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Paper’s message: The novel Deeplex Myc-TB molecular assay shows a high degree 

of accuracy for extensive prediction of susceptibility and resistance to 13 anti-

tuberculous drugs, directly achievable without culture, which may enable fast, tailored 

tuberculosis treatment.  



ABSTRACT 

Conventional molecular tests for detecting Mycobacterium tuberculosis complex 

(MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole 

genome sequencing (WGS) typically requires culture. Here, we evaluated the 

Deeplex Myc-TB targeted deep sequencing assay for prediction of resistance to 13 

anti-tuberculous drugs/drug classes, directly applicable on sputum. With MTBC DNA 

tests, the limit of detection was 100-1000 genome copies for fixed resistance 

mutations. Deeplex Myc-TB captured in silico 97.1-99.3% of resistance phenotypes 

correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay 

predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 

95.3% and specificity of 97.4%. Fifty-six of 69 (81.2%) residual discrepancies with 

phenotypic results involved pyrazinamide, ethambutol, and ethionamide, and low-

level rifampicin- or isoniazid-resistance mutations, all notoriously prone to phenotypic 

testing variability. Only 2 of 91 (2.2%) resistance phenotypes undetected by Deeplex 

Myc-TB had known resistance-associated mutations by WGS analysis outside 

Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis 

directly on 109 sputa from a Djibouti survey matched those of 

MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a 

sensitivity of 93.5/98.5/93.1% and specificity of 98.5/97.2/95.3%. Most residual 

discordances involved gene deletions/indels and 3-12% heteroresistant calls 

undetected by WGS analysis, or natural pyrazinamide resistance of globally rare “M. 

canettii” strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a 

Democratic Republic of the Congo survey, 14,902 of 19,422 (76.7%) possible 

susceptible or resistance phenotypes could be predicted culture-free. Deeplex Myc-

TB may enable fast, tailored tuberculosis treatment.  



INTRODUCTION 

Important gaps remain for the diagnosis of drug-resistant tuberculosis (TB). Less 

than a third of the ~484,000 multidrug- (MDR) or rifampicin-resistant TB incident 

cases estimated in 2018 were diagnosed and treated [1]. Phenotypic drug-

susceptibility testing (pDST) takes weeks of culture, while conventional molecular 

tests only identify common drug resistance mutations in few gene targets [2]. 

Whole genome sequencing (WGS) can effectively predict drug resistance or 

susceptibility of Mycobacterium tuberculosis complex (MTBC) strains [3–5]. However, 

its routine use for mycobacterial diagnosis typically requires primary culture [6]. Even 

if complex DNA enrichment procedures or thermoprotective DNA extraction are used, 

sequence coverage depths obtained by WGS directly on specimens often remain 

poor, even on samples with high bacterial loads [7,8]. This limits the sensitivity and/or 

the degree of confidence for detecting resistance mutations, especially when borne 

by minority populations (defining heteroresistance) that can be predictive of treatment 

failure [9]. 

Targeted, amplicon-based deep sequencing represents an attractive alternative [10]. 

Selective amplification of relevant gene regions prior to sequencing reduces both the 

required DNA amount and the interference of unrelated DNA sequences (human or 

from microbial flora). Sequence coverage depths and multiplexing of samples per 

sequencing run can be substantially increased [11]. 

A previously described amplicon-based assay targets pre-defined high confidence 

resistance variants in 6 M. tuberculosis genomic regions only [11,12]. In contrast, the 

targeted deep sequencing assay called Deeplex® Myc-TB (Genoscreen, Lille, 

France) targets full sequences (i.e. coding sequence plus part of promoter region) or 

(most) relevant regions of 18 MTBC drug resistance-associated genes, combined 



with genomic targets for mycobacterial species identification and MTBC strain 

genotyping. Included in the assay, a fully automated web application is used for rapid 

and user-friendly analysis and interpretation of the sequencing data, obtained from 

Illumina sequencers. Variant detection is comprehensive, including not only 

mutations known to be associated with resistance or susceptibility, but also as yet 

uncharacterized mutations that can be confronted with drug-susceptibility phenotypes 

when available. This assay has already been used in national and regional TB drug 

resistance surveys, including those under the supervision of the World Health 

Organization (WHO) [13–15], prior to its extensive evaluation. 

Here, we describe for the first time the details of the assay and evaluate its 

performances based on data from more than 4000 isolates and 1600 clinical 

specimens.  



METHODS 

Limit of detection 

The limit of detection of Deeplex Myc-TB was evaluated using purified DNA from 

well-characterized MTBC strains of the WHO-TDR collection [16] (now included in 

the Belgian Culture Collection of Microorganisms (BCCM)). Serial dilutions were 

done after DNA quantification using the Qubit dsDNA HS assay (ThermoFisher, 

Waltham, Massachusetts, USA). A M. intracellulare strain from BCCM was used for 

evaluation of the limit of detection for NTM identification. After Deeplex Myc-TB 

amplification as per manual instructions, amplicon libraries were prepared using the 

Nextera XT kit and sequenced with 150bp paired-end reads using a MiSeq (Illumina, 

San Diego, California, USA). As for the subsequent parts, analyses were performed 

automatically using the integrated bioinformatics pipeline v1.3 implemented in the 

Deeplex Myc-TB web application (Supplementary Note S1). 

In-silico analysis of drug resistance prediction versus WGS 

The catalogue of resistance-associated variants included in Deeplex Myc-TB was 

compared to the resistance determinants and their associated resistance phenotypes 

found in both the training set of 2099 MTBC genomes and those retrieved in the 

validation set of 1552 MTBC genomes published in Walker et al. [3]. 

Deeplex Myc-TB phenotype prediction versus WGS and phenotypic testing 

Comparisons of Deeplex Myc-TB variant detection and phenotype predictions versus 

WGS and pDST were performed using a set of 429 reference isolates, including 213 

collected by the Belgian National TB Reference Center (Sciensano) between 2007 

and 2015 (MDR strains) and between March and October 2013 (non MDR strains) 

and 216 from the WHO-TDR collection (BCCM) [16]. For the WHO-TDR collection, 



pDST was performed by using the proportion method (on Löwenstein-Jensen or 

Middlebrook 7H11 agar medium, for first- or second-line drugs, respectively) with 

critical concentrations of 0.2, 40, 4, 2, 2, 6, 10 and 10 g/ml isoniazid, rifampicin, 

streptomycin, ethambutol, ofloxacin, kanamycin, capreomycin and ethionamide, 

respectively, as described [16]. For the Sciensano strain set, pDST was routinely 

done using the BACTEC MGIT960 system and TB-eXiST application (Becton-

Dickinson, Franklin Lakes, New Jersey, USA) for first-line drugs as per the 

manufacturer’s instructions, and the radiometric BACTEC 460 TB (Becton-Dickinson) 

for second-line drugs including amikacin, ofloxacin, moxifloxacin, ethionamide  and 

linezolid, as described in Pfyffer et al. [17] or Cambau et al. [18] for isolates before or 

after 2012, respectively. Deeplex Myc-TB testing was used as described above. 

WGS was performed at GenoScreen using the Nextera XT kit and 150bp paired-end 

reads on a HiSeq 2500 (Illumina) in Rapid Run mode. WGS analysis was performed 

using a Bowtie2-based pipeline with an initial threshold of 85% allele frequency for 

variant calling, with subsequent search for minority variants under low frequency 

detection mode, using at least one read in both forward and reverse direction, 5x 

read coverage and a minimal Phred score of 30 to call an allele with a minimal 

frequency of 3%. To avoid probable errors due to mislabeling of samples, Deeplex 

Myc-TB- and WGS-based phylogenetic lineage and spoligotype identifications were 

compared for consistency, and any isolate with more than three discordances 

between predicted and observed phenotypes was excluded from the analysis, as 

done elsewhere [3].  

Deeplex Myc-TB on clinical specimens 

Deeplex Myc-TB sequencing data from 109 sputum samples and WGS data from 

cultured isolates from the Djibouti survey were obtained as described in Tagliani et 



al. [13]. Phenotype prediction from WGS data was performed by MTBSeq v1.0.2 [19], 

PhyResSE v1.0 with resistance-associated variant database v29 [20] and Mykrobe 

v0.8.1 [21].  

Deeplex Myc-TB sequencing data of 1494 sputum samples from the Democratic 

Republic of the Congo (DRC) survey were obtained as described in [22]. Briefly, after 

Ziehl-Neelsen staining and standard smear microscopy grading of acid-fast bacilli 

(AFB), sputa were stored and transported in 96% ethanol at a ratio of 1:1 at room 

temperature. DNA was extracted using a Maxwell 16 Low Elution Volume DNA 

Purification system (Madison, Wisconsin, USA), and analyzed with Deeplex Myc-TB 

kits using NextSeq and MiSeq platforms.  

Data availability 

Deeplex Myc-TB sequence reads were deposited in the Sequence Read Archive 

(SRA), National Center for Biotechnology Information (NCBI), under BioProject 

numbers PRJNA649788 (TDR/Sciensano), PRJNA633444 (Djibouti), PRJNA643157 

and PRJNA643242 (Democratic Republic of Congo), PRJNA633380 (NTM) and 

PRJNA633106 (limit of detection analysis). WGS SRAs are available under 

BioProject numbers PRJEB31023 for the TDR collection, PRJNA393924 for the 

Djibouti dataset, and PRJEB25999 for the Sciensano collection. A detailed 

description of datasets used in this study is available in Supplementary Table 1. 

  



RESULTS 

Assay design, limit of detection, and mycobacterial species identification 

The major gene targets associated with resistance to 13 first- and second-line anti-

TB drugs/drug classes and the databases implemented in the web application are 

shown in Figure 1, Table 1 and Table 2. Further details on the assay design are 

provided in Supplementary Note S2, including the additional targets amplified in the 

single 24-plex PCR for mycobacterial species identification, spoligotyping/SNP typing 

and an internal control, and the analysis with the web application.  

  



Table 1. Mycobacterial/MTBC genes or gene regions targeted by Deeplex Myc-TB. 

Positions of the reference sequences relative to the genome and genes of the M. 

tuberculosis H37Rv strain are indicated. Genome positions are indicated according to 

forward or reverse orientations of corresponding genes. For gene positions, – or + 

signs indicate positions in promoter or 3’ regions  relative to the +1 or last nucleotide 

of coding sequences, respectively. CDS, coding sequence; NA, not applicable for 

codons (positions outside a coding sequence, or in rrs or rrl rDNA regions).    

Target Genome positions Gene positions Codons 

rpoB1 760957-761355 1151-1549 384-517 

rpoB2 760280-760812 474-1006 158-336 

inhA 1674287-1674880 86-679 29-227 

fabG1 1673321-1673755 -119-316 NA-106 

katG 2155858-2155140 254-972 85-324 

ahpC 2726030-2726585 -163-393 NA-131 

pncA 2289301-2288672 -60-+9 Full CDS 

embB 4247376-4248065 863-1552 288-518 

gidB 4408185-4407411 18-+117 6-NA 

rpsL 781536-781979 -24-+45 Full CDS 

rrs1 1472561-1473417 716-1572 NA 

rrs2 1471848-1472524 3-679 NA 

eis 2715528-2715171 -196-162 NA-54 

tlyA 1917811-1918750 -129-+4 Full CDS 

gyrA 7377-7754 76-453 26-151 

gyrB 6298-6943 1059-1704 353-568 

ethA 4327482-4325951 -9-+53 Full CDS 

rplC 801108-801483 300-+21 100-NA 

rrl 1475923-1476625 2266-2968 NA 

Rv0678 778976-779539 -14-+52 Full CDS 

hsp65 528772-529172 165-565 55-189 

 

Table 2. Databases implemented in the Deeplex Myc-TB web application for 

mycobacterial species identification, MTBC genotyping and drug susceptibility and 

drug resistance prediction. For the latter, priority is given to the collaborative, curated 

database ReSeqTB when detected variants are known to this database. 

Database use Database name Reference 



Species identification hsp65 [23] 

Spoligotyping SITVITWEB [24] 

Lineage identification Coll [25] 

 PhyResSE [20] 

 Walker [3] 

Drug resistance prediction Miotto [26] 

 PhyResSE [20] 

 Walker [3] 

 ReSeqTB [27] 

As Deeplex Myc-TB does not depend on a specific DNA extraction method, the 

assay’s limit of detection was estimated as the fraction of detectable sequence 

variants in 4 replicated analyses using serially diluted purified, pre-quantified 

genomic DNA from three well-characterized MTBC strains, and a mixture of two 

strains at a 5-95% ratio. All (near-)fixed resistance variants were detectable with 104 

and 103 genomes, and 83.3% with 102 genomes (complete variant profiles obtained 

for 13/16 tests, Figure 2). For resistance variant at 5% frequency, these fractions 

were 100% with 104 genomes, and 81.3% (with complete minor variant profiles in 3 

out of 4 tests) and 43.8% (none with a complete minor variant profile) with 103 and 

102 genomes, respectively. Fixed and minority variants were not detected with 10 

genomes only (for limit of detection for MTBC and NTM identification, see 

Supplementary Figure S1-S2 and Supplementary Note S1). 

Out of 370 strains from 73 different NTM species/species complexes tested using 

DNA extracted from culture, 292 strains were identified at (sub)species or species 

complex levels by both reference and Deeplex Myc-TB testing. Of these, 274 

(93.5%) were correctly identified at (sub)species or species complex level by 

Deeplex Myc-TB (Figure S3, Supplementary Table S2 and Supplementary Note S3 

for methods and details). The 18 (6.2%) strains that had taxonomically discordant 

results even at complex level between both methods mostly consist of single 

discordant cases among otherwise partially/fully concordant strains for a species 



(e.g. M. ulcerans, n=1/13; M. kansasii, n=1/14), or species rarely involved in 

infections (e.g. M. peregrinum; n=2). However, for some of these few individual 

isolates of otherwise well identified species, the correctness of the Deeplex Myc-TB 

identification was actually often possible or probable, as conflicting or ambiguous 

identifications were seen between the rpoB and 16S rDNA reference probes, with 

one or the other partially or fully matching the Deeplex Myc-TB result (e.g. for M. 

kansasii vs M. gastri, Supplementary Table S2). The same held frequently true for 

the 16 residual isolates with discrepant subspecies within a matching complex (e.g. 

M. intracellulare vs M. chimaera). 

Resistance variant detection versus WGS in silico 

We evaluated, in silico, the ability of Deeplex Myc-TB to capture 120 anti-tuberculous 

drug resistance-determining mutations spread across 14 genes, along with their 

concurrent first- and second-line resistance phenotypes, algorithmically identified in a 

WGS study by Walker et al. [3]. Of these 120 resistance determinants, 106 (88.3%) 

are included in the Deeplex Myc-TB targets and variant catalogue (Supplementary 

Table S3), spread across 13 of the above 14 genes, the exception being rpsA, a 

minor target associated with pyrazinamide resistance. With these 106 variants, 644 

of 663 (97.1%) resistant phenotypes predicted by WGS in the Walker’s training set of 

2099 MTBC isolates were retrieved. Likewise, 53 of 58 resistance-determining 

mutations from the training set that were retrieved in the Walker’s validation set of 

1552 isolates were captured by Deeplex Myc-TB, enabling the prediction of 1199 out 

of 1207 (99.3%) concurrent resistant phenotypes in this dataset (Supplementary 

Table S4). 

Phenotype prediction on isolates versus WGS and phenotypic testing 



We compared the ability of both Deeplex Myc-TB and Illumina-based WGS analysis 

to detect variants in DNA extracts from 429 MTBC strains. Of the 2403 variants 

identified in the Deeplex Myc-TB targets by either method, 2373 (98.8%; 2293 SNPs 

and all 80 indels), including 797 (99.9%) resistance variants, were detected by both 

Deeplex and our WGS pipeline under low frequency mode (validated for accurate 

SNP calling in accordance with recent guidelines [28]). The remaining 30 (1.2%) 

SNPs were all minority variants mostly with frequencies of ~3-10% only identified by 

targeted deep sequencing, including one mutation associated with resistance (to 

ethambutol; Supplementary Note S4; Supplementary Table S5).  

Deeplex Myc-TB drug-susceptibility predictions based on these 2403 variants were 

compared to pDST results. In this set, 268 isolates were phenotypically resistant to at 

least one drug including 156 MDR and 6 extensively drug resistant isolates, resulting 

in 664 resistant and 1705 susceptible phenotypes. Of these 2369 phenotypes, 2184 

(92.1%) were predicted by Deeplex Myc-TB with a mean sensitivity of 95.6% and a 

mean specificity of 97.4% (Table 3, Supplementary Table S6). The remaining 185 

phenotypes (7.9%) could not be predicted due to the presence of mutations 

uncharacterized in the variant database. When results were stratified by type of  

phenotypic method used as a reference, the concordance with genotypic predictions 

was slightly higher for phenotypes tested by liquid culture (Supplementary Table S7) 

compared to those tested by solid culture (Supplementary Table S8), for the three 

drugs principally assayed with both types of methods (rifampicin, isoniazid, 

ethambutol).       

Table 3. Deeplex Myc-TB phenotype predictions versus pDST on 429 isolates from 

the WHO-TDR and the Sciensano-Belgian National TB Reference Center collections. 

Deeplex Myc-TB predictions were compared to phenotypes separately for each drug, 



across isolates with this data available. The unit of analysis was therefore a 

phenotype, not an isolate. 

 
Phenotypically resistant   Phenotypically susceptible  All  Excl. uncharacterized  Uncharacterized 

 
Genotype Total  Genotype Total  Sensitivity Specificity  Sensitivity Specificity  

 

 R Rh S U 
 

 R Rh S U          

Rifampicin 159 0 1 2 162  3 0 253 6 262  
98.1  

(94.7, 99.4) 

98.9 

(96.7, 98.2) 
 

99.4 

(96.5, 99.9) 

98.8 

(96.6, 99.6) 
 1.9% 

Isoniazid* 176 0 3 8 187  3 0 200 34 237  
94.1 

(89.8, 96.7) 
98.7 

(96.3, 99.6) 
 

98.3 
(95.2, 99.4) 

98.5 
(95.7, 99.5) 

 9.9% 

Pyrazinamide# 39 3 7 4 53  0 0 146 5 151  
79.2 

(66.5, 88.0) 

100 

(97.5, 100) 
 

85.7 

(73.3, 92.9) 

100 

(97.4, 100) 
 4.4% 

Ethambutol 95 0 8 5 108  26 2 285 3 316  
88 

(80.5, 92.8) 
91.1 

(87.5, 93.8) 
 

92.2 
(85.4, 96.0) 

91.1 
(87.4, 93.7) 

 1.9% 

Streptomycin 49 0 5 36 90  1 0 91 33 125  
54.4 

(44.2, 64.3) 

99.2 

(95.6, 99.9) 
 

90.7 

(80.1, 96.0) 

98.9 

(94.1, 99.8) 
 32.1% 

Fluoroquinolones 17 1 1 2 21  0 0 183 13 196  
85.7 

(65.4, 95.0) 
100 

(98.1, 100) 
 

94.7 
(75.4, 99.1) 

100 
(97.9, 100) 

 6.9% 

Amikacin 9 0 0 0 9  0 0 184 14 198  
100 

(70.1, 100) 

100 

(98.1, 100) 
 

100 

(70.1, 100) 

100 

(97.9, 100) 
 6.8% 

Kanamycin 2 1 1 0 4  0 0 3 0 3  
75 

(30.1, 95.4) 
100 

(43.9, 100) 
 

75 
(30.1, 95.4) 

100 
(15.0, 85.0) 

 0 

Capreomycin 2 1 1 0 4  0 0 5 0 5  
75 

(30.1, 95.4) 

100 

(56.6, 100) 
 

75 

(30.1, 95.4) 

100 

(15.0, 85.0) 
 0 

Ethionamide 18 1 1 6 26  6 0 172 12 190  
73.1 

(53.9, 86.3) 

96.8 

(93.3, 98.5) 
 

95 

(76.4, 99.1) 

96.6 

(92.8, 98.4) 
 8.3% 

Linezolid 0 0 0 0 0  0 0 20 2 22  NA 
100 

(85.1, 100) 
 NA 

100 

(83.8, 100) 
 9.1% 

Total 566 7 28 63 664  39 2 1542 122 1705  
86.3 

(83.5, 88.7) 

97.6 

(96.7, 98.2) 
 

95.3 

(93.3, 96.8) 

97.4 

(96.5, 98.1) 
 7.8% 

 

R: detection of at least one fixed resistance-associated mutation; Rh: detection of resistance due to a minority variant (heteroresistance); S: detection of 

mutations known not to be associated with resistance (phylogenetic, benign, synonymous) or no mutation detected; U: detection of at least one non-

synonymous uncharacterized mutation in the absence of a resistance-associated mutation. Fluoroquinolones include ofloxacin and moxifloxacin. Results for 

bedaquiline/clofazimine are not shown, as there was no pDST comparator.  

*A beta version of the Deeplex Myc-TB kit used for this analysis did not yet include the ahpC promoter region including two isoniazid resistance-associated 

mutations G-48A and C-57T (Supplementary Note S2). We checked for these two mutations in the WGS dataset and found only two samples (TB-TDR0013 

and TB-TDR-0160) with a fixed G-48A mutation. They were considered in this comparison to reflect results as obtained with the up-to-date version containing 

this region, as Deeplex Myc-TB captured 100% of the variants detected by WGS in the initial ahpC gene part and all other gene targets in this dataset (see 

text). 

#A simulation of the inclusion of additional pyrazinamide resistance-associated mutations published in Yadon et al. [29]  (not incorporated in the ReSeqTB 

and Deeplex Myc-TB databases) resulted in identification of only three additional resistance mutations, classified as uncharacterised by Deeplex Myc-TB. 

However, out of these three mutations, two were found in pyrazinamide susceptible phenotypes and only one in a pyrazinamide resistant phenotype. 

The proportion of resistant phenotypes accurately predicted as resistant by Deeplex 

Myc-TB was above 90% (90.7% for streptomycin-100% for amikacin) for most 

individual drugs, except for pyrazinamide (85.7%), kanamycin and capreomycin 

(75%, but reflecting 4 isolates only in both cases) (Table 3). For the MDR-defining 

compounds rifampicin and isoniazid, 159/160 (99.4%) and 176/179 (98.3%) isolates 

with resistance variants were correctly classified resistant, accounting for 98.1% and 

94.1% of all rifampicin- and isoniazid-resistant isolates, respectively. For 

pyrazinamide, although all (42/42, 100%) isolates containing resistance variants for 

this drug were correctly predicted as resistant, these accounted for only 79.2% of all 



isolates with phenotypic resistance to pyrazinamide. Of note, 7 minority resistance 

variants (with frequencies of 21.1 to 77%), successfully predicted resistance to 

pyrazinamide (n=3), fluoroquinolones, kanamycin, capreomycin and ethionamide 

(n=1 each). 

Of the 601 resistant phenotypes with Deeplex Myc-TB predictions (i.e. not 

uncharacterized), only 28 (4.7%) were predicted susceptible due the absence of 

resistance-associated mutation in the Deeplex targets. In these phenotypes, the 

possible presence of high confidence resistance-associated mutations was searched 

in 13 secondary resistance-associated gene targets, outside the Deeplex Myc-TB 

target regions (e.g. the embA promoter region including e.g. the C-12T, C-16T 

mutations, or the extended ethA promoter region including e.g. the T-11C mutation; 

Supplementary Table S9). WGS analysis detected a high confidence resistance 

mutation in these regions for only one of these phenotypes (ethionamide resistant; 

L203L in fabG1 [4]; Supplementary Table S9). Likewise, fabG1 L203L was the sole 

established resistance-associated mutation (for an isoniazid resistant phenotype) 

detected by WGS outside of the assay’s targets in 63 phenotypes uncharacterized by 

Deeplex Myc-TB. 

Of the 1583 susceptible phenotypes with prediction, only 41 (2.6%) were discordantly 

predicted as resistant. They all involved ethambutol and embB mutations, 

ethionamide and ethA frameshift-causing indels (mechanistically expected to cause 

ethionamide resistance [30]), or known low-level isoniazid (inhA S94A, ahpC G-48A), 

rifampicin (rpoB L452P, H445N and D435Y) or streptomycin (gidB A138V) resistance 

mutations, all notoriously associated with poor phenotypic reproducibility [3,27,31–

33] (Supplementary Note S4). 



As acquisition of resistance to isoniazid is generally the first step towards drug 

resistance [34], a predicted susceptibility to isoniazid could a contrario be considered 

to predict susceptibility to other first-line drugs, for which gene targets have no drug 

resistance mutations but contain uncharacterized mutations, as shown for WGS-

based analysis [4]. When doing so for Deeplex Myc-TB predictions, the diagnostic 

performance could be further improved, with proportions of uncharacterized 

phenotypes reduced to 0.5-2.5% for rifampicin, ethambutol and pyrazinamide, at cost 

of a single incorrect prediction of a susceptible phenotype for each of these drugs 

(Supplementary Note S5; Supplementary Table S10). This conditional interpretation 

is left to the user’s decision, and not implemented in the Deeplex Myc-TB analysis 

algorithm. 

Deeplex Myc-TB on clinical specimens 

We compared variant detection and phenotype predictions based on available 

Deeplex Myc-TB sequencing data directly obtained from 109 clinical specimens from 

a nationwide survey conducted in Djibouti, versus analysis of WGS data obtained 

after culturing [13]. Overall, 693 of 752 total variants (92.2%) were detected by both 

Deeplex Myc-TB and our WGS pipeline used under low frequency detection mode. 

Of 59 (7.8%) discordances, all but one (a fixed pncA SNP not detected by Deeplex, 

albeit on a well-covered position) were minority variants undetected by this WGS 

pipeline, consistent with the average coverage depth of 3,921x at Deeplex targets by 

Deeplex Myc-TB versus 57x by WGS (Supplementary Note S6, Supplementary 

Table S11).   

Deeplex Myc-TB phenotype predictions were matched to those obtained with WGS 

data independently analyzed with the WGS-based analysis tools PhyResSE [20], 

Mykrobe [21] and MTBSeq [19]. In contrast to PhyResSE and Mykrobe, MTBSeq 



requires bioinformatic skills for local implementation and use. However, it has a more 

complete resistance mutation panel [19] and was therefore used as a primary 

reference in the comparison. 

With the 1150 predicted phenotypes by Deeplex Myc-TB (155 resistant, 995 

susceptible), the mean sensitivity and specificity versus available MTBSeq 

predictions were 93.5% and 98.5%, respectively (Table 4). One hundred and eight 

additional phenotypes (8.6%) were not predicted by Deeplex Myc-TB due to the 

presence of uncharacterized mutations. Agreement on resistance prediction was 

100% for all applicable drugs, except for rifampicin (93.5%) and pyrazinamide 

(71.4%). The rifampicin score resulted from probable differences between primary 

samples directly tested by Deeplex Myc-TB and cultures used for WGS analysis. 

Indeed, two resistance predictions by MTBSeq (also by PhyResSE and Mykrobe; 

Figure 3) reflected detection of two minor resistance-associated variants in rpoB that 

were undetected by Deeplex Myc-TB despite high coverage depths at these 

positions, suggesting genotypic heterogeneity/contamination introduced/amplified 

after sputum processing, during subsequent culturing or WGS (Supplementary Note 

S7). For pyrazinamide, the lower sensitivity of Deeplex Myc-TB versus MTBSeq 

mostly resulted from different interpretation of some sequence variants or different 

regions interrogated in “M. canettii” isolates, which are naturally resistant to 

pyrazinamide and locally prevalent in and highly restricted to Djibouti [35]. Deeplex 

Myc-TB did identify 7 M. canetti-containing samples based on the phylogenetic SNP 

pncA A46A, but did not (then) explicitly predict resistance to pyrazinamide in contrast 

to MTBSeq based on panD M117T (and Mykrobe, based on pncA A46A; Figure 3 

and Supplementary Note S8).  



Conversely, 15 of the 995 (1.5%) phenotypes predicted as susceptible by MTBSeq 

(excluding uncharacterized phenotypes by Deeplex Myc-TB) were identified as 

resistant by Deeplex Myc-TB (Table 4). Of these, 10 (66.6%) discordances were due 

to minority resistance-associated variants at 3.3-12.8% only detected in sputa by 

Deeplex Myc-TB (Figure 3; Supplementary Note S7). Importantly, 8 out of these 10 

minority variants co-occurred with one or more minority resistance and/or 

phylogenetic variants within an individual sputum. This further supports true-positive 

variant calls reflecting genuine mixed strains and/or combined heteroresistance 

detected by targeted deep sequencing, missed by WGS analysis due to lower 

coverage depth or potential culture bias. The five remaining discordant resistance 

predictions resulted from divergent variant interpretation, involving one ethA 

frameshift-causing indel (mechanistically expected to cause ethionamide resistance, 

see above), two debated embB mutations and a gidB mutation (n=2) associated with 

low-level streptomycin resistance [18] (Supplementary Note S7), which were 

associated with resistance by both Deeplex Myc-TB and PhyResSE and/or Mykrobe, 

but not by MTBSeq (Figure 3). 

Mean sensitivity and specificity of the phenotypes predicted by Deeplex Myc-TB 

versus available PhyResSE and Mykrobe predictions was 98.5/93.1% and 

97.2/95.3%, respectively (see Supplementary Note S8; Supplementary Tables S12 

and S13). 

Table 4. Phenotype predictions by direct Deeplex Myc-TB analysis of DNA from 109 

clinical specimens versus phenotype predictions by MTBSeq with WGS data from 

culture. Deeplex Myc-TB sequencing and WGS data originate from a report of a 

national TB drug resistance survey conducted in Djibouti. 

 
MTBSeq resistant  MTBSeq susceptible  All  Excl. uncharacterized  Uncharacterized 



 
Genotype Total  Genotype Total  Sensitivity Specificity  Sensitivity Specificity  

 

 
R Rh S U 

 
 R Rh S U 

         

Rifampicin 29 0 2 1 32  0 0 75 2 77  
90.6 

(75.8, 96.8) 

100 

(95.2, 100) 
 

93.5 

(79.3, 98.2) 

100 

(95.1, 100) 
 2.8% 

Isoniazid 31 0 0 0 31  0 2 71 5 78  
100 

(89.0, 100) 

97.4 

(91.1, 99.3) 
 

100 

(89.0, 100) 

97.3 

(90.5, 99.2) 
 4.6% 

Pyrazinamide 18 2 8 3 31  0 3 73 1 77  
64.5 

(46.9, 78.9) 

96.1 

(89.2, 98.7) 
 

71.4 

(52.9, 84.7) 

96.1 

(89.0, 98.6) 
 3.7% 

Ethambutol 21 1 0 1 23  2 2 79 3 86  
95.7 

(79.0, 99.2) 

95.3 

(88.6, 98.2) 
 

100 

(85.1, 100) 

95.2 

(88.3, 98.1) 
 3.7% 

Streptomycin 14 0 0 0 14  2 2 35 23 62  
100 

(78.5, 100) 

93.5 

(84.6, 97.5) 
 

100 

(78.5, 100) 

89.7 

(76.4, 95.9) 
 30.3% 

Fluoroquinolones 0 0 0 0 0  0 1 104 4 109  NA 
99.1 

(95.0, 99.8) 
 NA 

99 

(94.8, 99.8) 
 3.7% 

Amikacin 5 0 0 0 5  0 0 67 1 68  
100 

(56.6, 100) 
100 

(94.6, 100) 
 

100 
(56.6, 100) 

100 
(94.6, 100) 

 1.4% 

Kanamycin 5 0 0 0 5  0 0 66 2 68  
100 

(56.6, 100) 

100 

(94.6, 100) 
 

100 

(56.6, 100) 

100 

(94.5, 100) 
 2.7% 

Capreomycin 12 0 0 0 12  0 0 59 4 63  
100 

(75.8, 100) 
100 

(94.2, 100) 
 

100 
(75.8, 100) 

100 
(93.9, 100) 

 5.3% 

Ethionamide 7 0 0 4 11  1 0 66 31 98  
63.6 

(35.4, 84.8) 

99 

(94.4, 98.2) 
 

100 

(64.6, 100) 

98.5 

(92.0, 99.7) 
 32.1% 

Linezolid 0 0 0 0 0  0 0 87 3 90  NA 
100 

(95.9, 100) 
 NA 

100 
(95.8, 100) 

 3.3% 

Bedaquiline 0 0 0 0 0  0 0 99 10 109  NA 
100 

(96.6, 100) 
 NA 

100 

(96.3, 100) 
 9.2% 

Clofazimine 0 0 0 0 0  0 0 99 10 109  NA 
100 

(96.6, 100) 
 NA 

100 
(96.3, 100) 

 9.2% 

Total 142 3 10 9 164  5 10 980 99 1094  
88.4 

(82.6, 92.5) 

98.6 

(97.7, 99.2) 
 

93.5 

(88.5, 96.5) 

98.5 

(97.5, 99.1) 
 8.7% 

 

Refer to footnotes of Table 3 for details and abbreviations.  

Although patient sputa were (presumably) all smear positive as per study design, the 

rate of successful Deeplex Myc-TB sequence analysis versus microscopic grade was 

not investigated in the Djibouti survey. This parameter was therefore evaluated on a 

set of 1494 direct sputum samples from a nationwide survey conducted in the 

Democratic Republic of Congo [22]. Yield of culture from CPC-stored sputum largely 

suffered from transport delays, whereas ethanol-preserved sputum samples were 

kept at room temperature for subsequent DNA extraction using a modified Maxwell 

16 Low Elution Volume DNA Purification system [22]. Therefore, culture-free Deeplex 

Myc-TB testing was used mostly as a stand-alone assay for extensive pDST in TB 

patients, after their inclusion based on Ziehl–Neelsen smear positivity and positive M. 

tuberculosis detection on Xpert MTB/RIF.  

Of the 1143 sputum samples with available microscopic examination data, mean 

pan-target read depth exceeded 1000x for samples graded 1+, 2+ and 3+ although, 

as expected, the dispersion towards lower values was inversely correlated with 



microscopic grading (Figure 4A and 4B, Supplementary Table S14). Broadly similar 

read depths were also observed for samples that were graded negative (n=16 only, 

as per the standard survey design normally enrolling smear-positive TB patients only) 

or without reported grading (n=351). Despite the indeterminate bacterial loads in one 

third of the 1494 samples, MTBC was identified in 1258 (84.2%) of them. Of the 

19,422 expected phenotypes in the 1494 samples, 73.5% (14,277) were 

automatically predicted (80.7%-82.4% for the four first-line drugs), based on detected 

resistance mutations, or absence of both resistance and uncharacterized mutations 

with minimal 5x read depth over >= 95% of the reference targets. Uncharacterized 

mutations were detected for an additional 5.9% (n=1137), and 625 additional 

susceptible phenotypes (3.2%) could be predicted after verification of effective 

minimal coverage of all resistance positions in the corresponding target.  When 

distinguished by microscopic grade, the proportion of predicted phenotypes in 

samples without microscopy results (81.1%) was actually higher than for samples 

that were graded 0+ (67.8%), 1+ (69.4%), 2 + (69.5%) and 3+ (76.3%). 

Phenotypes for amino-glycosides, and to a lower extent, linezolid, were relatively less 

frequently predicted, as a reflection of comparatively lower average read depths on 

rrl and rrl rDNA targets (Supplementary Table S14), expectedly due to competing 

commensal rDNA reads. However, such competition does not detectably affect 

specific calling of variants in samples with well covered targets, as seen from the 

high degree of concordance with variants detected by WGS analysis on culture in the 

Djibouti dataset (except for minority variants only detected by deep sequencing that 

are likely true in most cases, Supplementary Note S6), and from full agreement 

between predictions of susceptible phenotypes for amino-glycosides and linezolid 

with those made by WGS analysis in the same dataset (Table 4). 



  



DISCUSSION 

Based on a large dataset, our results show a high degree of accuracy of the Deeplex 

Myc-TB assay for extensive prediction of both susceptibility and resistance to anti-TB 

drugs with an efficiency close to WGS, directly achievable at least from acid-fast 

bacillus smear positive clinical specimens. In contrast, susceptibility in particular 

cannot be reliably inferred from a negative result with conventional molecular tests, 

because of the limited set of resistance-conferring mutations covered [14]. 

Importantly, most of the residual predictions of Deeplex Myc-TB discordant with 

susceptible or resistant phenotypes in the tested set of 429 MTBC isolates, involved 

pyrazinamide, ethambutol, and ethionamide, for which pDST is an imperfect standard 

[3,31]. Likewise, for isoniazid or rifampicin, the sole discrepant resistant predictions 

by Deeplex Myc-TB all involved low-level resistance variants, frequently missed by 

liquid pDST, although they are critical to capture to avoid unfavorable treatment 

outcome or relapse [3,32,33]. For these reasons, sequencing of relevant genes is 

now proposed as a reference, at least for rifampicin, pyrazinamide, ethambutol, and 

ethionamide [31]. Deeplex Myc-TB can thus be considered as outperforming the 

pDST standard for these drugs. 

Crucially in this respect, the agreement with WGS analysis was almost complete in 

both the in silico and experimental datasets. All heteroresistant calls detected by both 

methods in the set of 429 MTBC strains were concordant with resistance 

phenotypes. The sole heteroresistant variant exclusively detected (at 4.9%) - in an 

ethambutol susceptible phenotype - by deeper sequencing with Deeplex Myc-TB 

involved a embB M306V variant. Variants in this embB 306 codon (as well as codons 

354, 406, and 497) are assumed to be resistance mutations, regardless of the pDST 

result obtained [36]. Likewise, most of the resistance predictions made only by direct 



Deeplex Myc-TB analysis on sputa from the Djibouti survey were due to resistance 

minority variants, undetected by MTBSeq/PhyResSE/Mykrobe in WGS data likely 

due to insufficient read depths and/or culture bias eliminating potentially less fit 

(resistant) subpopulations [37] before subjection to WGS.  

The optimal read depth-dependent limit of 3% for detecting minority populations with 

this Deeplex Myc-TB version was defined to secure true variant calls, after 

systematic analysis of sequence noise levels across target positions. This limit is 

substantially better than those of conventional molecular tests [38], although not as 

sensitive as the 0.1-1% limit claimed for the TGen deep sequencing assay [10,39]. 

While we recently developed an enhanced detection mode capable of reliably 

detecting minority variants down to 1%, this can only be reached on hyper-covered 

target portions. Going below this threshold results in an unacceptably higher rate of 

false positive base calls, affecting the overall specificity of such assays (data not 

shown). A genetic cutoff around this value seems reasonable, as old studies using 

the phenotypic proportion method showed that therapeutic success was unlikely 

above 1% of growing drug resistant bacilli [40]. However, the correspondence 

between phenotypic and genetic estimates could be influenced by the uncertainty of 

phenotypic proportions given the clumping nature of mycobacteria, and/or fitness 

cost of some resistance mutations resulting in underrepresentation of the cultured 

resistant subpopulation [37]. More studies are needed to address this important 

question. 

Despite its large dataset, this study has limitations. The reference collection of 429 

strains included relatively few resistant phenotypes for the second-line drugs 

investigated (none for bedaquiline and linezolid). Nevertheless, as also partly 

suggested from our in-silico analysis, the Deeplex Myc-TB targets and mutation 



catalog comprise the main or even the exclusively established genomic targets and 

most determinants of resistance to these drugs in clinical isolates (e.g. gyrA and gyrB 

quinolone resistance determining regions for the fluoroquinolones). pDST data were 

not available for clinical specimens from Djibouti and DRC, as pDST is not routinely 

performed on all newly diagnosed TB patients in such resource-limited countries, and 

because of the difficulty to re-culture samples even with preservatives added upon 

storage and transportation. However, our results showed closely matching phenotype 

predictions between Deeplex Myc-TB and the ultimate genotypic reference, i.e. WGS 

analysis, on the Djibouti dataset. Finally, the number of tested smear-negative 

samples clearly identified as such in the DRC dataset was limited. Nevertheless, the 

established limit of detection of 100-1000 extracted genome copies indicates that the 

test can be applied on all smear-positive and at least part of smear-negative samples 

with any reasonably efficient DNA extraction method. Consistently, the similar mean 

read depths obtained on the 1+-, 2+- and 3+-graded specimens from the DRC survey 

also suggest a limit of detection equal or below 1+ (corresponding to 5000-10,000 

genomes/ml of sample) with the DNA extraction conditions used, accounting also for 

the fact that the equivalent of about one tenth of the available 1-5ml of the DRC 

samples was generally used for DNA extraction and testing. Further consistent with 

such analytical sensitivity, in a recent study using QIAamp DNA Mini Kits for DNA 

extraction, complete Deeplex Myc-TB phenotypic predictions could be made from all 

37 smear positive (including 5 scanty) and 2 smear negative samples, in a pilot 

series of 50 clinical specimens [41]. 

In conclusion, the results of this extensive evaluation demonstrate the potential of the 

Deeplex Myc-TB assay to reliably guide personalized TB treatment, from culture or 

directly from clinical specimens depending on their bacterial loads. As the test can 



also be used on iSeq100 and MiniSeq, in addition to the MiSeq and NextSeq 

platforms used here, the scalability of throughputs, with optimal batches of 16 

(iSeq100) to 384 tests/run (NextSeq) (including 3 controls/run), can cover the needs 

of many clinical laboratories at local/regional or nationally centralized levels.  Its use 

might be particularly cost-effective upon positive MTBC detection (with or without 

rifampicin resistance) with a more sensitive rapid triage test such as GeneXpert 

MTB/RIF. Particularly when used on sputum, this assay will significantly reduce the 

total turnaround for generating extended DST reports. Culturing could potentially be 

restricted to samples without conclusive Deeplex Myc-TB results, and phenotypic 

DST potentially limited to drugs for which uncharacterized mutations (instead of 

resistance, benign or no mutation) are detected in the relevant genes, as proposed 

for WGS-based phenotype predictions from culture [3], or for the new/repurposed 

drugs bedaquiline, clofazimine and delamanid/pretomanid, for which resistance 

mutations are poorly characterized (Rv0678 for bedaquiline/clofazimine) or not (yet) 

covered by the assay (atpE and pepQ for bedaquiline and all (candidate) genes for 

delamanid and pretomanid). Planned improvements include addition of such extra 

targets.  
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LEGENDS 

Figure 1. Deeplex Myc-TB results identifying a pre-XDR MTBC strain in a sputum 

DNA sample collected in a TB drug resistance survey conducted in the Democratic 

Republic of Congo. Information on hsp65 best match-based identification, 

spoligotype (in this case, not yet known to the SITVIT database) and phylogenetic 

SNP-based identification of MTBC lineage is shown in the center of circle. 

Information on drug susceptibility and drug resistance predictions for 13 anti-TB 

drugs/drug classes is as follows. Target gene regions are grouped within sectors in a 

circular map according to the anti-tuberculous drug resistance with which they are 

associated. Sectors in red and green indicate targets in which resistance-associated 

mutations or either no mutation or only mutations not associated with resistance 

(shown in grey) are detected, resulting in predictions of resistant or susceptible 

phenotypes, respectively. Blue sectors refer to regions where as yet uncharacterized 

mutations are detected. Green lines above gene names represent the reference 

sequences with coverage breadth above 95%. Limit of detection (LOD) of 

heteroresistance (reflected by subpopulations of reads bearing a mutation) depends 

on the read depth at mutation position and is shown either as grey (LOD 3%) or 

orange zones (LOD >3%-80%) above reference sequences. Here, LOD is >3% at the 

end of a few targets only and over two rrs regions with usual lower coverage. *RIF: 

rifampicin, INH: isoniazid, PZA: pyrazinamide, EMB: ethambutol, SM: streptomycin, 

FQ: Fluoroquinolones, KAN: kanamycin, AMI: amikacin, CAP: capreomycin, ETH: 

ethionamide, LIN: linezolid, BDQ: bedaquiline, CFZ: clofazimine, SIT: spoligotype 

international type. 

Figure 2. LOD of Deeplex Myc-TB for resistance variant detection. (Top) Read depth 

at resistance-associated Deeplex Myc-TB targets versus the number of input 



genomes. Median values as well as 25-75% quartiles are shown. (Bottom) For each 

dilution level with 10, 102, 103, 104 genome copies, LOD was measured as the 

fraction of detected (green) or undetected (grey) resistance variants in total sets of 36 

(near-) fixed (95-100%) and 16 minority mutations (5% frequency), spread across 4 

independent replicated tests of 4 different MTBC genomic DNA extracts. 

Figure 3. Venn diagrams representing the agreement between resistant phenotypes 

identified by 4 M. tuberculosis resistance and susceptibility prediction tools: Deeplex 

Myc-TB, MTBSeq, Mykrobe and PhyResSE. The numbers of resistant phenotypes 

respectively predicted by Deeplex Myc-TB analysis on 109 sputum samples from 

Djibouti and other analysis tools fed with WGS data from corresponding cultures are 

shown. (1) Two rifampicin-resistance phenotypes predicted by MTBSeq and 

PhyResSE and/or Mykrobe based on rpoB S431T and D435V, reflecting probable 

WGS or culture contaminations (see text). (2) Seven pyrazinamide-resistance 

phenotypes predicted for “M. canettii”-containing cultures by MTBSeq and Mykrobe 

based on panD M117T and pncA A46A, respectively. (3) One pyrazinamide-

resistance phenotype predicted by MTBSeq based on pncA D136G. (4) Eleven 

resistant phenotypes predicted by Deeplex Myc-TB based on 10 minority variants (3-

12%) and one ethA frameshift-causing indel. (5) Two streptomycin-resistance 

phenotypes predicted by Deeplex Myc-TB and Mykrobe based on gidB G69D. (6) 

Two ethambutol-resistance phenotypes predicted by Deeplex Myc-TB and 

PhyResSE based on embB S297A and Y319S. 

Figure 4. Log read depth obtained by direct Deeplex Myc-TB testing of DNA 

extracted from clinical specimens collected in a TB drug resistance survey conducted 

in the Democratic Republic of Congo. (A) Log read depth at each drug resistance-

associated Deeplex Myc-TB target on the total set of 1494 sputum samples. (B) Log 



read depth at Deeplex Myc-TB targets according to microscopy gradings of 1143 

sputum samples with available microscopic examination data. Median values as well 

as 25-75% quartiles are shown. 

Supplementary Table S1. Summary of the datasets used in this study. 

Supplementary Table S2. Identification of nontuberculous mycobacteria both by 

hsp65, rrl and/or rrs sequencing (Deeplex Myc-TB) and rpoB, 16S rDNA sequencing 

and phenotypic profiling (Institute of Tropical Medicine, ITM). The ID Code compares 

both identification results, as follows: FM-A: match at (subs-)species level (incl. 

synonymous (sub)species according to Tortoli et al. Infect Genet Evol 

2019;75:103983); FM-B: match at (sub-)species level with clonal mix identified by 

Deeplex; FM-C: Match at complex level; M-D: Match at complex level, sublevel 

provided by Deeplex; M-E: Match at complex level, sublevel provided by the ITM; M-

F: Match at complex level, different subspecies; PM: Partial match, mixed species 

identified by Deeplex; NIDx: No identification by Deeplex; NM: No match, different 

species; NIREF: No identification beyond genus level by the ITM. 

Supplementary Table S3. Capture of the 120 resistance-determinants derived from 

the original training-set of 2099 MTBC genomes and their associated resistance 

phenotypes in Walker et al. [3], by the catalogue of resistance determinants in the 

Deeplex Myc-TB targets. The capture rate was calculated by summing the number of 

resistance determinants and their associated resistance phenotypes captured by 

Deeplex Myc-TB relative to the total numbers of resistance determinants and their 

associated resistance phenotypes detected by WGS in Walker et al. [3]. Mutations 

are annotated according to nucleotide and codon positions in reference genes of M. 

tuberculosis H37Rv. The rpsA_A440T mutation was not taken into account in the 

calculations as it is assumed to be redundant to pncA H57D in pyrazinamide 



resistance phenotypes in M. bovis isolates. The numbers of susceptible phenotypes 

from the original publication are shown for visualizing the penetrance of the 

mutations with resistance phenotypes in the original dataset. In the original 

publication, each mutation can be counted more than once if it was characterized as 

a resistance-determinant to more than one drug. 

Supplementary Table S4. Capture, by the catalogue of resistance determinants in 

the Deeplex Myc-TB targets, of mutations characterized in the training-set as 

resistance-determinants in Walker et al. [3] and retrieved in the validation-set of 1552 

MTBC genomes of Walker et al. [3], together with their associated resistance 

phenotypes. The capture rate was calculated by summing the numbers of resistance 

determinants and their associated resistance phenotypes captured by Deeplex Myc-

TB relative to the total numbers of resistance determinants and their associated 

resistance phenotypes detected by WGS in Walker et al. [3]. Mutations are annotated 

according to nucleotide and codon positions in reference genes of M. tuberculosis 

H37Rv. The rpsA_A440T mutation was not taken into account in these calculations 

as it is assumed to be redundant with pncA H57D in pyrazinamide resistance 

phenotypes in M. bovis isolates. The number of susceptible phenotypes from the 

original publication are shown for visualizing the penetrance of the mutations with 

resistance phenotypes in the original dataset.  

Supplementary Table S5. SNPs detected in the 429 samples TDR and Sciensano-

Belgian National TB Reference Center collections. Out of 2403 total variants, 54 

were identified by Deeplex Myc-TB and not by WGS analysis with an initial frequency 

threshold of 85% for variant calling (2.2%, Detection=Y in Deeplex Myc-TB and 

Detection=N in WGS). All were non-fixed/minority variants. Of these 54 variants 

initially missed by WGS, 24 were detected by analysis under low frequency mode 



(see variants with asterisks) and 30 were left completely undetected even under 

these conditions. Mutations are annotated according to nucleotide and codon 

positions in reference genes of M. tuberculosis H37Rv. 

Supplementary Table S6. Phenotypes and genotypes of the 429 samples from the 

TDR and Sciensano-Belgian National TB Reference Center collections. Phenotypes 

(in column pDST-Deeplex) are presented in the form X-Y where X is the phenotype 

found using pDST and Y is the phenotype predicted by Deeplex Myc-TB (R for 

resistant, S for susceptible, U for uncharacterized). Genotypes are described per 

antibiotic and per Deeplex Myc-TB target. Mutations are in the format [gene: mutation 

(% call, variant type)]. They are displayed, in coding regions, as amino-acid 

substitutions while indels, or mutations in non-coding regions, are displayed as 

nucleotide substitutions (with gene position). Variant type can be R ("resistant"), S 

("susceptible") and U ("uncharacterized"). All mutations were detected by both 

Deeplex Myc-TB and WGS except those only detected by Deeplex Myc-TB as 

described in Table S5. *RIF (Rifampicin), INH (Isoniazid), PZA (pyrazinamide), EMB 

(ethambutol), SM (streptomycin), FQ (fluoroquinolones), KAN (kanamycin), AMI 

(amikacin), CAP (capreomycin), ETH (ethionamide), LIN (linezolid). SBN TB Ref 

Center is the Sciensano-Belgian National TB Reference Center. The BCCM is the 

Belgian Coordinated Collections of Microorganisms (Mycobacteria) in Antwerp, 

Belgium. 

Supplementary Table S7. Phenotype predictions by Deeplex Myc-TB analysis of 

DNA from 213 reference isolates from Sciensano-Belgian National TB Reference 

Center versus phenotype predictions by pDST performed by using liquid culture. For 

this strain collection subset, pDST was routinely done using the BACTEC MGIT960 

system for first-line drugs, and the radiometric BACTEC 460 TB for second-line drugs 



(see Methods). Resistance to streptomycin, kanamycin, capreomycin, bedaquiline 

and clofazimine was not assayed by pDST and is therefore not shown here. 

Supplementary Table S8. Phenotype predictions by Deeplex Myc-TB analysis of 

DNA from 216 reference isolates from the WHO-TDR collection (BCCM) versus 

phenotype predictions by pDST performed by using solid culture. For this strain 

collection subset, pDST was performed by using the proportion method on 

Löwenstein-Jensen or Middlebrook 7H11 agar medium, for first- or second-line 

drugs, respectively (see Methods). Resistance to pyrazinamide, amikacin, linezolid, 

bedaquiline and clofazimine was not assayed by pDST and is therefore not shown 

here. 

Supplementary Table S9. Variants detected in samples with phenotype R but with S 

or U predictions by Deeplex Myc-TB (R-S or R-U in pDST-Deeplex, Table S6), in 

regions that are not covered by the assay:  RIF (extended rpoB), INH (mshA, furA, 

ndh, extended fabG1, extended katG), PZA (rpsA, panD, extended pncA), EMB 

(embA, embC, embR, iniA, iniC, extended embB), SM (extended gidB, rpsL and rrs), 

FQ (extended gyrA and gyrB), KAN (extended eis and rrs) & ETH (ethR, Rv0565c, 

Rv3083). Extended regions are full coding sequence and promoter regions of genes 

from which only (most) critical regions are covered by Deeplex Myc-TB. Mutations 

are annotated according to nucleotide and codon positions in reference genes of M. 

tuberculosis H37Rv. 

Supplementary Table S10. Specificity and sensitivity of Deeplex Myc-TB in 

comparison with pDST, based on 429 strain DNA samples from the TDR and 

Sciensano-Belgian National TB Reference Center collections, using a predicted 

susceptibility to isoniazid as predictor of susceptibility to other first-line drugs, for 

which corresponding gene targets are devoid of drug resistance mutations but 



contain uncharacterized mutations. 

Supplementary Table S11. SNPs detected in 109 samples from the Djibouti 

collection. Out of 752 total variants, 74 were identified by Deeplex Myc-TB and not by 

WGS analysis with an initial frequency threshold of 85% for variant calling (9.84%, 

Detection=Y in Deeplex Myc-TB and Detection=N in WGS) and 1 variant was 

detected by WGS only (0.13%, Detection=N in Deeplex Myc-TB and Detection=Y in 

WGS). All were non-fixed/minority variants. Of the 74 variants initially missed by 

WGS analysis at 85% frequency, 15 were detected by analysis under low frequency 

mode (see variants with asterisks) and 59 were completely undetected even under 

these conditions. 

Supplementary Table S12. Phenotype predictions by direct Deeplex Myc-TB 

analysis of DNA from 109 clinical specimens versus phenotype predictions by 

PhyResSE with WGS data from culture. Deeplex Myc-TB sequencing and WGS data 

originate from a report of a national TB drug resistance survey conducted in Djibouti 

[13]. Resistance to bedaquiline/clofazimine is not predicted by PhyResSE and is 

therefore not shown here. 

Supplementary Table S13. Phenotype predictions by direct Deeplex Myc-TB 

analysis of DNA from 109 clinical specimens versus phenotype predictions by 

Mykrobe with WGS data from culture. Deeplex Myc-TB sequencing and WGS data 

originate from a report of a national TB drug resistance survey conducted in Djibouti 

[13]. Resistance to ethionamide, linezolid and bedaquiline/clofazimine is not 

predicted by Mykrobe and is therefore not shown here.  

Supplementary Table S14. Average read depth per Deeplex Myc-TB target in the 

1494 sputum samples from the DRC collection. Microscopy grading is also provided 

when available (1143 samples). 



Supplementary Table S15. Average read depth per Deeplex Myc-TB target in the 

429 DNA strain samples from the TDR and Sciensano-Belgian National TB 

Reference Center collections. Rv0678 and ahpC were not yet targets of the Deeplex 

Myc-TB kit version used at the time of analysis of the Sciensano-Belgian National TB 

Reference Center collection. SBN TB Ref Center is the Sciensano-Belgian National 

TB Reference Center. The BCCM is the Belgian Coordinated Collections of 

Microorganisms (Mycobacteria) in Antwerp, Belgium. 

Supplementary Figure S1. Limit of detection (LOD) of Deeplex Myc-TB for MTBC 

identification. (Top) Read depth at hsp65 versus the number of input genomes. 

Median values as well as 25-75% quartiles are shown. (Bottom) For each dilution 

level with 10, 102, 103, 104 genome copies, LOD was measured as the fraction with 

(green) or without (grey) correct identification among 16 tests, corresponding to four 

independent amplification replicates and sequencing rounds of 4 MTBC genomic 

DNA extracts. 

Supplementary Figure S2. Limit of detection (LOD) of Deeplex Myc-TB for NTM 

identification. (Top) Read depth at hsp65 versus the number of input genomes of a 

M. intracellulare strain. Median values as well as 25-75% quartiles are shown. 

(Bottom) LOD was measured as the fraction with (green) or without (grey) correct 

identification in three independent replicated analyses of 10, 102, 103, 104 M. 

intracellulare genome copies. 

Supplementary Figure S3. Identification of nontuberculous mycobacterial species 

by Deeplex Myc-TB versus reference identification. Deeplex Myc-TB results were 

based on hsp65 best match analysis, complemented by specific SNP detection in 

16S (rrs) and 23S rDNA (rrl) targets for M. kansasii and M. chelonae strains, while 

reference identification was based on rpoB and/or 16S rDNA Sanger sequencing 



results, phenotypic profiling and/or type strain status. The number of isolates studied 

per taxon (complex, species or subspecies) is proportional to associated circle sizes. 

FM-A, FM-C: Full match at same taxonomic level (complex, species or subspecies), 

FM-B: Full match at (sub)species level but with a clonal mix identified by Deeplex, M-

D: Match at complex level, sublevel provided by Deeplex, M-E: Match at complex 

level, sublevel provided by the reference, M-F: Match at complex level, different 

subspecies, PM: Partial match, several possible species identified by Deeplex, NM: 

No match. Non-tuberculosis mycobacterial taxa are ordered phylogenetically, 

according Tortoli et al. Infect Genet Evol 2019;75:103983. 

Supplementary Figure S4. Deeplex Myc-TB detecting co-existing hsp65 reads of 

Mycobacterium tuberculosis complex and Mycobacterium gastri strains in DNA from 

an individual sputum sample collected in a TB drug resistance survey conducted in 

Djibouti. The respective percentages of hsp65 reads detected for each species are 

shown under “hsp65-based identification best-match”. Explanations in the legend of 

Figure 2 in the main text apply for other parts of this figure. 

Supplementary Figure S5. Log read depth obtained at drug resistance-associated 

Deeplex Myc-TB targets in 429 DNA strain samples from the TDR and the 

Sciensano-Belgian National TB Reference Center collections. Median values as well 

as 25-75% quartiles are shown. 

Supplementary Figure S6. Deeplex Myc-TB results obtained using 102 versus 104 

M. tuberculosis genome copies of sample TB-TDR0014 from the TDR collection. A 

red arrow indicates an erratically detected, false positive, synonymous low frequency 

variant (5.2%) pncA Y34Y at 102 genomes. This variant was detected only in this 

experiment. This reflects very sporadic emergence over filtered noise level of low 

frequency amplification errors, sometimes seen with 10 or 102 genome copies. 
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S1. Limit of detection for MTBC or NTM identification 

As Deeplex Myc-TB does not depend on a specific DNA extraction method, the 

assay’s limit of detection for MTBC identification was estimated in terms of number of 

extracted MTBC genome copies by performing serial dilutions of purified, pre-

quantified genomic DNA from three well-characterized MTBC strains, and a mixture 

of two strains at a 5-95% ratio. Four independent amplification replicates (each with a 

different kit lot) and sequencing rounds were performed for each dilution, yielding a 

total of 16 tests per dilution level (10, 102, 103 and 104 genomes). Based on hsp65 

sequence best match analysis, all samples were identified as M. tuberculosis at 104 

and 103 genomes, 13/16 samples (81.2%) at 102 genomes while none were identified 

with 10 genomes (Supplementary Figure S1).  

Likewise, all three independent replicated analyses of 102, 103 and 104 genomes of 

M. intracellulare resulted in the expected 100% identification based on hsp65 best 

match analysis, while two of three replicates with 10 genomes generated this 

expected result (Supplementary Figure S2). 

S2. Assay design 

The assay is based on a single 24-plex PCR targeting 18 major genes associated 

with resistance to 13 first- and second-line anti-TB drugs/drug classes, amplified in 

21 amplicons (Figure 1 and Table 1 in the main text). Two separate amplicons cover 



rpoB codons 384-516 and 158-335, including not only the rifampicin resistance 

determining region but also other regions containing known rifampicin resistance 

mutations that are missed by rapid molecular tests (e.g. I491F [1,2] and V170F [3]). 

For genes such as pncA and Rv0678, associated with pyrazinamide and 

bedaquiline/clofazimine resistance respectively, where resistance mutations are 

known to arise across the entire corresponding sequences, complete coding 

sequences along with part of promoter regions are covered by a single amplicon. For 

ethA, associated with ethionamide resistance, two overlapping amplicons cover the 

gene and part of the promoter. A 401-bp segment of the hsp65 gene is used as 

primary reference for mycobacterial species identification [4], the direct repeat region 

for spoligotype identification of MTBC strains [5], and an internal control sequence to 

control PCR inhibition. 

After PCR and amplicon library preparation and sequencing, reads from FASTQ files 

uploaded to the Deeplex Myc-TB web application are automatically mapped on M. 

tuberculosis H37Rv reference sequences using Bowtie 2 [6]. Variants are called with 

a limit of 3% read proportion depending on coverage depth at the position (134x 

required at least), using proprietary scripts and filters. Detected variants are 

automatically associated with drug resistance or susceptibility, or phylogenetic SNPs 

(i.e. MTBC (sub)lineage-defining) by comparison with integrated reference variant 

databases (Table 2 in the main text). Priority is given to the collaborative, curated 

database ReSeqTB when detected variants are included in this database [7]. When 

not included in these databases, mutations are defined as uncharacterized. Such 

categorization for off-catalogue mutations, instead of explicit or implicit prediction of 

susceptibility as currently done by other tools [8–10], has been shown to be an 

effective flag to avoid some very major errors (missed resistance) and trigger 



subsequent pDST for confirmation [11]. Mycobacterial species and spoligotype are 

identified using additional integrated databases, based on best-match against hsp65 

sequences from 167 mycobacterial species/subspecies derived from data from Dai et 

al. [4] and M. kansasii and M. chelonae-specific mutations in rrs and rrl, and “SIT” 

types from the global SITVIT database [12], respectively. The publication from Dai et 

al. was selected as a primary reference for NTM identification because the majority of 

the hsp65 sequence entries were distinctively curated by validation with type strains 

or were supported by multiple GenBank records deposited by independent research 

groups. 

For some datasets (i.e. obtained from isolates from Sciensano and the TDR 

collection, clinical specimens from Djibouti, and a subset of clinical specimens from 

the Democratic republic of Congo), a beta version of the Deeplex Myc-TB kit was 

used, which differed from the up-to-date version (including the targets described in 

Table 1 in the main text) by not yet including the clofazimine/bedaquiline resistance-

associated target Rv0678 and the ahpC promoter region including two rare isoniazid 

resistance-associated mutations, namely G-48A and C-57T. To verify that the 

coverage depths on the other targets did not differ between the two versions, the 

mean read depths on these targets on 6 replicates of the same M. bovis BCG 

positive control obtained either with the first or the second versions were compared. 

After verifying the normality of the data with Q-Q plots using R, no significant 

difference was found (p>0.05) by using a non-parametric test (Wilcoxon) between the 

log mean read depths obtained with the first and the second versions (see the figure 

below). 

 



 

S3. Mycobacterial species identification 

For extensive testing of mycobacterial species identification, DNA extracts from 370 

nontuberculous mycobacterial (NTM) strains from the Institute of Tropical Medicine of 

Antwerp (ITM, Belgium) were used, including 3 strains used in routine testing at the 

ITM, 30 type strains and 337 strains from the Belgian Culture Collection of 

Microorganisms (BCCM), maintained under quality control at ITM. These represented 

73 different NTM species/species complexes, identified at the ITM based on a 

combination of phenotypic testing, rpoB and/or 16S rDNA Sanger sequencing.  

Multiple strains from the major clinically relevant taxa were purposely included to 



represent a potential intraspecies diversity. After application of the assay on these 

DNA extracts, the Deeplex Myc-TB web application was used for automated best-

match analysis using hsp65 as a primary gene target, complemented by rrs and rrl 

sequence analysis for some mycobacterial species (Supplementary Table S2).  

Out of these 370 strains, 292 strains were identified at (sub)species or species 

complex levels by both reference and Deeplex Myc-TB testing (Supplementary 

Figure S3, Supplementary Table S2). Of these, 194 (66.4%) were best-matched at 

the same taxonomic level by both methods, while 76 (26%) were matched at the 

same complex level, with a sublevel identification by Deeplex Myc-TB (n=20; 

essentially M. intracellulare complex strains), or the reference (n=40; essentially M. 

avium complex strains, relatively overrepresented in this dataset, which are not 

further identified as (avium or hominisuis) subspecies by Deeplex Myc-TB), or 

showing a different subspecies (n=16) across methods. Among the 194 cases 

concordant at the same taxonomic level, two distinct hsp65 sequence variants both 

best matching a same species were detected by Deeplex Myc-TB in 13 strains, 

indicating underlying clonal complexity (e.g. in 3 M. nonchromogenicum and 2 M. 

smegmatis strains). In addition, 4 of 292 (1.4%) strains had a partial match either 

because they were best matched between two possible equidistant species (n=1), or 

detected in a mixture with another species (n=3). Only 18 (6.2%) strains had 

taxonomically discordant results between both methods, i.e. without full or partial 

match as above. These mostly consist of single discordant cases among otherwise 

partially/fully concordant strains for a species (e.g. M. ulcerans, n=1/13; M. kansasii, 

n=1/14), or species rarely involved in infections (e.g. M. peregrinum; n=2) [13,14]. 

To note, for residual isolates with discrepant subspecies within a matching complex 

(e.g. M. intracellulare vs M. chimaera), the correctness of the Deeplex Myc-TB 



identification was actually often possible or probable. Indeed, in these cases, 

conflicting or ambiguous identifications were frequently seen between the rpoB and 

16S rDNA reference probes, with one or the other partially or fully matching the 

Deeplex Myc-TB result (Supplementary Table S2). This held also true for some of 

few individual isolates (of otherwise well identified species) that were discordant even 

at complex level (e.g. M. kansasii vs M. gastri).  

Of the remaining 78 strains out of the 370 analyzed in total, 5 had no identification by 

either method while the others were identified to (sub)species/complex level by 

Deeplex Myc-TB (n=28) or the reference (n=45) only. The latter mostly consisted of 

strains from species of rare clinical prevalence (including 5 other M. peregrinum or M. 

septicum strains), or reflect a minority of cases among strains otherwise partially/fully 

concordant for a species or complex (e.g. 6/16 M. chelonae complex, including 1/11 

M. chelonae subsp chelonae). Only a few NTM species of relatively higher clinical 

significance had a majority of strains without Deeplex best matched species, 

including in particular some strains from the M. terrae complex:  M. arupense (2/3 

without best match), and M. virginiense (1/2; the other strain being best matched to 

M. aurum). 

Altogether, these results thus indicate highly reliable identification of mycobacterial 

species by the Deeplex Myc-TB. The range of 167 mycobacterial (sub)species 

covered by the identification database, including virtually all clinically relevant ones, 

is substantively larger than that of conventional molecular tests, such as line probe 

assays covering 46 (sub)species in two separate assays [15], and is close to that of 

MALDI TOF mass spectrometry-based methods, such as Bruker’s (Billerica, 

Massachusetts, USA) reportedly covering 178 (sub)species 

(https://www.bruker.com/products/mass-spectrometry-and-separations/maldi-

https://www.bruker.com/products/mass-spectrometry-and-separations/maldi-biotyper-for-microbiological-research/mycobacteria/overview-mycobacteria.html


biotyper-for-microbiological-research/mycobacteria/overview-mycobacteria.html). We 

plan to further increment our identification database by first basing on the 

comprehensive, updated list of taxa with a validly published and correct name, 

included in the Prokaryotic names with Standing in Nomenclature (LSPN) database 

(https://www.bacterio.net/genus/mycobacterium). While the number of such taxa 

(excluding synonyms) as of August 2020 is 192 in this list, most of those not (yet) 

included in our database concern relatively novel species described by a single 

research group thus far, and based on very few or even just one strain(s) in most 

cases. As was done in the work from Dai et al. [4] (see above), we will prioritize 

further incorporation of new taxa that are described by independent research groups. 

Of final note, the detection of distinct subpopulations of variant hsp65 reads within 

some samples of the NTM strain collection (Supplementary Table S2) as well as in 

some clinical specimens from Djibouti (see below and Supplementary Figure S4), 

indicate distinct co-existing species (NTM or NTM with MTBC) or species variants. 

Detection of co-infecting or co-colonizing mycobacterial species is important for 

correct interpretation of available pDST results and guidance of patient treatment 

[16].  

S4. Deeplex Myc-TB phenotype prediction versus phenotypic testing 

We compared the ability of both Deeplex Myc-TB and Illumina-based WGS analysis 

to detect variants, using a total of 429 strains. For this comparison, we used a state-

of-the-art WGS analysis pipeline, validated for accurate SNP calling by using short 

read data sets derived from isolates with known complete genomes in accordance 

with recent guidelines [17,18]. Mean on-target coverage depth by Deeplex Myc-TB 

was 3,171x (SD=3691.7) (Supplementary Figure S5, Supplementary Table S15), with 

a minimum mean of 600x on rrs2, which largely exceeds the minimal read depth set 

https://www.bruker.com/products/mass-spectrometry-and-separations/maldi-biotyper-for-microbiological-research/mycobacteria/overview-mycobacteria.html
https://www.bacterio.net/genus/mycobacterium


to reach the maximal limit of detection of 3% for minority variants (i.e. >=134x). Mean 

reference coverage breadth was 99% (SD=4.9). In comparison, mean coverage 

depth and breadth on the same targets by WGS was 71x (SD=70) and 98.9% 

(SD=6.2), respectively. 

In total, 2403 variants were identified in the Deeplex Myc-TB targets (2323 SNPs, 65 

deletions and 15 insertions), including 798 resistance-associated variants. Of all 

variants, 2349 (97.8%; including 2269 SNPs and all 80 indels), including 779 (97.6%) 

of the resistance variants, were detected by both Deeplex and our WGS analysis 

pipeline initially used with a common high-frequency threshold (85%) used for SNP 

calling. The remaining 54 (2.2%) SNPs were all variants with frequencies below this 

threshold (Supplementary Table S4). Of these, 34 (63.0%) were found as co-

occurring with 1 to 7 other such variants within an individual isolate (involving 

resistance and/or phylogenetic variants in 26 cases), indicating mixed strains and/or 

combined heteroresistance and thus genuine genotypic subpopulations detected by 

targeted deep sequencing. Moreover, about half of the total 54 (n=24) were identified 

in WGS-derived reads when analyzed under low frequency detection mode, detected 

with similar ~5-80% frequencies as in Deeplex Myc-TB-derived reads in virtually all 

cases. The other half (n=30), undetected even under these conditions, concentrated 

those with lowest frequencies of ~3-10% only identified by targeted deep sequencing, 

as an expected reflection of the lower coverage depth obtained with WGS 

(Supplementary Table S4). Of these, only one (at a frequency of 4.9%) corresponded 

to a resistance-associated mutation (to ethambutol; see main text). 

Of the 1583 susceptible phenotypes with prediction, only 41 (2.6%) were discordantly 

predicted as resistant. Among these, 28 (68.3%) involved ethambutol and embB 

mutations known to be associated with poor phenotypic reproducibility (e.g. 12 



M306V, 7 M306I and 6 G406D [19], including two minority variants, one of which was 

not detected by WGS (4.9%)). Six discordances consisted of indels (all confirmed by 

WGS) causing frameshifts in ethA, all mechanistically expected to cause ethionamide 

resistance due to defective drug activation, as a result of impaired encoding of the 

monooxygenase EthA [20]. Also meaningful in this respect, four other ethA 

frameshifts were found in ethionamide-resistant phenotypes, in line with notorious 

phenotypic variability for this drug [21]. The only three discordances for isoniazid 

involved inhA S94A (without fabG1 C-15T) in two isolates and ahpC G-48A in one 

isolate, showing variable association with (low level) isoniazid resistance among 

different studies [7,19,22]. Likewise, the only three discordant predictions for 

rifampicin involved rpoB L452P, H445N and D435Y, all part of the so-called 

“disputed” mutations with low rifampicin resistance levels frequently missed by liquid 

pDST, yet associated with poor clinical outcome on rifampicin-based treatment 

[23,24]. Lastly, the gidB A138V mutation, found in one streptomycin-susceptible 

isolate and associated with streptomycin resistance by Deeplex Myc-TB, is also 

subject to conflicting association with streptomycin resistance [7,25]. 

S5. Interpretation of uncharacterized mutations conditional on isoniazid 

susceptibility results 

Because susceptibility to isoniazid predicts susceptibility to other first-line drugs [26] 

and as described for WGS-based prediction [27], the overall predictability of the test 

was further improved when a predicted susceptibility to isoniazid was considered to 

predict susceptibility to other first-line drugs, even when uncharacterized mutations 

were present in gene targets relevant for these drugs. This reduced the proportions 

of uncharacterized predictions from 1.9-4.4% to 0.5-2.5% for rifampicin, ethambutol 

and pyrazinamide, with correct re-classification as susceptible phenotypes in 5, 3 and 



1 cases, respectively (Supplementary Table S7). To note however, this also resulted 

in the incorrect prediction of one additional susceptible phenotype (i.e. for a resistant 

phenotype) for each of these drugs. 

S6. Variant detection by Deeplex Myc-TB on clinical specimens versus WGS 

analysis 

We compared variant detection and phenotype predictions based on available 

Deeplex Myc-TB sequencing data directly obtained from 109 clinical specimens from 

a nationwide survey conducted in Djibouti, versus analysis of WGS data obtained 

after culturing [28]. DNA was extracted from these sputum samples as per a protocol 

described in the Deeplex-MycTB user’s manual, as follows. After decontamination by 

using N-acetyl-L-cysteine combined with sodium hydroxide and sodium citrate 

procedure, utilizing NACPAC™RED kit from AlphaTec (Vancouver, Washington 

state, USA), followed by treatment by NPC67 neutralizing buffer and resuspension in 

0.5 ml – 1 ml of PRB pellet resuspension buffer, both from AlphaTec, 100 μl to 500 μl 

of the suspensions were transferred in a screw cap or safe-lock microfuge tube  and 

heat inactivated at 95°C for 30 min in an oven. After subsequent centrifugation at 

20,000 g for 30 min, the supernatant was removed and discarded, and 250 μl of 10 

mM Tris-HCl pH 7.8 was added, followed by brief vortexing, incubation at 95°C for 15 

min and brief spinning down to collect potential droplets in tube cap. The entire 

volume (avoiding the pellet)  was transferred in a new tube containing molecular 

biology grade 0.15 mm zirconium beads (Next Advance, Troy, New York, USA) in 

2ml microtubes, vortexed at least for 30s, using a benchtop vortex mixer at full 

speed, followed by brief spinning down and incubation at least for 30 min at -20°C. 

After thawing at room temperature, the supernatant was transferred in a new 1,5 ml 

microtube, by avoiding resuspension of beads. A DNA concentration step was then 



performed by adding 1 μl of 20 mg/ml glycogen solution (Sigma Aldrich, Saint-Louis, 

Missouri, USA) and mixing, 0.1 volume of 3 M sodium acetate at pH 5.2 and mixing, 

and 3 volume 100% pre-cooled ethanol, followed by vigorous vortexing for 10s, 

incubation at -20°C for 10 min, and centrifugation at 15,000 g for 20 min. After 

discarding of the supernatant, 600 μl of freshly prepared, pre-cooled 70% ethanol 

were added, followed by centrifugation at 15,000 g for 5 min. After discarding the 

supernatant, the pellet was air dried for 15 min and resuspended in 20 μl of sterile 

water. 

Overall, 693 of 752 total variants (92.2%) were detected by both Deeplex Myc-TB 

and our WGS pipeline used under low frequency detection mode. Apart from one 

fixed pncA SNP not detected by Deeplex Myc-TB, 59 SNPs were completely missing 

from WGS reads even when analyzed under low frequency detection mode. All latter 

SNPs were minority variants with frequencies from 3 to 25% in most cases, 

clustering in 20 samples. Of these 59, 45 were, or co-occurred at similar low 

frequencies with, resistance and/or phylogenetic variants within a sample, suggesting 

likely true variant calls missed by a generally (much) lower read depth by WGS 

(Supplementary Table S11). Of the remaining 14 SNPs, some could possibly reflect 

Deeplex Myc-TB amplification of false positive SNPs occasionally seen in test 

samples with low genome copy numbers (Supplementary Figure S6). However, when 

occurring, such sporadic effect typically affects only one to few uncharacterized or 

synonymous minority SNPs – representing the vast majority of possible nucleotide 

changes across all targets- at frequencies close to the 3% limit of detection 

(Supplementary Figure S6). 

Of note, within some of these clinical specimens from Djibouti, Deeplex Myc-TB 

detected distinct subpopulations of variant hsp65 reads (Supplementary Figure S4), 



indicating distinct co-existing species (NTM with MTBC). Detection of such 

NTM/MTBC co-infections has diagnostic and clinical implications [29]. 

Moreover, potential/probable mixed infections with M. tuberculosis and “M. canettii” 

or strains of distinct MTBC lineages strains were detected by Deeplex MycTB in 

8/109 (7.3%) sputum samples from Djibouti (and 37/1494 (2.3%) sputum samples 

from DRC), based on mixed phylogenetic SNP calls, possibly supplemented by the 

observation of a biphasic distribution of read depths on spoligotype spacers. This 

detection of mixed infections is important for epidemiological inferences, and may be 

as well of clinical relevance, as mixed infections have been associated with poor 

tuberculosis treatment outcomes, also independently of heteroresistance [30].  

S7. Deeplex Myc-TB on clinical specimens vs MTBSeq-based predictions 

The sensitivity of 93.5% for rifampicin of Deeplex Myc-TB versus MTBSeq on the 

Djibouti dataset resulted from two resistance predictions by MTBSeq (also by 

PhyResSE and Mykrobe; Figure 3 in main text) based on the detection of two minor 

variants in rpoB (S431T at 42.7%, and D435V at 25.9%) that co-occurred with one or 

more minor variants in other genes (Deeplex Myc-TB targets as well as other genes) 

sequenced by WGS. None of these minor variants were detected in the two 

corresponding sputa analyzed by Deeplex Myc-TB (even before filtering of the 

sequence data) despite high coverage depths at these positions, suggesting 

genotypic heterogeneity or contamination, introduced or amplified during subsequent 

culturing or WGS processing. 

Fifteen of the 995 (1.5%) phenotypes predicted as susceptible by MTBSeq in the 

Djibouti dataset (excluding uncharacterized phenotypes by Deeplex Myc-TB) were 

identified as resistant by Deeplex Myc-TB (Table 4 in main text). Of these, 10 

(66.6%) discordances were due to minority resistance-associated variants at 3.3-



12.8% detected in sputa by Deeplex Myc-TB, but missed by MTBSeq, PhyResSE 

and Mykrobe (Figure 3; katG S315T (n=2); embB G406A and co-occurring G406A + 

P404S; pncA D8G, H57D, H71Y; gyrA D94A, and rrs A514C (n=2)). The five 

remaining discordant resistance predictions resulted from divergent variant 

interpretation, involving one ethA frameshift-causing indel (mechanistically expected 

to cause ethionamide resistance, see above), two debated embB mutations (S297A, 

Y319S [35]) and the gidB G69D mutation (n=2, associated with low-level 

streptomycin resistance [25]), which were associated with resistance by both 

Deeplex Myc-TB and PhyResSE and/or Mykrobe, but not by MTBSeq 

S8. Deeplex Myc-TB on clinical specimens vs PhyResSE and Mykrobe WGS-

based predictions 

With the 950 predicted phenotypes by Deeplex Myc-TB (137 resistant, 813 

susceptible), the mean sensitivity and specificity versus available PhyResSE 

predictions were 98.5% and 97.2% (Supplementary Table S12). Ninety additional 

phenotypes (8.7%) were not predicted by Deeplex Myc-TB due to the presence of 

phenotypically uncharacterized mutations. Agreement on resistance prediction was 

100% for all applicable drugs, except for rifampicin (93.5%). The latter score resulted 

from two PhyResSE resistance predictions based on the detection of two minor 

variants in rpoB (S431T at 33%, and D435V at 9%) that co-occurred with one or 

more minor variants in other genes (Deeplex Myc-TB targets as well as other genes) 

sequenced by WGS. None of these minor variants were detected in the two 

corresponding sputa analyzed by Deeplex Myc-TB (before or after filtering of the 

data) despite high coverage depths at these positions, suggesting genotypic 

heterogeneity, or contamination introduced or amplified during subsequent culturing 

or WGS processing.  



Conversely, 23 of the 813 (2.8%) phenotypes predicted as susceptible by PhyResSE 

were identified as resistant by Deeplex Myc-TB (Supplementary Table S12). Of 

these, 11 (47.8%) were due to fixed variants or indels detected but not regarded as 

associated with resistance by PhyResSE. Four mutations (2 T160A, 2 K96N) and 6 

frameshift-causing indels or large deletions in pncA were found in samples predicted 

to be MDR with additional resistance to at least ethambutol, in five out of six cases, 

thus supporting probable pan-first-line resistance (including pyrazinamide). Likewise, 

one ethA frameshift-causing indel was mechanistically [20] predicted to cause 

resistance by Deeplex Myc-TB and not by PhyResSE. Finally, 12 (52.2%) 

discordances were due to minority resistance-associated variants at 3.3-12.8%, 

detected by Deeplex Myc-TB but missed by WGS due to lower read depths (katG 

S315T (n=2); embB G406A and co-occurring minor G406A + P404S; pncA D8G, 

H57D, H71Y (n=2) and 1 frameshift-causing insertion; gyrA D94A, and rrs A514C 

(n=2)). 

The overall proportion of predicted resistance by Deeplex Myc-TB relatively to 

Mykrobe was somewhat negatively skewed by the individual sensitivity of 58.8% for 

pyrazinamide, in contrast to 96.6%-100% for all other applicable drugs 

(Supplementary Table S13). This lower score resulted from the local prevalence of 

“M. canettii” isolates in Djibouti, which are naturally resistant to pyrazinamide and 

highly restricted to the Horn of Africa [31–34]. While both analysis tools identified “M. 

canettii” in 7 samples based on a fixed synonymous phylogenetic SNP pncA A46A, 

Deeplex Myc-TB did not explicitly report a pyrazinamide resistance prediction on this 

basis, resulting in 10 pyrazinamide resistant phenotypes predicted by Deeplex Myc-

TB versus 17 by Mykrobe. Other discordances resulted from a rare apparent non-

sense rpoB D435X mutation in a sample and two rare katG indels, which were not 



reported as rifampicin or isoniazid resistance associated by Deeplex Myc-TB at the 

time of the study. 

Finally, 31 of the 705 (4.4%) susceptible phenotypes predicted by Mykrobe were 

identified as resistant by Deeplex Myc-TB (Supplementary Table S13). These include 

the 10 out of 12 phenotypes predicted based on resistance-associated minority 

variants with frequencies of 3.3-12.8%, and the 7 capreomycin resistant phenotypes 

due to the fixed tlyA N236K mutation. Likewise, 3 of the 5 indels or large deletions in 

pncA ignored by PhyResSE were also unaccounted-for pyrazinamide resistance by 

Mykrobe. The remaining discordant phenotypes were all due to (near-)fixed variants. 

These include 7 various mutations in pncA (of which 6 were found in samples 

predicted to be MDR with additional resistance to ethambutol at least, arguing for 

first-line pan-resistance), a D435A rpoB mutation with indeterminate rifampicin 

association with resistance according to ReSeqTB [7], as well as S297A and Y319S 

embB mutations [35,36] and a rrs A906G mutation that were also predicted as 

resistance-conferring by PhyResSE. 

 

References 

[1] Sanchez-Padilla E, Merker M, Beckert P, Jochims F, Dlamini T, Kahn P, et al. 

Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl 

J Med 2015;372:1181–2. 

[2] Makhado NA, Matabane E, Faccin M, Pinçon C, Jouet A, Boutachkourt F, et al. 

Outbreak of multidrug-resistant tuberculosis in South Africa undetected by 

WHO-endorsed commercial tests: an observational study. Lancet Infect Dis 

2018;3099. 



[3] Heep M, Brandstätter B, Rieger U, Lehn N, Richter E, Rüsch-Gerdes S, et al. 

Frequency of rpoB mutations inside and outside the cluster I region in rifampin-

resistant clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 

2001;39:107–10. 

[4] Dai J, Chen Y, Lauzardo M. Web-accessible database of hsp65 sequences 

from Mycobacterium reference strains. J Clin Microbiol 2011;49:2296–303. 

[5] Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, van Soolingen D, Kuijper S, 

et al. Simultaneous detection and strain differentiation of Mycobacterium 

tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997;35:907–14. 

[6] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 

Methods 2012;9:357–9. 

[7] Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, et 

al. A standardised method for interpreting the association between mutations 

and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 

2017;50. 

[8] Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, et al. 

PhyResSE: A web tool delineating Mycobacterium tuberculosis antibiotic 

resistance and lineage from whole-genome sequencing data. J Clin Microbiol 

2015;53:1908–14. 

[9] Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid 

antibiotic-resistance predictions from genome sequence data for 

Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 

2015;6:10063. 

[10] Kohl TA, Utpatel C, Schleusener V, De Filippo MR, Beckert P, Cirillo DM, et al. 



MTBseq: A comprehensive pipeline for whole genome sequence analysis of 

Mycobacterium tuberculosis complex isolates. PeerJ 2018;2018:1–13. 

[11] Hunt M, Bradley P, Lapierre SG, Heys S, Thomsit M, Hall MB, et al. Antibiotic 

resistance prediction for Mycobacterium tuberculosis from genome sequence 

data with mykrobe [version 1; peer review: 2 approved, 1 approved with 

reservations]. Wellcome Open Res 2019;4. 

[12] Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, et al. SITVITWEB - A 

publicly available international multimarker database for studying 

Mycobacterium tuberculosis genetic diversity and molecular epidemiology. 

Infect Genet Evol 2012;12:755–66. 

[13] Asmar S, Rascovan N, Robert C, Drancourt M. Draft genome sequence of 

Mycobacterium mucogenicum strain CSUR P2099. Genome Announc 

2015;3:6–7. 

[14] Kamijo F, Uhara H, Kubo H, Nakanaga K, Hoshino Y, Ishii N, et al. A case of 

mycobacterial skin disease caused by Mycobacterium peregrinum, and a 

review of cutaneous infection. Case Rep Dermatol 2012;4:76–9. 

[15] Mäkinen J, Marjamäki M, Marttila H, Soini H. Evaluation of a novel strip test, 

GenoType Mycobacterium CM/AS, for species identification of mycobacterial 

cultures. Clin Microbiol Infect 2006;12:481–3. 

[16] DS Sarro Y, Kone B, Diarra B, Kumar A, Kodio O, B Fofana D, et al. 

Simultaneous diagnosis of tuberculous and non-tuberculous mycobacterial 

diseases: Time for a better patient management. Clin Microbiol Infect Dis 

2018;3:1–8. 

[17] Pouseele H, Supply P. Chapter 10 - Accurate Whole-Genome Sequencing-



Based Epidemiological Surveillance of Mycobacterium tuberculosis. In: Sails A, 

Tang Y-WBT-C and ET for the D of MI, Sails A, Tang Y-W, editors. Curr. 

Emerg. Technol. Diagnosis Microb. Infect., 2015, p. 359–94. 

[18] Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, et al. 

Whole genome sequencing of Mycobacterium tuberculosis: current standards 

and open issues. Nat Rev Microbiol 2019;17:533–45. 

[19] Walker TM, Kohl TA, Omar S V., Hedge J, Del Ojo Elias C, Bradley P, et al. 

Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug 

susceptibility and resistance: A retrospective cohort study. Lancet Infect Dis 

2015;15:1193–202. 

[20] Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, 

et al. Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol 

Chem 2000;275:28326–31. 

[21] WHO. Technical Manual for Drug Susceptibility Testing of Medicines Used in 

the Treatment of Tuberculosis. 2018. 

[22] Lempens P, Meehan CJ, Vandelannoote K, Fissette K, De Rijk P, Van Deun A, 

et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be 

predicted by high-confidence resistance-conferring mutations. Sci Rep 

2018;8:1–9. 

[23] Miotto P, Cabibbe AM, Borroni E, Degano M, Cirilloa DM. Role of disputed 

mutations in the rpoB gene in interpretation of automated liquid MGIT culture 

results for rifampin susceptibility testing of Mycobacterium tuberculosis. J Clin 

Microbiol 2018;56:1–9. 

[24] Torrea G, Ng KCS, Van Deun A, André E, Kaisergruber J, Ssengooba W, et al. 



Variable ability of rapid tests to detect Mycobacterium tuberculosis rpoB 

mutations conferring phenotypically occult rifampicin resistance. Sci Rep 

2019;9:1–9. 

[25] Feuerriegel S, Oberhauser B, George AG, Dafae F, Richter E, Rüsch-Gerdes 

S, et al. Sequence analysis for detection of first-line drug resistance in 

Mycobacterium tuberculosis strains from a high-incidence setting. BMC 

Microbiol 2012;12. 

[26] Manson AL, Cohen KA, Abeel T, Desjardins CA, Armstrong DT, Barry CE, et 

al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains 

provides insights into the emergence and spread of multidrug resistance. Nat 

Genet 2017;49:395–402. 

[27] Allix-Béguec C, Arandjelovic I, Bi L, Beckert P, Bonnet M, Bradley P, et al. 

Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. 

N Engl J Med 2018;379:1403–15. 

[28] Tagliani E, Hassan MO, Waberi Y, De Filippo MR, Falzon D, Dean A, et al. 

Culture and Next-generation sequencing-based drug susceptibility testing 

unveil high levels of drug-resistant-TB in Djibouti: Results from the first national 

survey. Sci Rep 2017;7:1–9. 

[29] Hwang SM, Lim MS, Hong YJ, Kim TS, Park KU, Song J, et al. Simultaneous 

detection of Mycobacterium tuberculosis complex and nontuberculous 

mycobacteria in respiratory specimens. Tuberculosis 2013;93:642–6. 

[30] Shin SS, Modongo C, Baik Y, Allender C, Lemmer D, Colman RE, et al. Mixed 

Mycobacterium tuberculosis-strain infections are associated with poor 

treatment outcomes among patients with newly diagnosed tuberculosis, 



independent of pretreatment heteroresistance. J Infect Dis 2018. 

[31] Fabre M, Koeck JL, Le Flèche P, Simon F, Hervé V, Vergnaud G, et al. High 

genetic diversity revealed by variable-number tandem repeat genotyping and 

analysis of hsp65 gene polymorphism in a large collection of “Mycobacterium 

canettii” strains indicates that the M. tuberculosis complex is a recently 

emerged clone of "M. canettii". J Clin Microbiol 2004;42:3248–55. 

[32] Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, et al. 

Ancient origin and gene mosaicism of the progenitor of Mycobacterium 

tuberculosis. PLoS Pathog 2005;1:0055–61. 

[33] Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, et al. 

Genomic analysis of smooth tubercle bacilli provides insights into ancestry and 

pathoadaptation of Mycobacterium tuberculosis. Nat Genet 2013;45:172–9. 

[34] Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, et al. 

Progenitor “Mycobacterium canettii” clone responsible for lymph node 

tuberculosis epidemic, Djibouti. Emerg Infect Dis 2014;20:21–8. 

[35] Plinke C, Rüsch-Gerdes S, Niemann S. Significance of mutations in embB 

codon 306 for prediction of ethambutol resistance in clinical Mycobacterium 

tuberculosis isolates. Antimicrob Agents Chemother 2006;50:1900–2. 

[36] Ramaswamy S V, Amin AG, Goksel S, Stager CE, Dou S-J, El Sahly H, et al. 

Molecular genetic analysis of nucleotide polymorphisms associated with 

ethambutol resistance in human isolates of Mycobacterium tuberculosis. 

Antimicrob Agents Chemother 2000;44:326–36. 

 
















