations. In all our realizations, we observe a sharp
growth of EC

kin during each reconnection event. An example
of its evolution, normalized by the total (constant) energy
Etot, is shown in the inset of Fig. 4: here the red dot
indicates the reconnection time and the green region
indicates the times when δ�ðtÞ ≤ δlin ¼ 6ξ. The increase
of EC

kin during the reconnection event is related to the loss of
incompressible kinetic energy EI

kin. For all the reconnection
events measured in our realizations, we compute the energy
transferred to the sound pulse as Epulse ¼ −ΔEI

kin, where
ΔEI

kin ¼ EI
kinðtþÞ − EI

kinðt−Þ. Figure 4 shows the measured
Epulse=Etot data versus Ar: there is clear correlation between
these two quantities, with a best-fit scaling of Epulse=Etot ∝
ðAr − 1Þ0.71.
To the simplest approximation, called local induction

approximation, the BS superfluid kinetic energy is propor-
tional to the total length of the filaments. As the repre-
sentations R1ðs; tÞ and R2ðs; tÞ have infinite lengths (as in
the linear regime they do not close) we choose to account
only for the length of finite sections of the filaments
contained in a cylinder of radius R ≫ δlin, centered at
the reconnection point and parallel to the z axis. Evaluating
Epulse reduces thus to the computation of the difference
ΔLðAr; jΛj=ζ; δlin; R=δlinÞ of the length of these sections;
see [24] for more details. As the total GP energy is
conserved, we have that

Epulse=Etot ¼ −ΔL=L0; ð5Þ

given L0 is the initial length of the Hopf link filament. For
any given choices of δlin and R, all the admissible values of
the theoretical estimation ΔL, rendered in cyan color in
Fig. 4, are bounded between two lines obtained setting
Λ ¼ 0 (dashed line) and jΛj → ∞ (solid line). The GP data
are all distributed within these admissible values, thus
confirming the accuracy of the matching theory.
Remarkably, the estimation of Epulse explains in a

straightforward way the time asymmetry between the rates
of approach and separation reported in Fig. 2 and its inset.
Independently on thevalue of the concavity parameterΛ, the
energy of the sound pulse is only non-negative when
Aþ ≥ A−, meaning that unless energy is externally provided
to the reconnecting vortices, it is energetically impossible to
have a reconnection event where Aþ < A−, or equivalently,
where ϕþ > π=2.
Closing remarks.—In this Letter we reported numerical

evidence of the irreversible dynamics of vortex reconnec-
tions in a scalar quantum fluid and explain its origin thanks
to a matching theory developed concurrently in Ref. [24].
This theory is based on very general physical consider-
ations and give bounds for the energy of the pulse emitted
during a reconnection event. However, it cannot determine
the exact value of the reconnecting angle and, thus, the one
of Aþ=A−. Our results can be extended to more compli-
cated quantum fluids where nonlocal interactions and/or
higher order nonlinearities are included, like BECs
with dipolar interactions, cold Fermi gases, and superfluid
liquid 4He.
In quantum fluid experiments, the detailed study of

vortex reconnections is still in its infancy. In current BECs
made of dilute gases, reconnecting vortices are created only
in a nonreproducible way using fast temperature quenches
[30]; however, new protocols have been proposed to create
vortices in a reproducible manner [31]. In such setups, once
the reconnection plane is identified, it should be feasible to
measure the rates of approach and separation and detecting
directionality of the sound pulse, using, for instance, Bragg
spectroscopy [32]. In superfluid liquid 4He experiments,
vortex reconnections have been detected so far only at
relatively high temperature where the normal component is
non-negligible [33]. This latter may provide energy but also
dissipates it through mutual friction; hence, measuring
experimentally the distribution of the rates of approach and
separation at different temperatures would be particularly
desirable.
Finally, let us come back to the concept of irreversibility.

In the realizations presented in this Letter, almost all of the
superfluid kinetic energy is initially stored in the vortex-
type excitations. This is likely to cause the observed
statistical asymmetry in the distribution of the rates of
approach and separation to be maximized. At finite temper-
atures or in a turbulent tangle, fluctuations can provide
extra energy to reduce this asymmetry, perhaps allowing
also for ϕþ > π=2, but the time asymmetry should in

FIG. 4. Relative energy transferred to waves during the re-
connection process. The cyan zone denotes the allowed values
from the matching theory. Inset: relative increase of compressible
kinetic energy (solid blue) about a reconnection event (denoted
by the red dots) for a typical realization. The green area
corresponds to the interval defined by δ�ðtÞ ≤ δlin ¼ 6ξ.
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principle remain as an inherent mechanism allowing the
system to reach the equilibrium. From a fluid dynamical
point of view, let us remark that vortex reconnections are
allowed and regular, in classical fluids due to the presence
of viscosity, while in quantum fluids thanks to a dispersive
term. Showing whether the resulting dynamics of these two
different fluids are equivalent or not, in the limit where their
respective regularization scale tends to zero, is an appealing
open problem. Comparing the results presented in this
Letter with a similar study in Navier-Stokes or a carefully
regularized Biot-Savart model might provide some insight
on the spontaneous stochasticity and the dissipative
anomaly of turbulent flows, two concepts closely related
to irreversibility.
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