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Abstract 133 

 134 

Building trust in science and evidence-based decision-making depends heavily on the 135 

credibility of studies and their findings. Researchers employ many different study designs 136 

that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we 137 

empirically quantify, on a large scale, the prevalence of different study designs and the 138 

magnitude of bias in their estimates. Randomised designs and controlled observational 139 

designs with pre-intervention sampling were used by just 23% of intervention studies in 140 

biodiversity conservation, and 36% of intervention studies in social science. We 141 

demonstrate, through pairwise within-study comparisons across 49 environmental datasets, 142 

that these types of designs usually give less biased estimates than simpler observational 143 

designs. We propose a model-based approach to combine study estimates that may suffer 144 

from different levels of study design bias, discuss the implications for evidence synthesis, 145 

and how to facilitate the use of more credible study designs. 146 

 147 

Introduction 148 

 149 

The ability of science to reliably guide evidence-based decision-making hinges on the 150 

accuracy and credibility of studies and their results1,2.  Well-designed, randomised 151 

experiments are widely accepted to yield more credible results than non-randomised, 152 

‘observational studies’ that attempt to approximate and mimic randomised experiments3. 153 

Randomisation is a key element of study design that is widely used across many disciplines 154 

because of its ability to remove confounding biases (through random assignment of the 155 

treatment or impact of interest4,5). However, ethical, logistical, and economic constraints 156 

often prevent the implementation of randomised experiments, whereas non-randomised 157 

observational studies have become popular as they take advantage of historical data for new 158 

research questions, larger sample sizes, less costly implementation, and more relevant and 159 

representative study systems or populations6–9. Observational studies nevertheless face the 160 

challenge of accounting for confounding biases without randomisation, which has led to 161 

innovations in study design. 162 

 163 

We define ‘study design’ as an organised way of collecting data. Importantly, we distinguish 164 

between data collection and statistical analysis (as opposed to other authors10) because of 165 

the belief that bias introduced by a flawed design is often much more important than bias 166 

introduced by statistical analyses. This was emphasised by Light, Singer & Willet11 (p. 5): 167 



“You can't fix by analysis what you bungled by design...”; and Rubin3: “Design trumps 168 

analysis.” Nevertheless, the importance of study design has often been overlooked in 169 

debates over the inability of researchers to reproduce the original results of published 170 

studies (so-called ‘reproducibility crises’12,13) in favour of other issues (e.g., p-hacking14 and 171 

Hypothesizing After Results are Known or ‘HARKing’15). 172 

 173 

To demonstrate the importance of study designs, we can use the following decomposition of 174 

estimation error equation16: 175 Estimation	error	=	 Estimator	–	true	causal	effect =	(Design	bias	+	Modelling	bias	+	Statistical	noise). (1) 176 

 177 

This demonstrates that even if we improve the quality of modelling and analysis (to reduce 178 

modelling bias through a better bias-variance trade-off17) or increase sample size (to reduce 179 

statistical noise), we cannot remove the intrinsic bias introduced by the choice of study 180 

design (design bias) unless we collect the data in a different way. The importance of study 181 

design in determining the levels of bias in study results therefore cannot be overstated. 182 

 183 

For the purposes of this study we consider six commonly used study designs; differences 184 

and connections can be visualised in Fig.1. There are three major components that allow us 185 

to define these designs: randomisation, sampling before and after the impact of interest 186 

occurs, and the use of a control group. 187 

 188 

 189 

Of the non-randomised observational designs, the Before-After Control-Impact (BACI) 190 

design uses a control group and samples before and after the impact occurs (i.e., in the 191 

‘before-period’ and the ‘after-period’). Its rationale is to explicitly account for pre-existing 192 

differences between the impact group (exposed to the impact) and control group in the 193 

before-period, which might otherwise bias the estimate of the impact’s true effect6,18,19. 194 

 195 

The BACI design improves upon several other commonly used observational study designs, 196 

of which there are two uncontrolled designs: After, and Before-After (BA). An After design 197 

monitors an impact group in the after-period, while a BA design compares the state of the 198 

impact group between the before- and after-periods. Both designs can be expected to yield 199 

poor estimates of the impact’s true effect (large design bias; Equation (1)) because changes 200 

in the response variable could have occurred without the impact (e.g., due to natural 201 

seasonal changes; Fig.1). 202 

 203 



The other observational design is Control-Impact (CI), which compares the impact group and 204 

control group in the after-period (Fig.1). This design may suffer from design bias introduced 205 

by pre-existing differences between the impact group and control group in the before-period; 206 

bias that the BACI design was developed to account for20,21. These differences have many 207 

possible sources, including experimenter bias, logistical and environmental constraints, and 208 

various confounding factors (variables that change the propensity of receiving the impact), 209 

but can be adjusted for through certain data pre-processing techniques such as matching 210 

and stratification22. 211 

 212 

Among the randomised designs, the most commonly used are counterparts to the 213 

observational CI and BACI designs: Randomised Control-Impact (R-CI) and Randomised 214 

Before-After Control-Impact (R-BACI) designs. The R-CI design, often termed ‘Randomised 215 

Controlled Trials’ (RCTs) in medicine and hailed as the ‘gold standard’23,24, removes any pre-216 

impact differences in a stochastic sense, resulting in zero design bias (Equation (1)). 217 

Similarly, the R-BACI design should also have zero design bias, and the impact group 218 

measurements in the before-period could be used to improve the efficiency of the statistical 219 

estimator. No randomised equivalents exist of After or BA designs as they are uncontrolled. 220 

  221 

It is important to briefly note that there is debate over two major statistical methods that can 222 

be used to analyse data collected using BACI and R-BACI designs, and which is superior at 223 

reducing modelling bias25 (Equation (1)). These statistical methods are: i.) Differences in 224 

Differences (DiD) estimator; and ii.) covariance adjustment using the before-period 225 

response, which is an extension of Analysis of Covariance (ANCOVA) for generalised linear 226 

models ― herein termed ‘covariance adjustment’ (Fig.1). These estimators rely on different 227 

assumptions to obtain unbiased estimates of the impact’s true effect. The DiD estimator 228 

assumes that the control group response accurately represents the impact group response 229 

had it not been exposed to the impact (‘parallel trends’18,26) whereas covariance adjustment 230 

assumes there are no unmeasured confounders and linear model assumptions hold6,27.  231 

 232 

From both theory and Equation (1), with similar sample sizes, randomised designs (R-BACI 233 

and R-CI) are expected to be less biased than controlled, observational designs with 234 

sampling in the before-period (BACI), which in turn should be superior to observational 235 

designs without sampling in the before-period (CI) or without a control group (BA and After 236 

designs7,28). Between randomised designs, we might expect that an R-BACI design performs 237 

better than a R-CI design because utilising extra data before the impact may improve the 238 

efficiency of the statistical estimator by explicitly characterising pre-existing differences 239 

between the impact group and control group. 240 



 241 

Given the likely differences in bias associated with different study designs, concerns have 242 

been raised over the use of poorly designed studies in several scientific disciplines7,29–35. 243 

Some disciplines, such as the social and medical sciences, commonly undertake direct 244 

comparisons of results obtained by randomised and non-randomised designs within a single 245 

study36–38 or between multiple studies (between-study comparisons39–41) to specifically 246 

understand the influence of study designs on research findings. However, within-study 247 

comparisons are limited in their scope (e.g., a single study42,43) and between-study 248 

comparisons can be confounded by variability in context or study populations44.  249 

Overall, we lack quantitative estimates of the prevalence of different study designs and the 250 

levels of bias associated with their results. 251 

 252 

In this work, we aim to first quantify the prevalence of different study designs in the social 253 

and environmental sciences. To fill this knowledge gap, we take advantage of summaries for 254 

several thousand biodiversity conservation intervention studies in the Conservation Evidence 255 

database45 (www.conservationevidence.com) and social intervention studies in systematic 256 

reviews by the Campbell Collaboration (www.campbellcollaboration.org). We then quantify 257 

the levels of bias in estimates obtained by different study designs (R-BACI, R-CI, BACI, BA, 258 

and CI) by applying a hierarchical model to approximately 1,000 within-study comparisons 259 

across 49 raw environmental datasets from a range of fields. We show that R-BACI, R-CI 260 

and BACI designs are poorly represented in studies testing biodiversity conservation and 261 

social interventions, and that these types of designs tend to give less biased estimates than 262 

simpler observational designs. We propose a model-based approach to combine study 263 

estimates that may suffer from different levels of study design bias, discuss the implications 264 

for evidence synthesis, and how to facilitate the use of more credible study designs. 265 

 266 

Results 267 

 268 

Prevalence of study designs 269 

 270 

We found that the biodiversity-conservation (Conservation Evidence) and social-science 271 

(Campbell Collaboration) literature had similarly high proportions of studies that used CI 272 

designs and After designs, but low proportions of studies that used R-BACI, BACI, or BA 273 

designs (Fig.2). There were slightly higher proportions of R-CI designs in social-science 274 

reviews than in the biodiversity-conservation literature (Fig.2). The R-BACI, R-CI, and BACI 275 



designs made up 23% of studies for biodiversity conservation, and 36% of studies for social 276 

science. 277 

 278 

 279 

Influence of different study designs on study results 280 

 281 

In non-randomised datasets, we found that estimates of BACI (with covariance adjustment) 282 

and CI designs were very similar, while the point estimates for most other designs often 283 

differed substantially in their magnitude and sign. We found similar results in randomised 284 

datasets for R-BACI (with covariance adjustment) and R-CI designs. For approximately 30% 285 

of responses, in both non-randomised and randomised datasets, study design estimates 286 

differed in their statistical significance (i.e., p<0.05 versus p>=0.05), except for estimates of 287 

(R-)BACI (with covariance adjustment) and (R-)CI designs (Table 1; Fig.3). It was rare for 288 

the 95% confidence intervals of different designs’ estimates to not overlap – except when 289 

comparing estimates of BA designs to (R-)BACI (with covariance adjustment) and (R-)CI 290 

designs (Table 1). It was even rarer for estimates of different designs to have significantly 291 

different signs (i.e., one estimate with entirely negative confidence intervals versus one with 292 

entirely positive confidence intervals; Table 1, Fig.3). Overall, point estimates often differed 293 

greatly in their magnitude and, to a lesser extent, in their sign between study designs, but did 294 

not differ as greatly when accounting for the uncertainty around point estimates – except in 295 

terms of their statistical significance. 296 

 297 

 298 

Levels of bias in estimates of different study designs 299 

 300 

We modelled study design bias using a random effect across datasets in a hierarchical 301 

Bayesian model; σ is the standard deviation of the bias term, and assuming bias is randomly 302 

distributed across datasets and is on average zero, larger values of σ will indicate a greater 303 

magnitude of bias (see Methods). We found that, for randomised datasets, estimates of both 304 

R-BACI (using covariance adjustment; CA) and R-CI designs were affected by negligible 305 

amounts of bias (very small values of σ; Table 2). When the R-BACI design used the DiD 306 

estimator, it suffered from slightly more bias (slightly larger values of σ), whereas the BA 307 

design had very high bias when applied to randomised datasets (very large values of σ; 308 

Table 2). There was a highly positive correlation between the estimates of R-BACI (using 309 

covariance adjustment) and R-CI designs (Ω[R-BACI CA, R-CI] was close to 1; Table 2). 310 

Estimates of R-BACI using the DiD estimator were also positively correlated with estimates 311 



of R-BACI using covariance adjustment and R-CI designs (moderate positive mean values of 312 

Ω[R-BACI CA, R-BACI DiD] and Ω[R-BACI DiD, R-CI]; Table 2). 313 

 314 

For non-randomised datasets, controlled designs (BACI and CI) were substantially less 315 

biased (far smaller values of σ) than the uncontrolled BA design (Table 2). A BACI design 316 

using the DiD estimator was slightly less biased than the BACI design using covariance 317 

adjustment, which was, in turn, slightly less biased than the CI design (Table 2). 318 

 319 

Standard errors estimated by the hierarchical Bayesian model were reasonably accurate for 320 

the randomised datasets (see λ in Methods and Table 2), whereas there was some 321 

underestimation of standard errors and lack-of-fit for non-randomised datasets. 322 

 323 

 324 

 325 

Discussion 326 

 327 

Our approach provides a principled way to quantify the levels of bias associated with 328 

different study designs. We found that randomised study designs (R-BACI and R-CI) and 329 

observational BACI designs are poorly represented in the environmental and social 330 

sciences; collectively, descriptive case studies (the After design), the uncontrolled BA 331 

design, and the observational CI design made up a substantially greater proportion of 332 

intervention studies (Fig.2). And yet R-BACI, R-CI and BACI designs were found to be 333 

quantifiably less biased than other observational designs.  334 

 335 

As expected the R-CI and R-BACI designs (using a covariance adjustment estimator) 336 

performed well; the R-BACI design using a DiD estimator performed slightly less well, 337 

probably because the differencing of pre-impact data by this estimator may introduce 338 

additional statistical noise compared to covariance adjustment, which controls for these data 339 

using a lagged regression variable. Of the observational designs, the BA design performed 340 

very poorly (both when analysing randomised and non-randomised data) as expected, being 341 

uncontrolled and therefore prone to severe design bias7,28. The CI design also tended to be 342 

more biased than the BACI design (using a DiD estimator) due to pre-existing differences 343 

between the impact and control groups. For BACI designs, we recommend that the 344 

underlying assumptions of DiD and CA estimators are carefully considered before choosing 345 

to apply them to data collected for a specific research question6,27. Their levels of bias were 346 

negligibly different and their known bracketing relationship suggests they will typically give 347 



estimates with the same sign, although their tendency to over- or underestimate the true 348 

effect will depend on how well the underlying assumptions of each are met (most notably, 349 

parallel trends for DiD and no unmeasured confounders for CA; see Introduction)6,27. Overall, 350 

these findings demonstrate the power of large within-study comparisons to directly quantify 351 

differences in the levels of bias associated with different designs. 352 

 353 

We must acknowledge that the assumptions of our hierarchical model (that the bias for each 354 

design (j) is on average zero and normally distributed) cannot be verified without gold 355 

standard randomised experiments and that, for observational designs, the model was 356 

overdispersed (potentially due to underestimation of statistical error by GLM(M)s or 357 

positively correlated design biases). The exact values of our hierarchical model should 358 

therefore be treated with appropriate caution, and future research is needed to refine and 359 

improve our approach to quantify these biases more precisely. Responses within datasets 360 

may also not be independent as multiple species could interact; therefore, the estimates 361 

analysed by our hierarchical model are statistically dependent on each other, and although 362 

we tried to account for this using a correlation matrix (see Methods, Equation (3)), this is a 363 

limitation of our model. We must also recognise that we collated datasets using non-364 

systematic searches46,47 and therefore our analysis potentially exaggerates the intrinsic 365 

biases of observational designs (i.e., our data may disproportionately reflect situations where 366 

the BACI design was chosen to account for confounding factors). We nevertheless show that 367 

researchers were wise to use the BACI design because it was less biased than CI and BA 368 

designs across a wide range of datasets from various environmental systems and locations. 369 

Without undertaking costly and time-consuming pre-impact sampling and pilot studies, 370 

researchers are also unlikely to know the levels of bias that could affect their results. Finally, 371 

we did not consider sample size, but it is likely that researchers might use larger sample 372 

sizes for CI and BA designs than BACI designs. This is, however, unlikely to affect our main 373 

conclusions because larger sample sizes could increase type I errors (false positive rate) by 374 

yielding more precise, but biased estimates of the true effect28. 375 

 376 

Our analyses provide several empirically supported recommendations for researchers 377 

designing future studies to assess an impact of interest. First, using a controlled and/or 378 

randomised design (if possible) was shown to strongly reduce the level of bias in study 379 

estimates. Second, when observational designs must be used (as randomisation is not 380 

feasible or too costly), we urge researchers to choose the BACI design over other 381 

observational designs — and when that is not possible, to choose the CI design over the 382 

uncontrolled BA design. We acknowledge that limited resources, short funding timescales, 383 



and ethical or logistical constraints48 may force researchers to use the CI design (if 384 

randomisation and pre-impact sampling are impossible) or the BA design (if appropriate 385 

controls cannot be found28). To facilitate the usage of less biased designs, longer-term 386 

investments in research effort and funding are required43. Far greater emphasis on study 387 

designs in statistical education49 and better training and collaboration between researchers, 388 

practitioners and methodologists, is needed to improve the design of future studies; for 389 

example, potentially improving the CI design by pairing or matching the impact group and 390 

control group22, or improving the BA design using regression discontinuity methods48,50. 391 

Where the choice of study design is limited, researchers must transparently communicate 392 

the limitations and uncertainty associated with their results. 393 

 394 

Our findings also have wider implications for evidence synthesis, specifically the exclusion of 395 

certain observational study designs from syntheses (the ‘rubbish in, rubbish out’ 396 

concept51,52). We believe that observational designs should be included in systematic 397 

reviews and meta-analyses, but that careful adjustments are needed to account for their 398 

potential biases. Exclusion of observational studies often results from subjective, checklist-399 

based ‘Risk of Bias’ or quality assessments of studies (e.g., AMSTRAD 253, ROBINS-I54, or 400 

GRADE55) that are not data-driven and often neglect to identify the actual direction, or 401 

quantify the magnitude, of possible bias introduced by observational studies when rating the 402 

quality of a review’s recommendations. We also found that there was a small proportion of 403 

studies that used randomised designs (R-CI or R-BACI) or observational BACI designs 404 

(Fig.2), suggesting that systematic reviews and meta-analyses risk excluding a substantial 405 

proportion of the literature and limiting the scope of their recommendations if such exclusion 406 

criteria are used32,56,57. This problem is compounded by the fact that, at least in conservation 407 

science, studies using randomised or BACI designs are strongly concentrated in Europe, 408 

Australasia, and North America31. Systematic reviews that rely on these few types of study 409 

designs are therefore likely to fail to provide decision makers outside of these regions with 410 

locally relevant recommendations that they prefer58. The Covid-19 pandemic has highlighted 411 

the difficulties in making locally relevant evidence-based decisions using studies conducted 412 

in different countries with different demographics and cultures, and on patients of different 413 

ages, ethnicities, genetics, and underlying health issues59. This problem is also acute for 414 

decision-makers working on biodiversity conservation in the tropical regions, where the need 415 

for conservation is arguably the greatest (i.e., where most of Earth's biodiversity exists60) but 416 

they either have to rely on very few well-designed studies that are not locally relevant (i.e., 417 

have low generalisability), or more studies that are locally relevant but less well-418 

designed31,32. Either option could lead decision-makers to take ineffective or inefficient 419 

decisions. In the long-term, improving the quality and coverage of scientific evidence and 420 



evidence syntheses across the world will help solve these issues, but shorter-term solutions 421 

to synthesising patchy evidence bases are required. 422 

 423 

Our work furthers sorely needed research on how to combine evidence from studies that 424 

vary greatly in their design. Our approach is an alternative to conventional meta-analyses 425 

which tend to only weight studies by their sample size or the inverse of their variance61; 426 

when studies vary greatly in their study design, simply weighting by inverse variance or 427 

sample size is unlikely to account for different levels of bias introduced by different study 428 

designs (see Equation (1)). For example, a BA study could receive a larger weight if it had 429 

lower variance than a BACI study, despite our results suggesting a BA study usually suffers 430 

from greater design bias. Our model provides a principled way to weight studies by both the 431 

likely amount of bias introduced by their study design and their variance and is therefore a 432 

form of ‘bias-adjusted meta-analysis’62–66. However, instead of relying on elicitation of 433 

subjective expert opinions on the bias of each study, we provide a data-driven, empirical 434 

quantification of study biases – an important step that was called for to improve such meta-435 

analytic approaches65,66.  436 

 437 

Future research is needed to refine our methodology, but our empirically grounded form of 438 

bias-adjusted meta-analysis could be implemented as follows: 1.) collate studies for the 439 

same true effect, their effect size estimates, standard errors, and the type of study design; 440 

2.) enter these data into our hierarchical model, where effect size estimates share the same 441 

intercept (the true causal effect), a random effect term due to design bias (whose variance is 442 

estimated by the method we used), and a random effect term for statistical noise (whose 443 

variance is estimated by the reported standard error of studies); 3.) fit this model and 444 

estimate the shared intercept/true effect. Heuristically, this can be thought of as weighting 445 

studies by both their design bias and their sampling variance and could be implemented on a 446 

dynamic meta-analysis platform (such as metadataset.com67). This approach has substantial 447 

potential to develop evidence synthesis in fields (such as biodiversity conservation31,32) with 448 

patchy evidence bases, where reliably synthesising findings from studies that vary greatly in 449 

their design is a fundamental challenge. 450 

 451 

Our study has highlighted an often overlooked aspect of debates over scientific 452 

reproducibility: that the credibility of studies is fundamentally determined by study design. 453 

Testing the effectiveness of conservation and social interventions is undoubtedly of great 454 

importance given the current challenges facing biodiversity and society in general and the 455 

serious need for more evidence-based decision-making1,68. And yet our findings suggest that 456 



quantifiably less biased study designs are poorly represented in the environmental and 457 

social sciences. Greater methodological training of researchers and funding for intervention 458 

studies, as well as stronger collaborations between methodologists and practitioners is 459 

needed to facilitate the use of less biased study designs. Better communication and 460 

reporting of the uncertainty associated with different study designs is also needed, as well as 461 

more meta-research (the study of research itself) to improve standards of study design69. 462 

Our hierarchical model provides a principled way to combine studies using a variety of study 463 

designs that vary greatly in their risk of bias, enabling us to make more efficient use of 464 

patchy evidence bases. Ultimately, we hope that researchers and practitioners testing 465 

interventions will think carefully about the types of study designs they use, and we 466 

encourage the evidence synthesis community to embrace alternative methods for combining 467 

evidence from heterogeneous sets of studies to improve evidence-based decision-making in 468 

all disciplines. 469 

 470 

Methods 471 

 472 

Quantifying the use of different designs 473 

  474 

We compared the use of different study designs in the literature that quantitatively tested 475 

interventions between the fields of biodiversity conservation (4,260 studies collated by 476 

Conservation Evidence45) and social science (1,009 studies found by 32 systematic reviews 477 

produced by the Campbell Collaboration: www.campbellcollaboration.org).  478 

 479 

Conservation Evidence is a database of intervention studies, each of which has 480 

quantitatively tested a conservation intervention (e.g., sowing strips of wildflower seeds on 481 

farmland to benefit birds), that is continuously being updated through comprehensive, 482 

manual searches of conservation journals for a wide range of fields in biodiversity 483 

conservation (e.g., amphibian, bird, peatland, and farmland conservation45). To obtain the 484 

proportion of studies with each design from Conservation Evidence, we simply extracted the 485 

type of study design used by each study from the database in 2019 – the study design was 486 

determined using a standardised set of criteria; reviews were not included (Table 3). We 487 

checked if the designs reported in the database accurately reflected the designs in the 488 

original publication and found that for a random subset of 356 studies, 95.1% were 489 

accurately described. 490 

 491 



Each systematic review produced by the Campbell Collaboration collates and analyses 492 

studies that test a specific social intervention; we collated reviews that tested a variety of 493 

social interventions across several fields in the social sciences, including education, crime 494 

and justice, international development and social welfare (Supplementary Data 1). We 495 

retrieved systematic reviews produced by the Campbell Collaboration by searching their 496 

website (www.campbellcollaboration.org) for reviews published between 2013‒2019 (as of 497 

8th September 2019) ― we limited the date range as we could not go through every review. 498 

As we were interested in the use of study designs in the wider social-science literature, we 499 

only considered reviews (32 in total) that contained sufficient information on the number of 500 

included and excluded studies that used different study designs. Studies may be excluded 501 

from systematic reviews for several reasons, such as their relevance to the scope of the 502 

review (e.g., testing a relevant intervention) and their study design. We only considered 503 

studies if the sole reason for their exclusion from the review was their study design – i.e., 504 

reviews clearly reported that the study was excluded because it used a particular study 505 

design, and not because of any other reason, such as its relevance to the review’s research 506 

questions. We calculated the proportion of studies that used each design in each systematic 507 

review (using the same criteria as for the biodiversity-conservation literature – see Table 3) 508 

and then averaged these proportions across all reviews. 509 

 510 

Within-study comparisons of different study designs 511 

 512 

We wanted to make direct within-study comparisons between the estimates obtained by 513 

different study designs (e.g., see 38,70,71 for single within-study comparisons) for many 514 

different studies. If a dataset contains data collected using a BACI design, subsets of these 515 

data can be used to mimic the use of other study designs (a BA design using only data for 516 

the impact group, and a CI design using only data collected after the impact occurred). 517 

Similarly, if data were collected using a R-BACI design, subsets of these data can be used to 518 

mimic the use of a BA design and a R-CI design. Collecting BACI and R-BACI datasets 519 

would therefore allow us to make direct within-study comparisons of the estimates obtained 520 

by these designs. 521 

 522 

We collated BACI and R-BACI datasets by searching the Web of Science Core Collection72 523 

which included the following citation indexes: Science Citation Index Expanded (SCI-524 

EXPANDED) 1900-present; Social Sciences Citation Index (SSCI) 1900-present Arts & 525 

Humanities Citation Index (A&HCI) 1975-present; Conference Proceedings Citation Index - 526 

Science (CPCI-S) 1990-present; Conference Proceedings Citation Index - Social Science & 527 



Humanities (CPCI-SSH) 1990-present; Book Citation Index - Science (BKCI-S) 2008-528 

present; Book Citation Index - Social Sciences & Humanities (BKCI-SSH) 2008-present; 529 

Emerging Sources Citation Index (ESCI) 2015-present; Current Chemical Reactions (CCR-530 

EXPANDED) 1985-present (Includes Institut National de la Propriete Industrielle structure 531 

data back to 1840); Index Chemicus (IC) 1993-present. The following search terms were 532 

used: [‘BACI’] OR [‘Before-After Control-Impact’] and the search was conducted on the 18th 533 

December 2017. Our search returned 674 results, which we then refined by selecting only 534 

‘Article’ as the document type and using only the following Web of Science Categories: 535 

‘Ecology’, ‘Marine Freshwater Biology’, ‘Biodiversity Conservation’, ‘Fisheries’, 536 

‘Oceanography’, ‘Forestry’, ‘Zoology’, Ornithology’, ‘Biology’, ‘Plant Sciences’, ‘Entomology’, 537 

‘Remote Sensing’, ‘Toxicology’ and ‘Soil Science’. This left 579 results, which we then 538 

restricted to articles published since 2002 (15 years prior to search) to give us a realistic 539 

opportunity to obtain the raw datasets, thus reducing this number to 542. We were able to 540 

access the abstracts of 521 studies and excluded any that did not test the effect of an 541 

environmental intervention or threat using an R-BACI or BACI design with response 542 

measures related to the abundance (e.g., density, counts, biomass, cover), reproduction 543 

(reproductive success) or size (body length, body mass) of animals or plants. Many studies 544 

did not test a relevant metric (e.g., they measured species richness), did not use a BACI or 545 

R-BACI design, or did not test the effect of an intervention or threat ― this left 96 studies for 546 

which we contacted all corresponding authors to ask for the raw dataset. We were able to 547 

fully access 54 raw datasets, but upon closer inspection we found that three of these 548 

datasets either: did not use a BACI design; did not use the metrics we specified; or did not 549 

provide sufficient data for our analyses. This left 51 datasets in total that we used in our 550 

preliminary analyses (Supplementary Data 2). 551 

 552 

All the datasets were originally collected to evaluate the effect of an environmental 553 

intervention or impact. Most of them contained multiple response variables (e.g., different 554 

measures for different species, such as abundance or density for species A, B, and C). 555 

Within a dataset, we use the term “response” to refer to the estimation of the causal effect on 556 

one response variable. There were 1,968 responses in total across 51 datasets. We then 557 

excluded 932 responses (resulting in the exclusion of one dataset) where one or more of the 558 

four time-period and treatment subsets (Before Control, Before Impact, After Control, and 559 

After Impact data) consisted of entirely zero measurements, or two or more of these subsets 560 

had more than 90% zero measurements. We also excluded one further dataset as it was the 561 

only one to not contain repeated measurements at sites in both the before- and after-562 

periods. This was necessary to generate reliable standard errors when modelling these data. 563 



We modelled the remaining 1,036 responses from across 49 datasets (Supplementary Table 564 

1). 565 

 566 

We applied each study design to the appropriate components of each dataset 567 

using Generalised Linear Models (GLMs73,74) because of their generality and ability to 568 

implement the statistical estimators of many different study designs. The model structure of 569 

GLMs was adjusted for each response in each dataset based on the study design specified, 570 

response measure and dataset structure (Supplementary Table 2). We quantified the effect 571 

of the time period for the BA design (After vs Before the impact) and the effect of the 572 

treatment type for the CI and R-CI designs (Impact vs Control) on the response variable 573 

(Supplementary Table 2). For BACI and R-BACI designs, we implemented two statistical 574 

estimators: 1.) a DiD estimator that estimated the true effect using an interaction term 575 

between time and treatment type; and 2.) a covariance adjustment estimator that estimated 576 

the true effect using a term for the treatment type with a lagged variable (Supplementary 577 

Table 2). 578 

 579 

As there were large numbers of responses, we used general a priori rules to specify models 580 

for each response; this may have led to some model misspecification, but was unlikely to 581 

have substantially affected our pairwise comparison of estimates obtained by different 582 

designs. The error family of each GLM was specified based on the nature of the measure 583 

used and preliminary data exploration: count measures (e.g., abundance) = poisson; density 584 

measures (e.g., biomass or abundance per unit area) = quasipoisson, as data for these 585 

measures tended to be overdispersed; percentage measures (e.g., percentage cover) = 586 

quasibinomial; and size measures (e.g., body length) = gaussian.  587 

 588 

We treated each year or season in which data were collected as independent observations 589 

because the implementation of a seasonal term in models is likely to vary on a case-by-case 590 

basis; this will depend on the research questions posed by each study and was not feasible 591 

for us to consider given the large number of responses we were modelling. The log link 592 

function was used for all models to generate a standardised log response ratio as an 593 

estimate of the true effect for each response; a fixed effect coefficient (a variable named 594 

treatment status; Supplementary Table 2) was used to estimate the log response ratio61. If 595 

the response had at least ten ‘sites’ (independent sampling units) and two measurements 596 

per site on average, we used the random effects of subsample (replicates within a site) 597 

nested within site to capture the dependence within a site and subsample (i.e., a 598 

Generalised Linear Mixed Model or GLMM73,74 was implemented instead of a GLM); 599 

otherwise we fitted a GLM with only the fixed effects (Supplementary Table 2). 600 



 601 

We fitted all models using R version 3.5.175, and packages lme476 and MASS77. Code to 602 

replicate all analyses is available (see Data and Code Availability). We compared the 603 

estimates obtained using each study design (both in terms of point estimates and estimates 604 

with associated standard error) by their magnitude and sign. 605 

 606 

A model-based quantification of the bias in study design estimates 607 

 608 

We used a hierarchical Bayesian model motivated by the decomposition in Equation (1) to 609 

quantify the bias in different study design estimates. This model takes the estimated 610 

intervention effects and their standard errors as inputs. Let  be the true effect estimator in 611 

study  using design and  be its estimated standard error from the corresponding GLM or 612 

GLMM. Our hierarchical model assumes: 613 	 = 	 	+ 	 +	 ,	
	 ∼ 	N 0, 	 , ∼ 	N 0, 	 , ∼ 	N(0, ),	 (2)	614 

where i is the true effect for response ,  is the bias of design 	in response , and is 615 

the sampling noise of the statistical estimator. Although  technically incorporates both the 616 

design bias and any misspecification (modelling) bias due to using GLMs or GLMMs 617 

(Equation (1)), we expect the modelling bias to be much smaller than the design bias3,11. We 618 

assume the statistical errors	  within a response are related to the estimated standard 619 

errors through the following joint distribution: 620 	 = 	 ⋅ diag( ) diag( ),	 (3)	621 

where  is the correlation matrix for the different estimators in the same response and λ is a 622 

scaling factor to account for possible over/under-estimation of the standard errors. 623 

This model effectively quantifies the bias of design  using the value of  (larger values = 624 

more bias) by accounting for within-response correlations using the correlation matrix  and 625 

for possible under-estimation of the standard error using . We ensured that the prior 626 

distributions we used had very large variances so they would have a very small effect on the 627 

posterior distribution ― accordingly we placed the following disperse priors on the variance 628 

parameters: 629 

, 1,… , 	 	∼ 		Inv-Gamma(1, 0.02), 	 ∼ 	Gamma(2,2), 	 ∼ 	LKJ(1)				(4)	630 



We fitted the hierarchical Bayesian model in R version 3.5.1 using the Bayesian inference 631 

package rstan78. 632 

 633 

Data Availability 634 

All data analysed in the current study are available from Zenodo, 635 

https://doi.org/10.5281/zenodo.3560856. Source data are provided with this paper. 636 

 637 

Code Availability 638 

All code used in the current study is available from Zenodo, 639 

https://doi.org/10.5281/zenodo.3560856. 640 
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 903 
 904 
 905 
Figure legends 906 
 907 
Fig.1 – Comparison of different study designs used to evaluate the effect of an impact. A 908 

hypothetical study set-up is shown where the abundance of birds in three impact and control 909 

replicates (e.g., fields represented by blocks in a row) are monitored before and after an 910 

impact (e.g., ploughing) that occurs in year zero. Different colours represent each study 911 

design and illustrate how replicates are sampled. Approaches for calculating an estimate of 912 

the impact for each design are also shown, along with synonyms from different disciplines. 913 

 914 
Fig.2 – Percentage of studies with different study designs in the biodiversity-conservation 915 

and social-science literature. Studies from the biodiversity-conservation literature were 916 

screened from the Conservation Evidence database (n=4,260 studies) and studies from the 917 

social-science literature were screened from 32 Campbell Collaboration systematic reviews 918 

(n=1,009 studies – note studies excluded by these reviews based on their study design were 919 

still counted). Percentages for the social-science literature were calculated for each 920 

systematic review (blue data points) and then averaged across all 32 reviews (blue bars and 921 

black vertical lines represent mean and 95% Confidence Intervals, respectively). 922 

Percentages for the biodiversity-conservation literature are absolute values (shown as green 923 

bars) calculated from the entire Conservation Evidence database (after excluding reviews). 924 

Source data are provided as a Source Data file. BA = Before-After, CI = Control-Impact, 925 

BACI = Before-After-Control-Impact, R-BACI = Randomised BACI, R-CI = Randomised CI. 926 



 927 
Fig.3 - Pairwise comparisons of t-statistics for estimates obtained using different study 928 

designs for responses across 49 different datasets (non-randomised or randomised). t-929 

statistics are obtained from two-sided t-tests of estimates obtained by each design for 930 

different responses in each dataset using Generalised Linear Models (see Methods). For 931 

randomised datasets, BACI and CI axis labels refer to R-BACI and R-CI designs (denoted by 932 

‘R-’). DiD = Difference in Differences; CA = covariance adjustment. Lines at t-statistic values 933 

of 1.96 denote boundaries between cells and colours of points indicate differences in 934 

direction and statistical significance (p<0.05; grey = same sign and significance, orange = 935 

same sign but difference in significance, red = different sign and significance). Numbers 936 

refer to the number of responses in each cell. Source data are provided as a Source Data 937 

file. BA = Before-After, CI = Control-Impact, BACI = Before-After-Control-Impact. 938 

 939 
 940 
 941 
 942 
 943 
 944 
Tables 945 
 946 
Table 1 – Pairwise comparison of estimates obtained using different study designs. This 947 

shows the proportion of responses in which there were differences in the magnitude (by 948 

>100%) and sign of estimates, and differences in the significance, sign and overlap between 949 

associated 95% confidence intervals. For randomised datasets, BACI and CI labels refer to 950 

R-BACI and R-CI designs (denoted by ‘R-’). The 100% difference in magnitude criterion is 951 

set relative to the smaller estimate. DiD = Difference in Differences; CA = covariance 952 

adjustment. 95% Conf. Ints. refers to 95% Confidence Intervals and P.E. refers to point 953 

estimate. BA = Before-After, CI = Control-Impact, BACI = Before-After-Control-Impact. 954 

Randomised (R-) 

Design 1 Design 2 No overlap 
(95% Conf. 
Ints.) 

>100% 
difference in 
magnitude 
(P.E.)

Different 
significance 
(95% Conf. 
Ints.)

Different signs  
(P.E.) 

Significantly 
different sign 
(95% Conf. Ints.) 

BACI DiD BACI CA 0.01 0.68 0.27 0.32 0.00 

BACI DiD CI 0.01 0.69 0.27 0.32 0.00 

BACI DiD BA 0.01 0.68 0.29 0.34 0.00 

BACI CA CI 0.00 0.04 0.05 0.01 0.00 

BACI CA BA 0.16 0.82 0.33 0.47 0.06 

CI BA 0.16 0.82 0.30 0.47 0.07 



Non-randomised 

Design 1 Design 2 No overlap 
(95% Conf. 
Ints.) 

>100% 
difference in 
magnitude 
(P.E.) 

Different 
significance 
(95% Conf. 
Ints.) 

Different 
signs  
(P.E.) 

Significantly 
different sign 
(95% Conf. 
Ints.) 

BACI DiD BACI CA 0.04 0.58 0.31 0.27 0.00 

BACI DiD CI 0.05 0.61 0.28 0.30 0.01 

BACI DiD BA 0.04 0.61 0.22 0.25 0.01 

BACI CA CI 0.00 0.18 0.08 0.08 0.00 

BACI CA BA 0.14 0.74 0.34 0.36 0.03 

CI BA 0.12 0.71 0.33 0.37 0.02 
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 956 

 957 

 958 

 959 

 960 

Table 2 – Results of hierarchical Bayesian model for randomised and non-randomised 961 

datasets. In randomised datasets, BACI and CI terms refer to R-BACI and R-CI designs 962 

(denoted by ‘R-’). The  terms are the standard deviations of the bias of each design, so 963 

larger  values correspond to more biased designs. σβ refers to the standard deviation of the 964 

true effect across all datasets.  represents the within-response correlations between study 965 

design estimates, and λ models systematic underestimation (λ>1) or overestimation (λ<1) of 966 

the statistical error using GLM(M)s. See methods for more details on the model. BA = 967 

Before-After, CI = Control-Impact, BACI = Before-After-Control-Impact. 968 

Randomised (R-) 

Term Posterior mean 95% Credible Interval 

σβ 0.746 [0.679, 0.813] 

λ 1.119 [0.980, 1.276] 

σ[BACI DiD] 0.029 [0.005, 0.097] 

σ[BACI CA] 0.005 [0.002, 0.008] 

σ[CI] 0.005 [0.002, 0.008] 

σ[BA] 0.773 [0.699, 0.846] 

Ω[BACI DiD, BACI CA] 0.268 [0.152, 0.379] 

Ω[BACI DiD, CI] 0.239 [0.122, 0.354] 

Ω[BACI DiD, BA] 0.849 [0.770, 0.914] 



Ω[BACI CA, CI] 0.995 [0.994, 0.996] 

Ω[BACI CA, BA] -0.168 [-0.332, 0.002] 

Ω[CI, BA] -0.184 [-0.349, -0.015] 

Non-randomised 

Term Posterior mean 95% Credible Interval 

σβ 0.700 [0.628, 0.776] 

λ 1.822 [1.595, 2.098] 

σ[BACI DiD] 0.017 [0.004, 0.049] 

σ[BACI CA] 0.049 [0.005, 0.128] 

σ[CI] 0.091 [0.008, 0.137] 

σ[BA] 0.645 [0.573, 0.720] 

Ω[BACI DiD, BACI CA] 0.140 [0.010, 0.263] 

Ω[BACI DiD, CI] 0.036 [-0.106, 0.176] 

Ω[BACI DiD, BA] 0.798 [0.718, 0.865] 

Ω[BACI CA, CI] 0.939 [0.923, 0.954] 

Ω[BACI CA, BA] -0.127 [-0.285, 0.026] 

Ω[CI, BA] -0.229 [-0.397, -0.061] 

  969 

 970 

Table 3 – Definitions used to categorise studies based on the study design they used. See 971 
also Figure 1 for visual illustration and comparison of designs. Reviews from the database 972 
were not included. 973 

Study design Controlled? Sampling before 
impact occurs?

Randomised allocation of replicates to 
the impact group and control group?

After No No No

Before-After (BA) No Yes No

Control-Impact (CI) Yes No No

Before-After Control-
Impact (BACI) 

Yes Yes No 

Randomised Control-
Impact (R-CI) 

Yes No Yes 

Randomised Before-
After Control-Impact  
(R-BACI) 

Yes Yes Yes 
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Controlled & Randomised

Impact

Control

Time (t)
+10-1-2-3 +2 +3

Controlled & Observational

Uncontrolled & Observational
Before After

Impact 
occurs

Randomised allocation 
of experimental units

Impact

Control

Non-randomised allocation 
of experimental units

Impact

After

Study design

Before-After 
(BA)

Control-Impact 
(CI)

Randomised 
Control-Impact
(RCI)

Randomised 
Before-After 
Control-Impact 
(RBACI)

Before-After 
Control-Impact
(BACI)

Change over time 
in impact group

Estimation of impact

Comparison of 
impact group after 
versus before impact

Comparison of 
impact and control 
groups after impact

Comparison of impact 
and control groups 
after impact

Difference in 
differences (DiD) or 
covariance adjustment 
using control and 
impact groups, before 
and after impact.

Difference in 
differences (DiD) or 
covariance adjustment 
using control and 
impact groups, before 
and after impact.

Time Series, 
Single-group 
Observational

Synonyms

Interrupted Time 
Series, Longitudinal, 
Pre-Post test

Space-for-Time 
Substitution (SfT),
Impact vs. 
Reference, 
Controlled

Randomised 
Controlled Trial 
(RCT)

Randomised 
Controlled 
Before-After

Controlled 
Before-After
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