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Abstract 13 

In this paper, we combined new field geological, structural, paleo-temperature and 14 

subsurface data together with deep geophysical data to build a new 210 km-long crustal-scale 15 

balanced and sequentially restored cross section in the Central Pyrenean belt (Nestes-Cinca 16 

transect). The present-day surficial thrust system geometry of the belt consists of bi-vergent 17 

basement-cover thrust sheets with inverted extensional basins and halokinetic structures. Its 18 

crustal geometry consists of a thrust wedge geometry of the European lithosphere between the 19 

Axial Zone imbricate system of the Iberian upper crust and the north-directed subduction of 20 

the Iberian lower crust. Along the study transect, the contractional belt corresponds to the 21 

inversion of the Mesozoic Pyrenean Rift system, which consisted in a hyper-extended relay 22 
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zone of two metamorphic zones with exhumation of lithospheric mantle, the Montillet and 23 

Baronnies zones, separated by the Barousse upper crustal boudin. Surface and subsurface data 24 

show that the European and Iberian crusts include major inherited structures of the Variscan 25 

belt and Permian Rift. These old crustal features controlled the location and geometry of the 26 

Mesozoic Pyrenean Rift system. During the upper Cretaceous-lower Miocene contraction, 27 

both Paleozoic and Mesozoic inherited features controlled the thrust kinematics and the 28 

structural architecture of the Pyrenean orogen. Palinspastic restorations show that the 29 

orogenic shortening recorded in the Central Pyrenean belt reaches 127 km (39%) including 30 

the closure of the hyper-extended Pyrenean Rift system that initially archived 56 km of 31 

extension. This study emphasizes the long-term influence of Paleozoic-Mesozoic structural 32 

and thermal inheritances for the evolution of orogenic belts. 33 

Keywords: Balanced cross section; Structural inheritance; Rifting; Variscan features; Central 34 

Pyrenean belt 35 

1. Introduction 36 

The Pyrenees result from the subduction of the Iberian lower crust and lithospheric 37 

mantle under the European plate from late Cretaceous to early Miocene (Muñoz, 1992; Olivet, 38 

1996; Teixell et al., 2018; Chevrot et al., 2018, and references therein). Numerous studies 39 

showed that this orogen was superimposed on a Mesozoic magma-poor hyper-extended rift, 40 

the Pyrenean Rift system, with coeval HT-LP metamorphism and exhumation of the 41 

lithospheric mantle (e.g., Duée et al., 1984; Specht, 1989; Vielzeuf and Kornprobst, 1989; 42 

Golberg and Leyreloup, 1990; Lagabrielle and Bodinier, 2008; Jammes et al., 2009; 43 

Lagabrielle et al., 2010; Vacherat et al., 2014; Corre et al., 2016). The accommodation of 44 

more than 80 km of shortening through the inversion of this rift system is considered as the 45 

prime control to explain the present-day structural architecture of the Pyrenean orogen (Roure 46 
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et al., 1989; Specht, 1989; Muñoz, 1992; Vergés et al., 1995; Teixell, 1998; Beaumont et al., 47 

2000; Vergés and García-Senz, 2001; Martínez-Peña and Casas-Sainz, 2003; Mouthereau et 48 

al., 2014; Teixell et al., 2016; Clerc et al., 2016; Grool et al., 2018; Teixell et al., 2018). The 49 

influence of inherited Paleozoic structures has been described in many Cenozoic fold-thrust 50 

belts worldwide such as the Andes (Colletta et al., 1997; Alvarez-Marron et al., 2006; Vergés 51 

et al., 2007; Espurt et al., 2008; Calderon et al., 2017), the Alps (Roure and Colletta, 1996; 52 

Jourdon et al., 2014; Ballèvre et al., 2018) and the Provence (Bestani et al., 2016). Although 53 

Paleozoic structures are well established in the Pyrenean orogen (Bresson, 1903; Muller and 54 

Roger, 1977; Lucas, 1985; Choukroune et al., 1990a,b; Desegaulx et al., 1990; Souquet et al., 55 

2003; Saura and Teixell, 2006; García-Sansegundo et al., 2011; Cochelin et al., 2017; and 56 

references therein), the influence of these latter on Pyrenean geodynamics is poorly quantified 57 

and probably underestimated along the orogen (Muñoz, 1992; Specht, 1989; Cochelin et al., 58 

2017). To illustrate the role of Paleozoic structural inheritances on the Mesozoic-Cenozoic 59 

geodynamic evolution of the Central Pyrenean belt, we combined new field geological, 60 

structural, paleo-temperature and subsurface data together with deep geophysical data. These 61 

data have been combined with cross section balancing methodology to constrain the structural 62 

architecture of the whole orogen along a crustal-scale, 210 km-long cross section following 63 

the Nestes and Cinca valleys (Fig. 1). A simplified version of this section was previously 64 

presented in Teixell et al. (2018) without restoration. This balanced cross section is 65 

strategically localized in a segment of the Pyrenean chain where both the Pyrenean and pre-66 

Pyrenean deformations can be studied. It follows the trace of the OROGEN West profile 67 

(Chevrot et al., 2018) illustrating the deep geometry of the pre-Mesozoic basement framework 68 

involved in this collisional orogen (Fig. 1). Comparison between present-day crustal geometry 69 

and three sequentially retro-deformed stages (lower Santonian, upper Jurassic and lower-70 

middle Triassic) of this section shows that the Pyrenees was superimposed on a complex 71 
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structural template affected by the Variscan orogeny and subsequent Permian Rift, that in turn 72 

controlled subsequently the geometry of the Mesozoic rift and the building of the upper 73 

Cretaceous-lower Miocene Pyrenean orogen. This example from the Central Pyrenees reveals 74 

the long-term influence of inherited tectonic crustal fabric in the evolution of orogenic belts. 75 

2. Geological setting 76 

2.1. Tectonic framework of the Pyrenean belt 77 

The Pyrenean belt is an asymmetrical bi-vergent collisional orogen. The orogen is 78 

divided from north to south into five structural domains: the Aquitaine Basin, the North 79 

Pyrenean Zone, the Axial Zone, the South Pyrenean Zone and the Ebro Basin (Fig. 1). The 80 

Aquitaine Basin is poorly deformed by deep-seated faults and diapiric structures (James and 81 

Canérot, 1999; Rocher et al., 2000; Canérot et al., 2005; Serrano et al., 2006). The North 82 

Pyrenean Zone wedge comprises a system of Mesozoic extensional basins including HT-LP 83 

metamorphism pre-rift and syn-rift sedimentary units, basement structures and lherzolite 84 

bodies (Ravier, 1957; Albarède and Michard-Vitrac, 1978; Montigny et al., 1986; Azambre et 85 

al., 1991; Clerc et al., 2016). These basins are now inverted and transported southward and 86 

northward above the Axial Zone and the Aquitaine Basin along the former rift borders, the 87 

North Pyrenean Frontal Thrust to the north and the North Pyrenean Fault Zone to the south 88 

(Baby et al., 1988; Roure et al., 1989; Debroas, 1990; Ford et al., 2016; Teixell et al., 2016, 89 

2018). The southern wedge comprises the south-verging antiformal stack of the Axial Zone 90 

made of Iberian Variscan basement comprising a Paleozoic metasedimentary succession and 91 

upper Paleozoic granitoid intrusions. Southward, Mesozoic and Tertiary cover units of the 92 

South Pyrenean Zone are detached from the Axial Zone over an upper Triassic evaporite and 93 

shale unit (Séguret, 1972; Muñoz et al., 1986). The South Pyrenean Zone comprises Mesozoic 94 

inherited extensional faults and related halokinetic structures, thrust faults and syn-orogenic 95 
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thrust-sheet-top basins of late Santonian to early Miocene age. It displays a complex along-96 

strike structure controlled by the distribution of Triassic evaporites and thickness variations of 97 

the Mesozoic strata, resulting in sub-basins separated by oblique thrust zones with vertical 98 

axis rotations (Soto et al., 2002; Mochales et al., 2012; Muñoz et al., 2013; López-Mir et al., 99 

2014b; Santolaria et al., 2016). The South Pyrenean Zone overrides the mildly deformed Ebro 100 

Basin along the South Pyrenean Frontal Thrust (Puigdefàbregas, 1975; Puigdefàbregas and 101 

Souquet, 1986). 102 

Field data, paleogeographic reconstructions and crustal-scale sections across the 103 

Pyrenees show that the Iberian-European plate boundary was affected by superimposed 104 

tectonic events (e.g., Lucas, 1968, 1985; Debroas, 1987; Roure et al., 1989; Coward and 105 

Dietrich, 1989; Mattauer 1990; Choukroune et al., 1990a; Muñoz, 1992; Teixell, 1998; Sibuet 106 

et al., 2004; Gong et al., 2009; García-Sansegundo et al., 2011). Although debated, the 107 

Variscan orogeny in the Pyrenees is characterized by different deformation phases in a 108 

contractional to transpressional geodynamic setting featuring, metamorphism, magmatism and 109 

syn-orogenic sedimentation (e.g., Soula, 1982; Soula et al., 1986; Deselgaulx et al., 1990; 110 

Carreras and Cappellà, 1994; García-Sansegundo et al., 2011; Cochelin et al., 2017). The 111 

shortening in the Variscan belt was accommodated by major S-verging thrust sheets with mid-112 

crustal and Silurian graphitic slates detachment levels associated with E-W trending right-113 

lateral strike-slip fault system located between the European and Iberian plates, and NE-SW 114 

trending cross faults such as the Toulouse fault (Arthaud and Matte, 1975; Soula et al., 1986; 115 

Burg et al., 1990; Choukroune et al., 1990a; Souquet et al., 2003; Fig. 1). During the Permian 116 

to lower Triassic breakup of Pangea and middle Triassic to middle Cretaceous opening of the 117 

Atlantic Ocean, transtensional to N-S extensional motions resulted in stretching and thinning 118 

of the continental crust, and development of sedimentary depocenters and crustal blocks 119 
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between the Iberian and European plates (Vissers, 1992; Jammes et al., 2009; Tugend et al., 120 

2015; Tavani et al., 2018; Asti et al., 2019).  121 

2.2. Stratigraphy 122 

The lithostratigraphic units across the Central Pyrenees along the Nestes-Cinca 123 

transect are summarized in Fig. 2 and described hereafter. In the northern Pyrenees, the 124 

sedimentary rocks are named after the PYRAMID ANR project stratigraphic nomenclature 125 

(Ford et al., 2016; Rougier et al., 2016). 126 

2.2.1. Variscan basement rocks and Permian-Triassic red beds 127 

Paleozoic rocks outcrop in the North Pyrenean Zone (Barousse massif) and Axial 128 

Zone (Fig. 3). They consist of Cambrian-Ordovician metasediments, Silurian graphitic slates, 129 

Devonian-lower Carboniferous limestones and pelites, and upper Carboniferous syn-orogenic 130 

siliceous and carbonaceous turbidites (the so-called Culm facies) deformed during the 131 

Variscan orogeny (Roddaz, 1977; Zwart, 1986; Delvolvé, 1987; Mirouse et al., 1993). In the 132 

Aquitaine Basin, undifferentiated Paleozoic rocks were found in the LNZ2 well as a rock 133 

body within upper Triassic sediments and at the bottom of the AC2 well (Fig. 1 and 134 

Supplementary material Fig. S1). Paleozoic sequences are intruded by syn- to post-orogenic 135 

upper Carboniferous granitoids (Bordères-Louron, Néouvielle and Bielsa; Gleizes et al., 2001; 136 

Román-Berdiel et al., 2004; Gleizes et al., 2006) and Permian granitoids (Sarrancolin and 137 

Ferrère; Harris, 1976). During Permian (uppermost Carboniferous?) rifting, continental 138 

breccia beds deposited in NNE-SSW to ESE-WNW trending intracontinental basins like the 139 

Aure trough (Lucas, 1985). The Paleozoic framework has been eroded and unconformably 140 

covered by widespread lower-middle Triassic fluvial deposits including conglomerates, 141 

sandstones and argillites (Buntsandstein facies; Calvet et al., 2004). The thickness of these 142 
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Permian-Triassic red beds varies from 120 m or less in the Barousse massif to more than 1.5 143 

km into the Aure trough (Lucas, 1968; Flachère, 1977; Mirouse et al., 1993; Fig. 3). 144 

2.2.2. Middle Triassic-lower Aptian evaporitic to marine succession 145 

The Triassic red beds are overlain by middle Triassic carbonates (Muschelkalk facies) 146 

and upper Triassic evaporites and shales (Keuper facies) successions deposited during the 147 

opening of the Bay of Biscay. Upper Triassic strata contain doleritic-ophitic sill and dyke 148 

bodies (Curnelle, 1983). Liassic to lower Aptian strata consist of dominantly marine to 149 

platform carbonate strata (Barrère et al., 1984). In the study area, Berriasian strata are 150 

unconformably covered by Urgonian-Barremian limestones. Although these carbonate 151 

sequences are considered to be deposited during the post-rift stage, Hettangian, Kimmeridgian 152 

and Tithonian strata show major thickness and facies variations with volcanic levels, 153 

evaporitic sequences, and sedimentary breccias (Fig. 4a; Delfaud, 1966, 1968; Barrère et al., 154 

1984; James et al., 1996; Fauré, 2002; Canérot et al., 2005; Biteau et al., 2006; Rougier et al., 155 

2016). Breccia intercalations are also reported in Berriasian and Barremian strata (Delfaud, 156 

1966, 1968; Barrère et al., 1984). Thickness and facies changes in Jurassic and lower 157 

Cretaceous sequences could be due to salt motion synchronous with basement extension. 158 

2.2.3. Upper Aptian-lower Cenomanian Pyrenean Rift succession 159 

The subsequent development of the Pyrenean Rift system at the eastern termination of 160 

the Bay of Biscay is associated with upper Aptian to lower Cenomanian thick turbiditic 161 

deposits (Black Flysch Group), fringed by platform carbonates (Urgonian facies) during the 162 

early stages (Paris and Icole, 1975; Souquet et al., 1985; Debroas, 1990; Ternet et al., 1995; 163 

Figs. 4b,c,d). In the Baronnies zone, the Black Flysch Group is locally associated with chaotic 164 

breccias of pre-rift Mesozoic and basement rocks (Debroas, 1990). Near the North Pyrenean 165 

Fault Zone, upper Albian-Cenomanian limestones of Sarrancolin display breccia intervals 166 
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made up of centimetric to metric clasts of Cretaceous limestones and older rocks (Jurassic 167 

metasediments, upper Triassic dolerites, Permian-Triassic red beds and Ordovician schists; 168 

Barrère et al., 1984; Ternet et al., 1995; Figs. 4e,f). The Mesozoic rocks of the North 169 

Pyrenean Zone were affected by HT-LP metamorphism (peak temperatures from 250 to 170 

500°C), attested by the presence of scapolite in Jurassic and Cretaceous limestones, and 171 

include locally serpentinized lherzolite bodies as in Avezac region (Choukroune, 1972; 172 

Azambre et al., 1991; Barrère et al., 1984; Vacherat et al., 2014; Figs. 3 and 4c,d). 173 

In the South Pyrenean Zone of the Cinca valley, the upper Triassic strata are overlain 174 

by sparsely preserved Jurassic limestones and marls, and thin lower Cretaceous-Cenomanian 175 

conglomerates, sandstones and mudstones under unconformable upper Cretaceous strata 176 

(López-Mir et al., 2014b and references therein). 177 

2.2.4. Turonian-lower Santonian rift- to post-rift succession 178 

Thick Turonian-lower Santonian turbidite successions (Grey Flysch Group) of the 179 

North Pyrenean Zone and Aquitaine Basin were deposited during the thermal cooling phase 180 

following the Aptian-Cenomanian rifting (Ford et al., 2016). These sediments pinch out to the 181 

north in the Aquitaine Basin. To the south, the strata onlap onto the Permian-Triassic red beds 182 

or Variscan basement in the Axial Zone. Near the North Pyrenean Fault Zone, Turonian-183 

Coniacian (lower Santonian?) calcareous turdidites and calcschists contain breccia intervals 184 

comprising clasts of Mesozoic carbonates, Ordovician schists and granite (Barrère et al., 185 

1984; Ternet et al., 1995). South of the Axial Zone, the lower part of the late Cretaceous is 186 

dominantly composed of platform limestones. In the Cotiella thrust sheet of the South 187 

Pyrenean Zone, the middle Coniacian-lower Santonian post-rift succession recorded 188 

spectacular extensional salt tectonic structures, due to northward gravity sliding along the 189 

Iberian Platform (García-Senz, 2002; McClay et al., 2004; López-Mir et al., 2014b). 190 
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2.2.5. Upper Cretaceous-Cenozoic syn- to post-orogenic succession 191 

Upper Santonian-Maastrichtian deposits record the onset of the Pyrenean shortening. 192 

These deposits infill E-W trending turbidite troughs developed in the northern and southern 193 

forelands of the Pyrenees. In the northern Pyrenees, the syn-orogenic succession corresponds 194 

to Campanian-Maastrichtian marine turbidites supplied from the east  in an external platform 195 

(Petites Pyrénées Group) to open marine environment in the southern Aquitaine Basin 196 

(Vacherat et al., 2017). In the southern Pyrenees, the upper Santonian Campo Breccia records 197 

the onset of inversion of the Cotiella basin (Garrido-Megías, 1973; García-Senz, 2002). 198 

Southwards and upwards, the breccia grades into the turbiditic system of the Vallcarga 199 

Formation, and subsequently into shelf to transitional sandstone of the Areny Formation 200 

(Garrido-Mejías, 1973; Puigdefàbregas and Souquet, 1986; García-Senz, 2002; López-Mir et 201 

al., 2014b). 202 

In the northern Pyrenees, the overlying Paleocene-Eocene strata have marine 203 

(Rieubach Group to the west) to non-marine detrital and carbonate facies (Aude Valley Group 204 

to the east, Garumnian facies), followed by the marine carbonate succession of the Coustouge 205 

Group. The uppermost fluvial and lacustrine Carcassonne Group (upper Eocene-Oligocene) 206 

was sourced from the uplifting orogen to the south (Christophoul et al., 2003; Ford et al., 207 

2016; Rougier et al., 2016).  208 

In the southern Pyrenees, the Paleocene-Eocene syn-orogenic strata correspond to 209 

basal transgressive shallow marine limestones, which backstep to the south, overlain by the 210 

deep-water marls and turbidites of the Ainsa Basin (Mutti et al., 1985; Puigdefàbregas and 211 

Souquet, 1986). They are fed from the east by the fluvial to deltaic sandstone and 212 

conglomerate systems of the Tremp-Graus basin. The Ainsa Basin is then filled by the 213 

prograding middle-upper Eocene Sobrarbe deltaic complex comprising conglomerates, 214 
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sandstones and mudstones grading into terrestrial red beds (Escanilla Formation) (Garrido-215 

Megías and Ríos-Aragües, 1972; Dreyer et al., 1999). Growth folding and compressional salt 216 

tectonics have been recorded by Paleocene-Eocene strata (Garrido-Mejías, 1973; Teixell and 217 

Barnolas, 1995; Poblet et al., 1998; Muñoz et al., 2013; Santolaria et al., 2016).  218 

Along the South Pyrenean Frontal Thrust, the northern edge of the Ebro Basin is filled 219 

by upper Priabonian to lower Rupelian alluvial systems that pass laterally to the south to 220 

playa-lake evaporites (Barbastro Gypsum Formation). These are overlain by coarse-grained 221 

Oligocene-Miocene fluvial to alluvial siliciclastic sediments (Crusafont et al., 1966; 222 

Quirantes, 1969; Riba et al., 1983). Miocene clastic sediments often overlap and bury the 223 

South Pyrenean Frontal Thrust, which is poorly emergent in the study transect (Fig. 1). 224 

Post-orogenic alluvial deposits (Miocene-Pliocene) of the Lannemezan megafan cover 225 

a large area in the Aquitaine Basin (Hubschman, 1975; Mouchené et al., 2017). The megafan 226 

is characterized by many Quaternary terrace staircases related to incision by the Neste River. 227 

2.2.6. Mechanical stratigraphy and décollement levels 228 

The structure of the Axial Zone is controlled by décollement levels in the Cambrian-229 

Ordovician basement and Silurian graphitic slates (Desegaulx et al., 1990; Muñoz, 1992). 230 

Basement thrusts branch upward into upper décollements developed in the upper Triassic 231 

evaporite-shale strata and/or upper Cretaceous carbonates (Séguret, 1972; Desegaulx et al., 232 

1990; Vergés et al., 1992; Teixell et al., 2000; Cámara and Flinch, 2017). Shallower 233 

décollement levels are observed in the Eocene shales and southern evaporite sequences in the 234 

South Pyrenean Zone and northern Ebro Basin (Flachère, 1977; Santolaria et al., 2016).  235 

During the Permian and Mesozoic extensions, Silurian graphitic slates and upper 236 

Triassic evaporites also acted as decoupling levels between upper extensional structures in the 237 



11 
 

cover and lower crustal detachment faults (Jammes et al., 2010a; Clec and Lagabrielle, 2014; 238 

Manatschal et al., 2015; Asti et al., 2019). 239 

3. Datasets 240 

In this study, we use new field observations and structural data mainly from the North 241 

Pyrenean Zone and Axial Zone, 1:50 000 BRGM (Bureau de Recherches Géologiques et 242 

Minières) and IGME (Instituto Geológico y Minero de España) geologic maps, subsurface 243 

data, and previously published deep geophysical data to build a 210 km-long crustal-scale 244 

cross section (Fig. 1). From north to south, the section crosses the Aquitaine Basin along the 245 

~76 km long LR06 seismic reflection profile (Fig. 5), the North Pyrenean Zone and the Axial 246 

Zone along the Nestes valley, the South Pyrenean Zone along the Cinca valley and reaches 247 

the northern edge of the Ebro Basin. The LR06 seismic reflection profile has been depth-248 

converted using well data (see Supplementary material Table S1) and reinterpreted from 249 

Serrano et al. (2006). The bottom of the profile reaches 18 km depth and has been interpreted 250 

using eleven exploration wells (see Supplementary material Fig. S1), the bottom of the deeper 251 

well reaching 6.9 km bsl under the Lannemezan area (Fig. 5). We have also used the shallow 252 

sections constructed by Lucas (1985) and Debroas (1990) in the North Pyrenean Zone, 253 

sections by Román-Berdiel et al. (2004) and Jolivet et al. (2007) in the Axial Zone, sections 254 

by López-Mir et al. (2014b), Teixell and Barnolas (1995), Cámara and Flinch (2017) and 255 

Santolaria et al. (2016) in the South Pyrenean Zone, and the upper crustal cross section of 256 

Martínez-Peña and Casas-Sainz (2003). Finally, the section follows the trace of the OROGEN 257 

West receiver function profile (Chevrot et al., 2018; Fig. 1), referred to as the PYROPE 258 

Center profile in Teixell et al. (2018). 259 

New Raman spectroscopy of carbonaceous material (RSCM) data in the North 260 

Pyrenean Zone (Table 1) are integrated into the restoration as well as published Raman data 261 
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obtained in the North Pyrenean Zone (Ducoux, 2017), apatite fission track data obtained in 262 

granitoids and metamorphic rocks of the Axial Zone and North Pyrenean Zone (Morris et al., 263 

1998; Fitzgerald et al., 1999; Jolivet et al., 2007; Labaume et al., 2016a; Mouchené, 2016). 264 

4. Surface and subsurface structural architecture 265 

In the following, we describe the structural architecture of the section from north to 266 

south. 267 

4.1. The Aquitaine Basin 268 

The geology and geometry of the Aquitaine Basin has been widely studied for 269 

hydrocarbon exploration (Bourrouilh et al., 1995; Le Vot et al., 1996; Biteau et al., 2006; 270 

Serrano et al., 2006; Serrano, 2015). In the Aquitaine Basin, the surface geology is masked by 271 

Miocene-Pliocene deposits of the Lannemezan megafan and Quaternary alluvium (Fig. 3). 272 

The North Pyrenean Frontal Thrust is a major north-verging thrust exposed along the North 273 

Pyrenean chain, transporting the North Pyrenean Zone above the Aquitaine Basin (Souquet et 274 

al., 1977). Subsurface data show that numerous deep-seated structures are hidden under the 275 

Aquitaine Basin sediments north of the North Pyrenean Frontal Thrust (e.g., Rocher et al., 276 

2000; Serrano et al., 2006). The interpretation of the LR06 seismic reflection profile (Fig. 5) 277 

indicates that the structure of the Aquitaine Basin is mainly related to basement-involved 278 

structures associated with shallower compressional and halokinetic structures in the 279 

sedimentary cover (Gensac-Bonrepos, Auzas-Saint Médard and Auch; Serrano et al., 2006). 280 

Although the reflectors are of poor quality at depth, we interpreted the Paleozoic basement of 281 

the Aquitaine Basin as deformed by a set of north-dipping normal faults, delimiting half 282 

grabens filled by Permian (uppermost Carboniferous?) strata (Fig. 5). Some normal faults 283 

were reactivated as normal faults during the Mesozoic, then as thrusts during the Pyrenean 284 

compression (Auzas-Saint Médard and Auch structures). These basement faults may 285 
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correspond to inherited south-verging Variscan thrusts as described along the ECORS 286 

Pyrenees profile further east (Roure et al., 1989; Choukroune et al., 1990a,b). Southward, the 287 

sedimentary cover is deformed by the North Pyrenean Frontal Thrust, which consists in two 288 

branches: the lower North Pyrenean Frontal Thrust, a tectonic wedge detached northward in 289 

upper Triassic evaporites, involving two major diapiric structures (the shallower Gensac-290 

Bonrepos to the north and a deeper salt structures to the south) and a deep tectonic slice under 291 

the North Pyrenean Zone interpreted as the western continuation of the Saint-Gaudens dense 292 

body; the upper North Pyrenean Frontal Thrust, a complex north-verging imbricate system 293 

involving Paleozoic, Triassic and lower Cretaceous rocks as revealed by well data (Fig. 5 and 294 

Supplementary material Fig. S1; Paris and Icole, 1975; Serrano et al., 2006). The upper North 295 

Pyrenean Frontal Thrust transported the Baronnies zone onto Paleocene strata of the 296 

Aquitaine Basin; the thrust displacement is sealed by upper Eocene strata. 297 

4.2. The North Pyrenean Zone 298 

In the Nestes valley, the North Pyrenean Zone is divided into two metamorphic zones, 299 

the Baronnies and Montillet zones, separated by the Barousse Paleozoic massif (Figs. 3 and 300 

6a; Choukroune, 1971; Barrère et al., 1984; Debroas, 1990). In these metamorphic zones, the 301 

Mesozoic rocks are affected by middle Cretaceous (ca. 110-90 Ma) HT-LP metamorphism 302 

contemporaneous with polyphase syn-extensional/compressional ductile deformations (Fig. 4; 303 

Henry et al., 1971; Choukroune, 1972; Debroas, 1990; Azambre et al., 1991) as described in 304 

the Chaînon Béarnais (Teixell et al., 2016). 305 

In the northern Baronnies metamorphic zone (the so-called external metamorphic 306 

zone), Urgonian limestones, Albian-Cenomanian breccias and flysch are folded in the Bourg, 307 

Prat and Bazus synclines (Fig. 7). These synclines are bounded by steep south-verging thrusts 308 

including tectonic slices of Urgonian limestones, Triassic rocks and small bodies of 309 
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serpentinized lherzolite as along the Avezac thrust (Figs. 4c and 7; Debroas, 1990; Azambre 310 

et al., 1991). To the south, the Bazus syncline and Estivère anticline show preserved, tilted or 311 

inverted Mesozoic normal faults (such as the Mazouau and Estivère faults; Fig. 8a,b) probably 312 

rooted at depth into the Triassic evaporites. The Estivère fault was transported southward 313 

above the Lechan thrust (Figs. 7 and 8b). This thrust cuts with a shortcut geometry through 314 

the Jurassic-lower Cretaceous cover of the Barousse massif (Pène Haute unit).  315 

The Barousse massif is an E-W trending, 30 km long and ~4 km-wide amygdale-316 

shaped basement unit of highly deformed Ordovician to Devonian schists and limestones with 317 

Permian granitic intrusions, unconformably covered by Mesozoic strata of the Bassia and 318 

Pène Haute units (Figs. 3 and 7; De Villechenous, 1980). The cross-sectional geometry of the 319 

Barousse massif corresponds to an asymmetric antiform underlined by lower Triassic red beds 320 

(Lucas, 1968). The backlimb dips 30-40° northward while the forelimb is vertical to 321 

overturned along the Barricave fault zone (Fig. 7).  322 

South of the Barricave fault zone, the southern Montillet metamorphic zone (the so-323 

called internal metamorphic zone) is characterized by two narrow synclines (Montillet and 324 

Beyrède) with steep and sheared limbs (Lucas, 1968; Barrère et al., 1984). These synclines 325 

are bounded by steep faults including tectonic slices (Pariou and Houle Verte) of Ordovician 326 

schists and Triassic red beds and dolomites, dolerite, and marble (Figs. 3, 4e and 8c). The 327 

northern Montillet syncline is composed of Jurassic metamorphic dolomites and limestones 328 

and Albian flysch in the fold core. This syncline disappears progressively westward under low 329 

grade metamorphosed Mesozoic strata of the Bassia unit (Fig. 3). The Montillet syncline is 330 

transported southward over the inverted limb of the Beyrède syncline above the 70° north-331 

dipping Castet thrust. The Beyrède syncline folds upper Albian-Cenomanian limestones and 332 

breccias and Turonian-Coniacian flysch (Barrère et al., 1984; Figs. 3, 7 and 8c). These rocks 333 

were intensively sheared during extensional and compressional tectonics with polyphase 334 
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folding (Fig. 4f,h; Henry et al., 1971; Choukroune, 1972). The Beyrède syncline is bounded to 335 

the south by the Beyrède fault. This fault zone appears as a 67° north-dipping thrust 336 

emplacing the North Pyrenean Zone over Triassic 45° north-dipping strata of the northern 337 

Axial Zone (Figs. 7, 8c,d and 9a). The Castet and Beyrède thrusts define the southern border 338 

of the North Pyrenean Zone as portions of the North Pyrenean Fault Zone. 339 

4.3. The Axial Zone 340 

In the Central Pyrenees, the Axial Zone is formed by five south-verging thrust sheets 341 

(Arreau, Gavarnie, Millares, Bielsa, and Guarga) dominantly made of crystalline and 342 

metamorphic basement and Paleozoic meta-sedimentary rocks covered by small remnants of 343 

Permian-Triassic and Cretaceous strata (Figs. 3 and 7; Muñoz, 1992; Martínez-Peña and 344 

Casas-Sainz, 2003; Jolivet et al., 2007). Tectonic transport of these basements units during the 345 

Pyrenean compression is clearly attested by Triassic and Cretaceous strata in the footwall of 346 

the thrusts (Fig. 3). The northernmost Arreau thrust unit is mainly composed of highly 347 

deformed and foliated Carboniferous turbidites and limestones unconformably overlain by the 348 

80° to 45° north-dipping Permian-Triassic red beds of the Aure trough (Lucas, 1968; 1985; 349 

Mirouse et al., 1993; Figs. 6a, 7 and 8d). Southward, the footwall of the Arreau thrust shows 350 

thin Triassic red beds dipping 30° to 80° northward (Fig. 9b) which unconformably overlie 351 

granite and Devonian-Carboniferous strata of the Gavarnie unit (Lucas 1985; Gleizes et al., 352 

2006; Fig. 3). Upper Paleozoic strata of the Gavarnie thrust unit are deformed by major folds 353 

with strong cleavage together with thrusting (i.e., Cadéac, Ancizan and Vielle-Aure thrust 354 

systems; Figs. 3, 6a and 10a,b) interpreted as Variscan deformations (Bresson, 1903; Muller 355 

and Roger, 1977; Mirouse et al., 1993). Field data and previous works suggest that these 356 

structures have been weakly reactivated during the Mesozoic rifting and Pyrenean 357 

compression (Bresson, 1903; Mirouse et al., 1993; Gleizes et al., 2006). The Gavarnie thrust 358 

dips ~40° north below Silurian slates (Fig. 10c). Its displacement is here estimated up to 10 359 
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km (Séguret, 1972; Martínez-Peña and Casas-Sainz, 2003; Jolivet et al., 2007). This thrust 360 

loses displacement toward the east and eventually disappears (e.g., Soler et al., 1998; 361 

Cochelin et al., 2017; Teixell et al., 2018). In the footwall of the Gavarnie thrust, the Millares 362 

thrust unit is mainly composed of metamorphic Cambro-Ordovician rocks (Frédancon dome), 363 

Silurian-Devonian strata to the southeast and remnants of unconformable Permian-Triassic 364 

red beds and upper Cretaceous limestones (Fig. 3; Clin et al., 1989; Mirouse et al., 1993). 365 

Field data and previous retrodeformed cross sections restoring the Pyrenean shortening 366 

suggest internal Variscan folding and thrusting in the Millares unit (Martínez-Peña and Casas-367 

Sainz, 2003; Román-Berdiel et al., 2004). The Millares thrust dips ~20° to the north, 368 

becoming flat to the south as indicated by klippes of Devonian limestones of the Millares 369 

thrust unit above Permian-Triassic red beds of the Bielsa unit (Figs. 3 and 6a). These klippes 370 

argue for 4.5 km of minimum displacement on the Millares thrust above the Bielsa unit. The 371 

Bielsa thrust unit is dominantly formed by Variscan granite unconformably overlain by 372 

Permian-Triassic red beds. These latter are flat to the north and dip ~40° southward to the 373 

south (Fig. 6a). The basement thrust sheets described above were deformed and transported 374 

southward onto the deep Guarga basement thrust unit below the Ainsa Basin (Figs 6a,b; 375 

Cámara and Klimowitz, 1985). 376 

4.4. The South Pyrenean Zone and Ebro Basin 377 

The South Pyrenean Zone is composed of a south-verging imbricate fan of thrust 378 

sheets of Mesozoic to Oligocene cover rocks (Séguret, 1972; Garrido-Megías, 1973; Fig. 6b) 379 

detached in upper Triassic evaporites. Along the Cinca valley, these thrust sheets and 380 

associated folds record a large clockwise vertical axis rotation above lateral ramps (e.g., 381 

Mochales et al., 2012; Muñoz et al., 2013). From north to south, the thrust sheets are the 382 

Cotiella, Peña Montañesa, Boltaña-Balzes, and Sierras Marginales thrust sheets (Fig. 6b; 383 

García-Senz, 2002; Muñoz et al., 2013; López-Mir et al., 2014b; Santolaria et al., 2014). The 384 
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Cotiella thrust sheet corresponds to a spectacular inverted gravity-driven salt-based 385 

extensional rollover basin formed during Turonian-early Santonian times (López-Mir et al., 386 

2014a,b). Now, this thrust sheet appears as an isolated klippe transported to the south from the 387 

Axial Zone (Séguret, 1972), implying a minimum southward displacement of 20 km 388 

(López‑Mir et al., 2014a). The Ainsa Basin in the footwall of the Cotiella and Peña 389 

Montañesa thrust sheets is filled by Eocene turbidite to deltaic deposits deformed by the La 390 

Fueba or Arro fold-thrust system (Fig. 6b; Barnolas et al., 1991; Fernández et al. 2012; 391 

Muñoz et al., 2013). Southward, the Clamosa and Naval Triassic salt domes rose during the 392 

Eocene and Oligocene and, together with internal thrusts, are transported in the hanging-wall 393 

of the Boltaña-Balzes thrust (Teixell and Barnolas, 1995; Muñoz et al., 2013; Santolaria et al., 394 

2014; Cámara and Flinch, 2017). Based on the gravity modeling results of Santolaria et al. 395 

(2016), we infer a deep south-verging thrust (accommodating ~5.5 km of shortening) made of 396 

the Eocene rocks under the Clamosa diapir to fill space and thus decrease the volume of the 397 

Triassic evaporites (Fig. 6b). Southward, the Sierras Marginales structure corresponds to a 398 

single south-verging thrust sheet of the upper Cretaceous to Eocene strata defining the South 399 

Pyrenean Frontal Thrust above the Barbastro-Balaguer ridge (Cámara and Klimowitz, 1985; 400 

Santolaria et al., 2016). As previously mentioned, the frontal thrust is poorly emergent as it is 401 

largely buried by Miocene sediments on this transect. The Barbastro-Balaguer ridge is a 402 

detachment anticline made of Oligocene-Miocene molasse with Eocene evaporitic sediments 403 

in its core (Fig. 6a; Martínez-Peña and Pocoví, 1988; Cámara and Flinch, 2017). 404 

5. Paleo-temperature data 405 

Raman spectroscopy on carbonaceous material (Beyssac et al., 2002; Lahfid et al., 406 

2010) is used to determine the maximum paleo-temperatures that affected the North Pyrenean 407 

Zone rocks. These maximum paleo-temperatures provide an estimation of the paleo-burial in 408 

order to constrain the restored pre-deformational basin architecture. Maximum paleo-409 
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temperatures were determined for eight carbonaceous samples in the North Pyrenean Zone 410 

along the studied transect. Maximum paleo-temperatures obtained range from 274 to 556°C 411 

(Figs. 3 and 7, and Table 1) and are consistent with data of Ducoux (2007). Higher values 412 

(~500°C) are found in the center of the external and internal metamorphic zones (Baronnies 413 

and Montillet zones) for samples collected in Jurassic and Albian-Cenomanian limestones and 414 

breccias. Lower values (~300°C) are found in the Estivère anticline (southern edge of the 415 

Baronnies zone) and Beyrède syncline for samples collected in Albian to Turonian limestones 416 

and breccias. 417 

6. Timing of thrust propagation 418 

In the Aquitaine Basin, thrust activity is mainly recorded by Campanian to Eocene 419 

deposits with growth strata patterns controlled by the Gensac-Bonrepos, Auzas-Saint Médard 420 

and Auch anticlines (Fig. 5). Thrust activity and exhumation of the North Pyrenean Zone are 421 

only constrained as middle-late Eocene (between 41.8 and 35.1 Ma) by apatite fission track 422 

cooling ages in the granitoids of Barousse massif (Mouchené, 2015) and in anatectic 423 

paragneisses west of the Baronnies zone (Labaume et al., 2016b). In the Axial Zone, timing of 424 

thrust-related uplifts occurred between the late Eocene and the early Miocene as suggested by 425 

apatite fission track cooling ages in granitoids belonging to the Gavarnie and Bielsa thrust 426 

sheets (Morris et al., 1998; Fitzgerald et al., 1999; Jolivet et al., 2007; Labaume et al., 2016b). 427 

In the South Pyrenean Zone, syn-tectonic breccias and growth strata record the activity of the 428 

Cotiella thrust sheet during the late Santonian (Campo unconformity and breccias; Figs. 2 and 429 

6b) and late Maastrichtian, the Peña Montañesa thrust sheet during the Paleocene-late 430 

Ypresian, and the Boltaña-Balzes and Sierras Marginales thrust sheets during Lutetian-431 

Oligocene (García-Senz, 2002; Muñoz et al., 2013; López-Mir et al., 2014b; Santolaria et al., 432 

2014; Labaume et al., 2016a). Thrust propagation occurred synchronously with lower 433 

Lutetian to upper Bartonian clockwise vertical axis rotation that was also accommodated by 434 
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local steeply-dipping normal cross faults (e.g., San Marcial graben in Fig. 6b; Mochales et al., 435 

2012; Muñoz et al., 2013; López-Mir et al., 2014b; Santolaria et al., 2014). 436 

7. Crustal-scale balanced cross section and restorations 437 

The crustal structure of the Central Pyrenean belt is derived from the update 438 

interpretation of receiver function data of the coincident OROGEN West profile (Chevrot et 439 

al., 2018) shown in Fig. 11, together with gravity anomaly data (International Gravimetric 440 

Bureau, 2012) and gravity inversion results of Casas et al. (1997). The final balanced and 441 

restored cross sections are shown in Fig. 12. This balanced cross section is one possible 442 

construction model but the most reasonable solution consistent with the available surface and 443 

subsurface geological data presented in this study. 444 

Cross section balancing follows thrust tectonic concepts (Dahlstrom, 1969; Boyer and 445 

Elliot, 1982; Elliott, 1983). Balancing and restorations were performed using Move structural 446 

modeling software based on bed length and thickness conservation and the built-in flexural-447 

slip algorithm for the sedimentary cover. An area-balance approach was applied for the deep 448 

crustal levels (Mitra and Namson, 1989). The Triassic evaporite layer was not balanced 449 

during restoration because this layer is considered free to move in three dimensions and to be 450 

eroded in successive stages of exposed diapirism. The large difference of volume of the 451 

Triassic evaporites between the present-day and restored stages can also result from major 452 

dissolution and fluid migration. 453 

Fault and basin geometries, facies distribution, and burial data allow us to reconstruct 454 

three palinspastic restorations: early Santonian, late Jurassic and early-middle Triassic. 455 

Taking the associated sedimentary sequences as markers (with respect to the depth of 456 

deposition at regional-scale), sequential restoration allows the modeling of the geometry of 457 

the Pyrenean Rift system during middle Cretaceous and late Jurassic, and Permian Rift- 458 
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Variscan belt. Lower-middle Triassic and Jurassic markers are preserved along the section. 459 

Because the lower Santonian markers have been eroded in the North Pyrenean Zone, Raman 460 

paleo-temperature data are used to estimate the paleo-thickness of the pre-orogenic 461 

sedimentary pile. The lower Santonian pre-contractional restoration quantifies the amount of 462 

Pyrenean shortening while the lower-middle Triassic restoration estimates the Mesozoic 463 

extension. The calculated extension and shortening magnitudes that we propose are minimum 464 

values owing to the uncertainty involved in calculating the amount of thrust displacement 465 

where hanging wall cut-offs are removed by erosion (see Judge and Allmendinger, 2011 for 466 

discussion). In addition, we assume that strike-slip motions inferred at least along the North 467 

Pyrenean Fault Zone and rotations in the South Pyrenean Zone would not significantly affect 468 

the structural geometry. However, they may affect the estimated amount of shortening or 469 

extension (e.g., Wallace, 2008). 470 

7.1. Present-day crustal-scale geometry 471 

The surficial thrust system geometry of the Central Pyrenean belt consists in bi-472 

vergent basement and cover thrust sheets with the inversion of extensional faults and diapiric 473 

structures. The asymmetry of the belt is defined by a wide (~126 km) south-verging prowedge 474 

including the northern part of the Ebro Basin, the South Pyrenean Zone, the Axial Zone, the 475 

Montillet zone and the Barousse massif, and a relatively narrower (~73 km) north-verging 476 

retrowedge including the Baronnies zone and the deformed Aquitaine Basin (Fig. 12a). 477 

The crustal structure of the Central Pyrenean belt section is similar to the one 478 

described to the east along the ECORS Pyrenees and PYROPE East profiles (Fig. 1; Chevrot 479 

et al., 2015; Teixell et al., 2018; Chevrot et al., 2018). The European lithosphere constitutes a 480 

thrust wedge indenting southward between the upper crustal Axial Zone imbricate stack and 481 

the northward subducted Iberian lowermost crust. The European crust exhibits a wedge-482 
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shaped geometry thinning southward from ~30 km-thick in the north to zero km-thick under 483 

the Axial Zone. In contrast, the Iberian crust shows a regular thickness of ~32 km between the 484 

Ebro Basin and the Axial Zone. The profile is marked by the presence of a wave-shaped 485 

negative polarity interface, which mimics the north-dipping Iberian Moho (Chevrot et al., 486 

2018). These interfaces describe a boudinaged 30-15 km-thick, ~20° north-dipping slab of 487 

Iberian lower crust plunging into the mantle to a depth of ~75 km under the Aquitaine Basin 488 

(Fig. 11). 489 

The Iberian crust shows a strong internal complexity with an intriguing northward 490 

gently dipping negative polarity (Fig. 11). This interface is located at a depth of 15 km bsl 491 

under the South-Pyrenean Zone. It connects northward with the subducting lower crust under 492 

the Axial Zone. This interface is also visible along-strike in the PYROPE West and East 493 

profiles (Chevrot et al., 2018). We speculate that this inclined interface is a relic of a major 494 

south-verging Variscan thrust, detached in the lower crust. Additional deeper thrusts might 495 

also occur southward. This crustal imbricate feature is consistent with Paleozoic basement 496 

reflectors in the ECORS Pyrenees profile interpreted as Variscan flats and ramps by 497 

Choukroune et al. (1990a,b) and Desegaulx et al. (1990). The large negative polarity in the 498 

European crust (Fig. 11) is rather interpreted as a multiple of the shallow sediment layer of the 499 

Aquitaine Basin (Chevrot et al., 2018). Like for the Iberian crust, we assume that the Variscan 500 

basement thrusts of the European crust under the Aquitaine Basin are also connected at depth 501 

into the lower crust (Choukroune et al., 1990a,b). 502 

Following the North Pyrenean Zone in map view, a series of relatively strong positive 503 

Bouguer anomalies (Saint-Gaudens, Lourdes, Labourd) are aligned parallel to the trend of the 504 

chain (Casas et al., 1997; Angrand et al., 2018; Chevrot et al., 2018; Fig. 11). These 505 

anomalies have been interpreted as dense material (either lower crust or mantle) exhumed 506 

during Cretaceous rifting then transported northward by Pyrenean thrusts onto European 507 
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upper crust (e.g., Roure et al., 1989; Muñoz, 1992; Casas et al., 1997). Our section crosses the 508 

western edge of the Saint-Gaudens dense body (Figs. 11 and 12a). The location and size of 509 

this dense body is constrained by gravity data (International Gravimetric Bureau, 2012) and 510 

consistent with the modeling results of Casas et al. (1997). We represented this dense body 511 

(with an area of ~85 km² at a depth ranging between 8.5 and 16 km bsl) as a sheared thrust 512 

lense of mantle rock thrust along the deep North Pyrenean Frontal Thrust (Fig. 12). Our 513 

construction shows that the Saint-Gaudens body is tectonically overlain by basement thrust 514 

sheets of the Axial Zone and underlain by European upper crust. Alternatively, the western 515 

Labourd anomaly is interpreted as an autochthonous uplifted upper mantle below thinned 516 

European crust that was only passively transported along a south-verging thrust (Velasque et 517 

al., 1989; Wang et al., 2016). This more recent model seems, however, poorly constrained in 518 

terms of kinematics and accommodation of observed surface shortening, as discussed by 519 

Teixell et al. (2018). 520 

7.2. Lower Santonian pre-contractional restoration 521 

The lower Santonian restored cross section (Figs. 12b and 13) shows the structural 522 

architecture of the Pyrenean Rift system just before the onset of the Pyrenean compression. 523 

The rift forms a 75 km-wide asymmetric hyper-extended zone with a central basement unit 524 

(the Barousse massif) surrounded by the ~20 km-wide northern metamorphic zone (Baronnies 525 

zone), and the ~50 km-wide southern metamorphic zone (Montillet zone) with high grades of 526 

HT-LP metamorphism. Relative vertical positions and burial of the sedimentary units have 527 

been estimated according to peak paleo-temperatures of ~270-550°C indicated by Raman data 528 

(Fig. 13) and consistent with diagenesis/metamorphism data of Azambre et al. (1991) in the 529 

Baronnies zone. These paleo-temperatures and the reconstructed paleo-depths of the 530 

sedimentary/tectonic units indicate maximum geothermal gradient values ranging between 75 531 

and 110°C/km (considering a deep-sea temperature of ~20°C) before the upper Santonian 532 
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inversion. This is also consistent with the geothermal gradient of ~80°C/km calculated from 533 

zircon helium data in the Mauléon Basin further west (Vacherat et al., 2014; Hart et al., 2017; 534 

Fig. 1). 535 

At the transition zone between the European Platform and Baronnies zone, the 536 

Jurassic-Cretaceous sedimentary cover is detached toward the south above huge volume of 537 

Triassic evaporitic related to the development of large halokinetic structures (area of the 538 

future lower North Pyrenean Frontal Thrust; Fig. 13). The northern edge of the Baronnies 539 

zone is formed by a major listric south-dipping normal fault corresponding to the future upper 540 

North Pyrenean Frontal Thrust. The Baronnies zone is restored to show a 5.5 km-thick 541 

depocenter mainly constituted by Albian-Cenomanian (and inferred Turonian-lower 542 

Santonian) strata deformed by north- and south-dipping low-angle normal faults associated 543 

with diapirism and extensional raft structures above upper Triassic evaporites like in the 544 

Chaînons Béarnais basins (Canérot and Lenoble, 1991, 1993; Lagabrielle et al., 2010; Jammes 545 

et al., 2010a; Teixell et al., 2016; Corre et al., 2016; Fig. 1). In the center of the Baronnies 546 

zone, the Cretaceous sediments tectonically overlie exhumed mantle rocks (Fig. 13). The 547 

Barousse massif is detached from the distal Iberian margin above the future north-dipping 548 

North Pyrenean Fault Zone (Castet and Beyrède normal faults). We propose that the structure 549 

of the Barousse massif can be modeled as an upper crustal boudin (its nature is however 550 

poorly constrained at depth) on which its Mesozoic sedimentary cover (Pène Haute and 551 

Bassia) has been detached to slide northward above Triassic evaporites into the Baronnies 552 

zone (Fig. 13). Southward, the subsidence of the Montillet zone is controlled by normal slip 553 

above the Beyrède and Castet basement faults and also by gravitational sliding of the cover 554 

above Triassic evaporites (Barricave fault zone). This extensional system is covered by thick 555 

(more than 5 km-thick) Albian to Coniacian (lower Santonian?) sediments. In the Iberian 556 

Platform, the evolution of Cotiella Basin during the middle Coniacian-early Santonian was 557 
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controlled by gravity-driven extension and diapirism (Fig. 13; López-Mir et al., 2014a,b). The 558 

gravitational sliding is probably favored by northward tilting of the Triassic basal décollement 559 

and differential sediment loading during the post-rift period. 560 

The restored geometry of the Cretaceous Pyrenean Rift system shows that extreme 561 

thinning and stretching of the crust resulted in the exhumation of the subcontinental mantle 562 

under the Baronnies zone (Avezac lherzolite) and probably also under the Montillet zone. 563 

Although the southern Montillet metamorphic zone is devoid of peridotite rocks, it could be 564 

connected to the east to the well-known Lherz area (Aulus Basin; Fig. 1) where remnants of 565 

exhumed mantle are well preserved (e.g., Lagabrielle and Bodinier, 2008). The stretching of 566 

the crust is heterogeneous in the rift axis with crustal thinning and boudinage leading to upper 567 

crustal rocks (e.g., Barousse boudin) and Cretaceous sediments lying directly over the mantle 568 

(Clerc and Lagabrielle, 2014). The restoration shows that the thick sedimentary cover is 569 

continuous without exposures of exhumed mantle rocks at the seabed, a situation 570 

corresponding to the T-type lherzolite exhumation process described by Lagabrielle et al. 571 

(2010). The origin of the small lherzolite bodies along the Avezac thrust is not clear in their 572 

present context of small tectonic lenses (Figs. 3 and 4c). They can be interpreted as mantle 573 

fragments embedded in Triassic evaporites during extension and later collected by thrusting 574 

during the Pyrenean inversion (Lagabrielle et al., 2010; Teixell et al., 2016). 575 

The restoration indicates that extensional faulting and exhumation of the metamorphic 576 

units continued at least during the Turonian-Coniacian, which is consistent with breccia 577 

deposits with basement and Jurassic clasts near the North Pyrenean Fault Zone and 578 

burial/metamorphic peak in the rift (Montigny et al., 1986; Azambre et al., 1991). A similar 579 

interpretation for the end rifting age was proposed for the northeastern Pyrenean section in 580 

Clerc et al. (2016). 581 
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Our restoration of the Pyrenean Rift system shows many similarities with the ductile-582 

type magma-poor rifted margin model including boudinage of the lower crust and ductile 583 

deformation of the upper crust just beneath the sedimentary cover as described in Clerc and 584 

Lagabrielle (2014) and Clerc et al. (2018). Our restoration suggests that HT-LP 585 

metamorphism in the cover of the Baronnies and Montillet zones is related to deep burial 586 

(more than 5 km-thick) coupled with crustal thinning and mantle exhumation (Golberg and 587 

Leyreloup 1990; Clerc and Lagabrielle, 2014; Clerc et al., 2016). 588 

Our two-dimensional restoration and field data suggest a partitioned hyper-extended 589 

rift system in this sector of the Pyrenean Rift system (Figs. 12b and 13). This sector can be 590 

interpreted as the relay zone between the southern internal metamorphic zone mainly 591 

developed eastward along the North Pyrenean Fault Zone (i.e., Montillet, Ballongue and 592 

Aulus basins) and the northern external metamorphic zone mainly developed westward (i.e., 593 

Baronnies, Chaînons Béarnais and Mauléon basins) (Fig. 1; Jammes et al., 2010b; Lagabrielle 594 

et al., 2010; Tugend et al., 2014; Masini et al., 2014; Teixell et al., 2016; Corre et al., 2016). 595 

This structural model is consistent with the non-cylindrical geometry of the Cretaceous basins 596 

(V-shaped geometries), separated by crustal boudins as proposed by Jammes et al. (2009) and 597 

Clerc and Lagabrielle (2014). 598 

7.3. Upper Jurassic restoration 599 

The upper Jurassic restored cross section (Fig. 14b) suggests that the region would 600 

have already suffered crustal extension and halokinesis during middle Triassic-Jurassic in a 601 

~100 km-wide zone localized north of the Castet fault including the European Platform 602 

(future Auzas-Saint Médard structure). We propose that the extension is accommodated at 603 

depth by faulted basement blocks and low-angle detachments in the upper crust with inferred 604 

thinning by ductile shear in the lower crust. In the zone of maximum crustal thinning (i.e., the 605 
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zone of the future Pyrenean Rift system), the mobility of Triassic evaporites could have been 606 

enhanced by high geothermal gradient. According to field data, the restoration suggests 607 

gravitational sliding of the Jurassic cover above Triassic evaporites (Fig. 14b) with the 608 

development of several salt-related anticlines and growth synclines like in the Chaînons 609 

Béarnais (Fig. 1; Canérot and Lenoble, 1991, 1993;). The huge volume of Triassic evaporites 610 

may have favored canopy emplacements as suggested by the development of evaporitic 611 

sequences in Jurassic (Delfaud, 1968; Barrère et al., 1984; Fauré, 2002). This Jurassic 612 

tectonic/halokinesis activity is also consistent with breccia deposition at least during the 613 

Hettangian, Kimmeridgian and Tithonian (Delfaud, 1966, 1968; Barrère et al., 1984; James et 614 

al., 1996; Fauré, 2002). Jurassic sequences deposited on the Iberian margin have been 615 

strongly eroded and are only preserved south of the Bielsa unit. Although the European and 616 

Iberian rift shoulders show thick Triassic evaporitic sequences, these zones are only affected 617 

by minor halokinetic movements, may be due to the smaller thermal effect in these zones. 618 

7.4. Lower-middle Triassic restoration 619 

The lower-middle Triassic restoration of Fig. 14c illustrates a possible crustal 620 

architecture model before the Mesozoic rifting events. The restoration suggests that the 621 

Central Pyrenean orogen was superimposed on an irregular Paleozoic framework including 622 

Variscan compressional and Permian extensional structures. The restored Guarga, Millares, 623 

Bielsa and Gavarnie unit can be interpreted as old Variscan thrusts according to geophysical 624 

interpretations in the Iberian crust (Fig. 11). The Variscan thrust system is thus characterized 625 

by several south-verging, ~15-20° north-dipping basement thrusts and synclines involving 626 

Silurian to Carboniferous strata as described along the ECORS Pyrenees profile (Choukroune 627 

et al., 1990a,b). The thrust system would be mainly detached in the lower crust. The thrusts 628 

branch upward into décollements in the Silurian slates. The Barousse massif is interpreted as 629 

an inherited Variscan south-verging thrust sheet. This thrust places Ordovician rocks onto 630 
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Carboniferous rocks of the Arreau syncline. The restoration also suggests that Ordovician 631 

rocks of the Barousse thrust sheet are overlain to the north by a 3.5 km-thick package of 632 

younger Paleozoic strata (Silurian, Carboniferous and Permian basins). These Paleozoic 633 

sequences may connect northward with basement reflectors observed in the LR06 profiles in 634 

the Aquitaine Basin (Fig. 5).  635 

As described above, the restoration also suggests that some Variscan thrusts were 636 

reactivated and controlled the formation of half-grabens during the Permian extension (Fig. 637 

14c). The Aure trough (Lucas, 1968) corresponds to a large half-graben controlled by the 638 

north-dipping Arreau normal fault on its southern border. Lucas (1968, 1985) showed that this 639 

half-graben was infilled by thick continental breccia deposits (Fig. 8d) composed of locally 640 

derived clasts mainly sourced from the Barousse massif to the north (Ordovician quartzite, 641 

granite and slate) and from the Cadéac imbricate-Arreau basin to the south (Devonian 642 

limestones, Carboniferous quartzites and limestones) (Fig. 3). This sediment provenance 643 

suggests that the relative position of the different Variscan blocks across the future North 644 

Pyrenean Fault Zone was not significantly modified along-strike since the Permian extension. 645 

We emphasize that this model is consistent with results of Saspiturry et al. (2018) in the 646 

Permian Bidarray Basin (Fig. 1). The Triassic restoration suggests thickness variations of the 647 

crust along the section. The Permian Rift affecting the southern part of the European crust 648 

may explain its relatively thinner lower crust (~15-23 km) in comparison to the Iberian crust 649 

(~30 km), which was only weakly affected by crustal extension. This Permian crustal thinning 650 

implies mantle uplift toward shallow lithosphere levels, which is consistent with post-651 

Variscan refertilization of the mantle lherzolites in the Aulus Basin (Lherz area; Le Roux et 652 

al., 2007; Fig. 1) together with the development of Permian metasomatic events in the eastern 653 

Pyrenees (Boutin et al., 2016). Variscan and Permian structures were eroded and 654 
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unconformably covered by fluvial Triassic strata mainly sourced from the north (Lucas, 1968, 655 

1985). 656 

7.5. Estimates of extension and shortening 657 

The amount of crustal extension in the Pyrenean Rift system derived from crustal 658 

restorations is 10 km at the end of late Jurassic and 56 km at the end of the early Santonian 659 

(Fig. 14). This latter value is a minimum value because the restored southern Montillet 660 

metamorphic zone may only represent a small remnant of a larger basin, now removed by 661 

compression and erosion. Our estimate falls within the lower part of the ~70-50 km range 662 

values estimated by Vergés and García-Senz (2001) from balanced cross sections and 663 

Mouthereau et al. (2014) along the ECORS Pyrenees profile from plate kinematic models, and 664 

consistent with thermo-mechanical modeling results of Jourdon et al. (2019). 665 

The comparison between the present-day balanced and lower Santonian restored cross 666 

sections shows a total horizontal shortening of 127 km (39%) accounting for the closure of the 667 

hyper-extended Pyrenean Rift system in the Nestes-Cinca transect (Fig. 12). This value is a 668 

minimum due to the uncertainties described above. This shortening is divided as 42 km in the 669 

northern retrowedge (31 km for the Baronnies zone and 11 km for the Aquitaine Basin) and 670 

85 km in the southern prowedge. The restoration shows that the shortening recorded by the 671 

Axial Zone-Barousse imbricate has been totally accommodated upward in the emerging thrust 672 

sheets of the South Pyrenean Zone and in the Barbastro-Balaguer ridge. The restoration 673 

suggests that the 26 km of slip on the Cotiella-Peña Montañesa thrust sheets might have been 674 

fed by the inversion of the North Pyrenean Fault Zone (15.1 km) and the rest by internal 675 

south-verging thrusts of the Pyrenean Rift system (Fig. 12). In contrast to Martínez-Peña and 676 

Casas-Sainz (2003), we propose a simple alternative root for the Cotiella thrust sheet here 677 

placed above the Gavarnie unit (Teixell et al., 2018). The Arreau thrust can be interpreted as 678 
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an out-of-sequence thrust with a displacement of 3.5 km minimum. Further research on this 679 

fault is needed to precise the geometry and inversion of the Permian-Triassic Aure trough 680 

(Lucas, 1968). 681 

The amount of shortening across the Pyrenean belt is debated. Shortening values in the 682 

Central and Eastern Pyrenees estimated by balanced cross sections and paleogeographic 683 

reconstructions range between 80 and 165 km (Roure et al., 1989; Muñoz, 1992; Vergés et al., 684 

1995; Teixell, 1998; Beaumont et al., 2000; Martínez-Peña and Casas-Sainz, 2003; 685 

Mouthereau et al., 2014; Macchiavelli et al., 2017; Grool et al., 2018). Studies considering 686 

and quantifying the closure of the exhumed mantle domain propose shortening amounts 687 

ranging between 114 and 160 km (Specht, 1989; Mouthereau et al., 2014; Teixell et al., 2016; 688 

Macchiavelli et al., 2017; Teixell et al., 2018), which is consistent with the calculated 689 

shortening value of 127 km along the Nestes-Cinca transect of the Central Pyrenean belt. 690 

8. Discussion 691 

8.1. Influence of inherited Paleozoic features on Pyrenean geodynamics 692 

The heterogeneous continental crust of the Pyrenees is inherited primarily from the 693 

Variscan orogeny and the Permian rifting episode, including their relevant magmatic/thermal 694 

events. These events resulted in substantial rheological changes in the lithosphere and the 695 

individualization of crustal blocks separated by mechanical anisotropies (Manatschal et al., 696 

2015). However, the precise role of Paleozoic structural inheritances on Pyrenean 697 

geodynamics remains poorly constrained. 698 

The inferred lower-middle Triassic cross section restoration (Fig. 14c) suggests that 699 

the Pyrenean domain is superimposed on a south-verging upper crustal thrust wedge of the 700 

Variscan belt detached in the mid-lower crustal levels (Soula et al., 1986; Souquet et al., 701 
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2003; García-Sansegundo et al., 2011). This inferred geometry is consistent to the one of the 702 

Variscan orogen of southwestern Iberia described in Simancas et al. (2001, 2003). Similarly, 703 

surface and subsurface data indicate that the upper crust is decoupled from the lower crust 704 

together with additional deformation occurring at deeper levels. Our structural model implies 705 

that lower crustal rocks may have been involved in Variscan thrusts in the Iberian margin as 706 

interpreted in the OROGEN West profile (Fig. 11). Thus, we can speculate, according to the 707 

restored geometry of the Variscan belt in Fig. 14c, that the basement thrusts of the present-day 708 

Axial Zone of Pyrenees as well as basement thrusts under the Aquitaine Basin might 709 

incorporate lower crustal rocks at depth (Fig. 12). 710 

Variscan post-orogenic collapse is thought to have been responsible for Permian 711 

extensional reactivation of the pre-existing south-verging thrusts (Roure et al., 1989; 712 

Choukroune et al., 1990a,b), crustal thinning and the development of continental basins 713 

infilled by coarse detrital sedimentation from proximal relief (Lucas, 1985). Lower crustal 714 

rocks may have been exposed near the surface probably as early as the Permian, i.e., before 715 

the Cretaceous rifting (Vissers, 1992; Lagabrielle et al., 2016; Asti et al., 2019). The 716 

Paleozoic framework was eroded and then sealed by the lower Triassic red beds. During the 717 

middle Triassic-lower Santonian extensional period, the rift location and progressive necking 718 

of the continental lithosphere took place in a zone where the crust had been strongly deformed 719 

by the Variscan orogen, then thinned and newly intruded by granitoids during the Permian 720 

rifting (Harris et al., 1974). Comparison of lower Santonian, upper Jurassic and lower-middle 721 

Triassic restorations (Fig. 14) suggests that the inversion of the north-dipping Variscan 722 

Barousse thrust controlled the position of the southern edge of the Jurassic extension and 723 

Cretaceous Pyrenean Rift system, which then became the North Pyrenean Fault Zone. We 724 

propose that the northern edge of the rift might have been rather controlled by basement 725 
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tilting toward the rift and south-verging gravitational sliding of the Mesozoic cover above the 726 

Triassic evaporites (Fig. 14a). 727 

8.2. Inversion of the Pyrenean Rift system and building of the Pyrenees 728 

During the closure of the Pyrenean Rift system, the exhumed mantle zone and the 729 

Iberian lower crust were subducted underneath the European plate while the upper crust was 730 

stacked as an internal zone of the Pyrenean orogen. The subduction of the hyper-extended 731 

domain is associated with the reactivation of the North Pyrenean Fault Zone as a south-732 

verging thrust system. Shortening propagated southward with the initial inversion of the 733 

Cotiella Basin in late Santonian (84 Ma), which coincides with the syn-tectonic Campo 734 

breccia deposits and the development of flysch basins in the south Pyrenean domain attesting 735 

onset of flexural subsidence (Garrido-Mejías, 1973; López-Mir et al., 2014a,b). Inversion is 736 

recorded somewhat later in the northern Pyrenees by Campanian syn-orogenic flysch deposits 737 

(Ford et al., 2016). 738 

Numerical models suggest that the presence of mantle lithospheric bodies at shallow 739 

depth in the retrowedge of the Pyrenees can be controlled by rifting inheritance (Jammes and 740 

Huismans, 2012; Erdős et al., 2014; Jourdon et al., 2019). The thermal/structural inheritance 741 

of the Cretaceous Pyrenean Rift domain was prone to accommodate the first crustal and cover 742 

contractional deformations of the Pyrenean belt (Vacherat et al., 2014). The high geothermal 743 

gradient caused by the hyperextension was probably maintained during at least early stages of 744 

structural inversion in the Montillet and Baronnies zones (Fig. 4; Choukroune,1972; Debroas, 745 

1990; Lacombe and Bellahsen, 2016). However, the exhumed mantle at upper crustal levels 746 

acted as a rigid domain during the subsequent shortening (Jourdon et al., 2019). We propose a 747 

kinematic model where the Saint-Gaudens mantle body is collected by thrusting during 748 

inversion of the rift as suggested in the ECORS Pyrenees transect by Muñoz (1992) and in the 749 
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Chaînons Béarnais transect by Teixell et al. (2016) (Fig. 1). The reason why the mantle is 750 

alternately collected by thrust along the Pyrenean orogen remains unclear. Pyrenean thrusts 751 

could superimpose on inherited extensional shear zones of the exhumed mantle domain 752 

(Vissers et al., 1997; Gillard et al., 2016; Jourdon et al., 2019; Asti et al., 2019). 753 

The transition from subduction to collision might correspond to the onset of 754 

subduction of the Iberian lower crust into the mantle (e.g., Teixell et al., 2016; Grool et al., 755 

2018; Teixell et al., 2018). After, the European lithosphere acted as an intercutaneous wedge 756 

involving the decoupling of the Iberian crust in the ductile lower crust (Fig. 12). The timing of 757 

crustal accretion is difficult to estimate but it probably started synchronously with the growth 758 

of the imbricate stack and exhumation of the Axial Zone and North Pyrenean Zone at the end 759 

of the Eocene as suggested by apatite fission track cooling ages at ca. 42-35 Ma (Jolivet et al., 760 

2007; Labaume et al., 2016b; Mouchené, 2016) and field geological data (Teixell, 1996; 761 

Labaume et al., 2016a). 762 

The new crustal-scale balanced cross section and geophysical data argue in favor of a 763 

geodynamic model where the structure of the orogen is dominated by a south-directed large 764 

prowedge (Séguret, 1972; Muñoz et al., 1986). The shortening of the wedge was mainly 765 

transferred southward into cover thrust sheets of the South Pyrenean Zone which is consistent 766 

with numerical models of Erdős et al. (2014). The growth of the Axial Zone and North 767 

Pyrenean Zone mainly results from the piggyback-sequenced stacking of south-verging 768 

basement thrust sheets developed during the upper Cretaceous-lower Miocene Pyrenean 769 

compression (Séguret, 1972; Specht, 1989; Muñoz, 1992; Teixell, 1998). This kinematic 770 

propagation resulted in progressive and overall northward backtilting of the northern units 771 

(except in the northern edge of the Baronnies zone) and southward tilting of the southern units 772 

(Fig. 12). 773 
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8.3. Implication for Iberian kinematics 774 

Although the European-Iberian plate boundary was affected by superimposed tectonic 775 

events during the Mesozoic (e.g., Tugend et al., 2015; Macchiavelli et al., 2017), cross section 776 

restoration results suggest that the relative position of the different Variscan blocks was not 777 

significantly modified along-strike since the late Paleozoic times as was suggested in previous 778 

studies (e.g., Lucas, 1968, 1985; Debroas, 1987; Coward and Dietrich, 1989; Roure et al., 779 

1989; Mattauer, 1990; Choukroune et al., 1990a,b; Muñoz, 1992; Sibuet et al., 2004; García-780 

Sansegundo et al., 2011; Tavani et al., 2018; Saspiturry et al., 2018). Although we cannot 781 

provide new geometrical constraints to the relative plate motions, we propose that the opening 782 

direction of the Pyrenean Rift system was mainly ~NNE-SSW trending since the Permian-783 

Triassic period and accommodated by major NNE-SSW trending transfer zones inherited 784 

from the Paleozoic times like the Toulouse and Pamplona faults and Eastern Crustal 785 

Lineament in the Pyrenees (Fig. 1; Tugend et al., 2015; Angrand et al., 2018; Cadenas et al., 786 

2018; Tavani et al., 2018), and the Nîmes and Durance faults and East-Variscan Shear Zone 787 

in Provence basin (Bestani et al., 2016; Ballèvre et al., 2018; Tavani et al., 2018). However, 788 

E-W trending intraplate transtensional deformations could be recorded southward in the 789 

Iberian plate (Sibuet et al., 2004; Tugend et al., 2015; Rat et al., 2019). The structural 790 

architecture of a rift system (sedimentary infill, width, symmetry of the conjugate margin pair 791 

and underlying crustal properties) and its kinematics can abruptly change across crustal 792 

transfer faults (Corti et al., 2003). Corre et al. (2016) argue that these transform faults also 793 

participated to intense fluid circulations coeval with mantle exhumation and metamorphism in 794 

the basins. Comparison of different cross sections and geophysical data between the Basque-795 

Cantabrian basin to the west and Provence basin to the east (Roca et al., 2011; Bestani et al., 796 

2016; Teixell et al., 2018 and references therein) suggests that these NNE-SSW trending 797 

transfer faults controlled the along-strike structural changes and extension amount in the 798 
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Pyrenean Rift system, and then the present-day crustal architecture of the Pyrenees (Diaz et 799 

al., 2018; Chevrot et al., 2018). 800 

9. Conclusions 801 

The Pyrenees offer the exceptional opportunity to study the structural evolution of a 802 

belt and decipher the role of structural inheritance, which is generally impossible in orogens 803 

with large amounts of contractional deformation. In this study, we combined new field 804 

geological, structural, paleo-temperature and subsurface data together with deep geophysical 805 

data to build a 210 km-long crustal-scale cross section across the Central Pyrenean belt along 806 

the Nestes-Cinca transect. This study highlights the underestimated long-term influence of 807 

inherited Paleozoic tectonic structures in the evolution of Mesozoic and Cenozoic geological 808 

systems in Western Europe. The main conclusions are as follow: 809 

1) The surficial thrust system geometry of the Central Pyrenean belt consists in bi-810 

vergent basement and cover thrust sheets with the inversion of Mesozoic extensional basins 811 

and halokinetic structures. The crustal geometry consists in a thrust wedge geometry of the 812 

European lithosphere between the Axial Zone imbricate of the Iberian upper crust and the 813 

north-directed subduction of the Iberian lower crust. We confirm that the deep Saint-Gaudens 814 

gravity anomaly under the North Pyrenean Zone can be interpreted as a tectonic slice of 815 

mantle rocks that has been transported northward along the lower North Pyrenean Frontal 816 

Thrust. 817 

2) In this sector of the Central Pyrenean belt, we showed that the Mesozoic Pyrenean 818 

Rift system consisted in an asymmetric hyper-extended relay zone of two metamorphic 819 

zones/basins, the northern metamorphic zone (Baronnies zone) and the southern metamorphic 820 

zone (Montillet zone), separated by the Barousse crustal boudin. The middle Triassic-early 821 

Santonian evolution of the Pyrenean Rift system was associated with brittle to ductile 822 
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deformation of the upper crust and cover together with gravitational sliding above Triassic 823 

evaporites and diapirism, and ductile thinning and stretching of the lower crustal levels. 824 

Extreme crustal thinning and stretching resulted in the exhumation of the subcontinental 825 

mantle coeval with deep burial and peak temperatures of ~550°C in metamorphic basins as 826 

indicated by Raman spectroscopy data. 827 

3) The total horizontal orogenic shortening recorded in this zone of the Pyrenean belt 828 

is estimated to be at least 127 km (39%). This shortening value accounts for the closure of the 829 

Pyrenean Rift system, which itself achieved an estimated total crustal extension of 56 km 830 

minimum between the European and Iberian plates during Mesozoic times. 831 

4) The Central Pyrenean belt was superimposed on a segment of the Variscan belt 832 

characterized by south-verging basement thrust sheets in the present-day European and 833 

Iberian crusts, and North Pyrenean Zone and Axial Zone. These structures were intermittently 834 

reactivated as normal faults during the Permian Rift, then controlled the location and 835 

kinematic of the Mesozoic Pyrenean Rift system. Finally, both Paleozoic and Mesozoic 836 

structural/thermal inheritances controlled the building of the Pyrenean orogen. 837 

5) Finally, we infer that the opening of the Pyrenean Rift system was mainly NNE-838 

SSW trending since the Permian-Triassic period and accommodated by transfer zones 839 

inherited from the Variscan period (e.g., Toulouse and Pamplona faults and Eastern Crustal 840 

Lineament). This could explain why the relative position of the different Variscan blocks was 841 

not significantly modified along-strike as suggested by our palinspastic restorations and 842 

previous studies. We propose that E-W trending intraplate transtensional deformations could 843 

be recorded southward in the Iberian plate in agreement with Tugend et al. (2015) and Rat et 844 

al. (2019). 845 
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Fig.1: Geological setting of the Pyrenean orogen. NPFT: North Pyrenean Frontal Thrust. 1409 

NPZ: North Pyrenean Zone. NPFZ: North Pyrenean Fault Zone. SPZ: South Pyrenean Zone. 1410 

SPFT: South Pyrenean Frontal Thrust. Co: Cotiella. Cl: Clamosa. Na: Naval. ECL: Eastern 1411 

Crustal Lineament. Lzn: Lannemezan. St-Gds: Saint-Gaudens. The thick white line shows 1412 

location of the Nestes-Cinca balanced cross section of this study. The section follows the trace 1413 

of the LR06 seismic profile (dashed white line) and the OROGEN West profile (black line). 1414 

White circles indicate exploration wells. 1415 

Fig. 2: Stratigraphic and lithotectonic sedimentary sections in the different tectonic units in 1416 

the Central Pyrenees along the Nestes-Cinca transect. A synthetic stratigraphic column from 1417 

exploration wells is shown for the Aquitaine Basin. Black and white half arrows: extensional 1418 

faults. Red and white half arrows: Pyrenean thrusts.  1419 

Fig. 3: Geological maps of the North Pyrenean Zone and Axial Zone. For location, see Fig. 1. 1420 

The white line shows trace of the Nestes-Cinca cross section. The southern edge of the 1421 

seismic reflection profile LR06 is shown. Peak paleo-temperature values (°C) deduced by 1422 

Raman spectroscopy of carbonaceous material are indicated by red diamonds and numbers 1423 

(see Table 1). Pa: Pariou. HV: Houle Verte. U: Urgonian facies. 1424 

Fig. 4: Geological field observations in the North Pyrenean Zone along the Nestes valley. For 1425 

location, see Fig. 3. (a) Upper Jurassic dolomitic breccias of the Léchan thrust (Hèches 1426 

quarry). (b) Albian Black flysch strata near Izaux town. (c) Tectonic slices of lherzolite, 1427 

Triassic shales and Urgonian limestones in the Avezac thrust (Avezac town quarry). (d) 1428 

Foliation and boudinage within overturned middle-upper Albian limestones (east of Esparros 1429 

town, col de Coupe). (e) Mylonite of Albian-Cenomanian? sedimentary breccias including 1430 

Jurassic and Cretaceous carbonate, ophitic, red beds and Ordovician clasts (Houle Verte 1431 

marble quarry). (f) Pre-folding bedding-parallel boudinage (S0-S1) in Cenomanian breccias in 1432 

the Beyrède syncline including Triassic and fractured Jurassic clasts (Beyrède marble quarry). 1433 

(g) and (h): Pre-folding bedding-parallel fabric (S0-S1) and polyphase ductile deformations 1434 

(S2, S3) in Albian Black flysch (Baronnies zone) and Cenomanian limestones (Beyrède 1435 

syncline, Montillet zone), respectively. Carbonate rocks in (c), (e) and (f) have been sampled 1436 

for Raman Spectroscopy of Carbonaceous Material (see Table 1). 1437 

Fig. 5: Structural interpretation of the depth-converted seismic profile LR06 across the 1438 

southern edge of the Aquitaine Basin and northern edge of the North Pyrenean Zone (NPZ) 1439 

calibrated with eleven exploration wells (see Supplementary material Fig. S1 for well details 1440 

and Table S1 for data of time-depth conversion). For location, see Fig. 1. We interpret the 1441 

deep tectonic slice under the North Pyrenean Zone as the western continuation of the Saint-1442 

Gaudens dense body (SGDB). NPFT: North Pyrenean Frontal Thrust. 1443 

Fig. 6: Surficial cross-sectional geometry of (a) the southern part of the North Pyrenean Zone-1444 

Axial Zone and (b) South Pyrenean Zone-northern edge of the Ebro Basin in the Central 1445 

Pyrenees along the Nestes-Cinca transect. The surface geometry of the South Pyrenean Zone 1446 

is modified from López-Mir et al. (2014), Teixell and Barnolas (1995), Cámara and Flinch 1447 

(2017) and Santolaria et al. (2016). For locations, see Figs. 1 and 3. Dashed thin red lines 1448 

indicate foliations. NPFZ: North Pyrenean Fault Zone. SG: Sarrancolin granite. BLG: 1449 

Bordères-Louron granite. 1450 
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Fig. 7: Details of the North Pyrenean Zone structure and peak paleo-temperatures (°C) 1451 

deduced from Raman spectroscopy. The data have been projected onto the section (red 1452 

numbers and diamonds; see Fig. 3 and Table 1). For legend, see Fig. 6. 1453 

Fig. 8: Panoramic views in the North Pyrenean Zone along the Neste River. (a) Lortet and 1454 

Estivère anticlines in the northern external metamorphic zone. (b) Southern border of the 1455 

northern external metamorphic zone. (c) Southern internal metamorphic zone (Montillet zone) 1456 

and North Pyrenean Fault Zone. (d) Panoramic view looking westward of the Aure trough 1457 

filled by Permian-Triassic red beds (Arreau unit). For locations, see Figs. 3, 6a and 7. 1458 

Syncline cores are indicated by U-shape. 1459 

Fig. 9: Pyrenean faults in the northern part of the Axial Zone. (a) The Beyrède thrust 1460 

bounding the North Pyrenean Zone and the Axial Zone. (b) The Arreau thrust near Jézeau 1461 

town. For location, see Figs. 3, 6a and 7. 1462 

Fig. 10: Panoramic views in the Axial Zone. (a) and (b): Variscan thrust systems in the Vielle-1463 

Aure Basin (Gavarnie thrust sheet). (c): South-verging Pyrenean Gavarnie thrust overthrusting 1464 

the Bielsa unit in the Neste de Saux valley. For location, see Figs. 3 and 6a. 1465 

Fig. 11: Stack profile of receiver functions for the OROGEN West profile across the Central 1466 

Pyrenean belt. See data acquisition and method in Chevrot et al. (2018). The interpretation is 1467 

modified from Teixell et al. (2018) and Chevrot et al. (2018). For location, see Fig. 1. The 1468 

gravity anomaly profile along the section is also shown (data from the International 1469 

Gravimetric Bureau, 2012). For labels and legend, see Figs. 6 and 12. 1470 

Fig. 12: (a) Present-day crustal-scale balanced cross section of the Central Pyrenees along the 1471 

Nestes-Cinca transect. (b) Lower Santonian restoration of the Cretaceous Pyrenean Rift 1472 

system. For location, see Fig. 1. See details of the restored Pyrenean Rift system in Fig. 13. 1473 

NPFT: North Pyrenean Frontal Thrust. NPFZ: North Pyrenean Fault Zone. SPFT: South 1474 

Pyrenean Frontal Thrust. SGDB: Saint-Gaudens dense body. Black and white half arrows: 1475 

extensional faults. Red and white half arrows: Pyrenean thrusts. 1476 

Fig. 13: Details of the restored Cretaceous Pyrenean Rift system during the early Santonian. 1477 

Labels as in Fig. 12. Peak paleo-temperatures (°C) deduced from Raman spectroscopy of 1478 

carbonaceous material are indicated by red numbers (see Table 1 and Fig. 3). White dashed 1479 

line indicates approximately the 450°C isotherm. 1480 

Fig. 14: Inferred sequential restoration of the pre-orogenic evolution of the Central Pyrenean 1481 

domain. (a) Lower Santonian restoration showing the structural architecture of the Cretaceous 1482 

Pyrenean Rift system. (b) Structural architecture of the middle Triassic-Jurassic extensional 1483 

system. (c) Restoration of the Variscan thrust belt and post-Variscan Permian extensional 1484 

structures sealed by lower-middle Triassic red beds. Labels as in Fig. 12. Black half arrows: 1485 

Variscan thrusts. Black and white half arrows: extensional faults or inferred strike-slip 1486 

movements. 1487 

Fig. S1: Exploration wells across the Aquitaine Basin used to calibrate the LR06 seismic 1488 

profiles. For more details, see http://infoterre.brgm.fr/. 1489 
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