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Abstract. We provide explicit time-varying feedback laws that locally stabilize the two dimen-
sional internal controlled incompressible Navier–Stokes equations in arbitrarily small time. We also
obtain quantitative rapid stabilization via stationary feedback laws, as well as quantitative null
controllability with explicit controls having eC/T costs.

1. introduction

Let Ω be a bounded connected open set in R2 with smooth boundary. Let the controlled domain
ω ⊂ Ω be a nonempty open subset. We are interested in the stabilization and null controllability
of the two dimensional incompressible Navier–Stokes system with internal control,

yt −∆y + (y · ∇) y +∇p = 1ωf in Ω,

div y = 0 in Ω,

y = 0 on ∂Ω,

(1.1)

where, the state y(t, ·) and the control term f(t, ·) are in H. We adapt the standard fluid mechanics
framework,

H := {y ∈ L2(Ω)2 : div y = 0 in Ω, y · n = 0 on ∂Ω},
Vσ := {y ∈ H1

0 (Ω)2 : div y = 0 in Ω} and V := {y ∈ H1
0 (Ω)2},

with Vσ ↪→ V ↪→ H ↪→ L2(Ω)2 ↪→ V ′ ↪→ V ′σ. We have taken the viscosity coefficient as 1 to simplify
the presentation.

When dealing with stabilization problems the control term f is regarded as a feedback control
governed by some “feedback application” that depends on current states and time, U(t; y):

(1.2) f(t, x) := U(t; y(t, x)),

where the application U is the so called time-varying feedback law,

(1.3)

{
U : R×H → H

(t; y) 7→ U(t; y).

The closed-loop system associated to the preceding feedback law U is the evolution system (1.1)–
(1.3). A stationary feedback law is such an application only depends on H. A T -periodic feedback
law is a time-varying feedback law that is periodic with respect to time, i.e. U(T + t; y) = U(t; y).
A proper feedback law U , roughly speaking, is some time-varying feedback law such that, for every
s ∈ R, and for every y0 ∈ H as initial state at time s, i.e. y(s, x) = y0(x), the closed-loop system
(1.1)–(1.3) admits a unique solution. For the closed-loop system with proper feedback law we can
define the “flow”, Φ(t, s; y0), as the state at time t of the solution of (1.1)–(1.3) with initial state
y(s, x) = y0(x).

The local controllability and stabilization of Navier–Stokes equations have been extensively stud-
ied in the literature. Based on global Carleman estimates introduced by Fursikov–Imanuvilov [25]
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a nearly complete local exact controllability result is obtained in [21], other works include but not
limited to [12, 20, 22, 24, 31, 34]. Eventually one can even control the system locally via some
reduced control terms [13]. The global controllability of Navier–Stokes equations with controlling
on boundary (namely Lions’ problem), which, different from the cases on Riemannian manifolds
[1, 11], is far away from been answered due to boundary layer difficulties, by far the best results
are given by [14, 15].

The study on local exponential stabilization around 0 and other trajectories of Navier–Stokes
equations both with internal controls or with boundary controls is fruitful, notably based on Riccati
type methods by optimal control theory. For example, [2, 5] for local exponential stabilization with
finite dimensional internal control (feedback laws); exponential stabilization by boundary feedback
laws [3, 23, 32]; stabilization around trajectories or unstable steady states [4, 7, 33], etc. To the
best of our knowledge, result on quantitative rapid stabilization or even finite time stabilization
of Navier–Stokes equations is extremely limited, we refer to [19] for a detailed review on these
questions.

Recently, the author has introduced a method to stabilize the multi-dimensional heat equations in
finite time [37], which is based on quantitative rapid stabilization relying on spectral inequalities and
Lyapunov functionals, as well as piecewise feedback laws. Methodologically speaking, the technical
spectral inequalities is achieved via local Carleman estimates on elliptic operators up to boundaries
(as always fulfilling Hörmander’s pseudoconvex condition), starting from the seminal paper [27, 28]
these results can be regarded as standard, at least compared to wave type operators; the Lyapunov
functions [18] aim at finding artfully chosen energy and multiplier to characterize the variation of
the energy from a global point of view without knowing any microlocal information, which have been
extensively developed in the study of hyperbolic systems of conservation laws as well as scattering
theory [6, 26, 30, 38]; the piecewise (in time) feedback law is formulated by [16] to stabilize the one
dimensional heat equation in finite time together with the backstepping method, instead of using
stationary feedback laws. This method shares several advantages:

• The designed feedback laws are simple and explicit to be compared with some other sta-
bilization techniques, for instance the powerful Riccati method requires on solving some
algebraic nonlinear Riccati equation.
• The quantitative rapid stabilization combined with the piecewise continuous feedback law

argument leads to finite time stabilization. It also provides a constructive approach to
null controllability without applying Lions’ fundamental H.U.M. [30] sharing explicit (and
probably optimal) controlling costs.
• The feedback laws are stable under perturbation. As a direct consequence, the same feed-

back law can be used to stabilize (rapidly or even in finite time) nonlinear models with
satisfying costs.

Inspired by [37] we prove the following theorems concerning quantitative rapid stabilization,
local null controllability with cost estimates, and finite time stabilization for the two dimensional
incompressible internal controlled Navier–Stokes equations, the proofs of which are presented in
Section 3, Section 4, and Section 5 respectively. In Section 2 we introduce some preliminary results
concerning well-posedness of Navier-Stokes equations, spectral inequalities of Stokes operators, as
well as the related control problems.

Theorem 1.1 (Quantitative rapid stabilization). There exists an effectively computable constant
C2 > 0 such that for any λ > 0 we can construct an explicit stationary feedback law Fλ : H →
H, such that the closed-loop system (1.1)–(1.2) with the feedback law U(t; y) := Fλy is locally
exponentially stable:

||Φ(t, s; y0)||H + ||FλΦ(t, s; y0)||H ≤ 2C2e
C2

√
λe−

λ
4

(t−s)||y0||H, ∀ s ∈ R,∀ t ∈ [s,+∞),
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for any ||y0||H ≤ C−1
2 e−C2

√
λ.

Theorem 1.2 (Quantitative null controllability with cost estimates). There exists an effectively

computable constant C3 > 0 such that, for any T ∈ (0, 1), and for any ||y0||H ≤ e−
C3
T we can find

an explicit control f |[0,T ](t, x) satisfying

||f(t, x)||L∞(0,T ;H) ≤ e
C3
T ||y0||H,

such that the unique solution of the controlled system (1.1) with initial state y(0, x) = y0(x) and
the control f |[0,T ] verifies y(T, x) = 0.

Theorem 1.3 (Small-time local stabilization with explicit feedback laws). For any T > 0, we find
an effectively computable constant ΛT and construct an explicit T -periodic proper feedback law U
satisfying

||U(t; y)||H ≤ min{1, 2||y||1/2H }, ∀ y ∈ H, ∀ t ∈ R,
that stabilizes system (1.1)–(1.3) in finite time:

(i) (2T stabilization) Φ(2T + t, t; y0) = 0, ∀ t ∈ R, ∀ ||y0||H ≤ ΛT .
(ii) (Uniform stability) For every δ > 0 there exists an effectively computable η > 0 such that(

||(y0||H ≤ η
)
⇒
(
||Φ(t, t′; y0)||H ≤ δ, ∀ t′ ∈ R, ∀ t ∈ (t′,+∞)

)
.

2. Preliminary

2.1. Functional framework. We refer to the book by Chemin [9] for the functional analysis
framework and well-posedness results concerning Navier–Stokes equations, and the book by Coron
[10] for introduction on the related control theory. In the context if there is no confusing sometimes
we simply denote L2(Ω)2 by L2(Ω) or L2.
(1) Leray projection and spectral decomposition.

According to Helmholtz decomposition, for any u ∈ L2(Ω)2 there exist unique v ∈ H and
∇p ∈ L2(Ω)2 such that u = v +∇p, which defines the (orthogonal) Leray projection P on L2(Ω)2:{

P : L2(Ω)2 → H
u 7→ Pu := u−∇p.

Notice that for any f ∈ H,

||P
(
1ωf

)
||H ≤ ||1ωf ||L2(Ω)2 ≤ ||f ||L2(Ω)2 = ||f ||H,

which allows us to estimate the control term via ||f ||L2 (or equivalently ||f ||H).
Let {ei}∞i=1 ⊂ Vσ be the orthonormal basis of H given by the eigenvectors of the the Stokes

operator 
−∆ei +∇pi = τiei in Ω,

div ei = 0 in Ω,

ei = 0 on ∂Ω,

with 0 < τ1 ≤ τ2 ≤ τ3 ≤ ... ≤ τn ≤ ... and limi→∞ τi = +∞. Let HN be the low frequency subspace
of H, and PN be its orthogonal projection,

HN := Vect{ei}Ni=1 ⊂ Vσ.
In terms of the above eigenvectors Leray projection can be extended to V ′,{

P : V ′ → V ′
u 7→ Pu := u−∇p,

where p ∈ L2
loc(Ω), and ∇p belongs to V0

σ as polar space of Vσ,

V0
σ :=

{
f ∈ V ′ : 〈f, v〉V ′×V = 0, ∀ v ∈ Vσ

}
.
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More precisely,

Pu :=

∞∑
i=1

〈
u, ei

〉
V ′×Vei ∈ V

′ for u ∈ V ′,

PNu :=

N∑
i=1

〈
u, ei

〉
V ′×Vei ∈ Vσ for u ∈ V ′,

P⊥Nu :=

∞∑
i=N+1

〈
u, ei

〉
V ′×Vei ∈ V

′ for u ∈ V ′,

Pu :=
∞∑
i=1

(
u, ei

)
L2(Ω)2

ei ∈ H for u ∈ L2(Ω)2,

which satisfies, 〈
u, v
〉
V ′×V =

〈
u, v
〉
V ′σ×Vσ

=
〈
Pu, v

〉
V ′σ×Vσ

, ∀ u ∈ V ′, ∀ v ∈ Vσ.

Furthermore, the related H-norm, Vσ-norm, and V ′σ-norm can be characterized by
∞∑
i=1

∣∣(u, ei)L2(Ω)2

∣∣2 = ||Pu||2H ≤ ||u||2L2 for u ∈ L2(Ω)2,

∞∑
i=1

∣∣(u, ei)L2(Ω)2

∣∣2τi = ||Pu||2Vσ ≤ ||u||
2
V for u ∈ V,

∞∑
i=1

∣∣〈u, ei〉V×V ′∣∣2τ−1
i = ||Pu||2V ′σ = ||u||2V ′σ ≤ ||u||

2
V ′ for u ∈ V ′.

(2) Spectral inequalities.
For any λ > 0, we denote by N(λ) the number of the eigenvalues that are smaller than or equal

to λ, i.e. τN(λ) ≤ λ < τN(λ)+1, and define the following symmetric matrix JN(λ),

(2.1) JN(λ) :=
((
ei, ej

)
L2(ω)2

)N(λ)

i,j=1
.

Proposition 2.1 (Spectral inequalities). There exists an effectively computable constant C1 ≥ 1
only depends on (Ω, ω) that is independent of λ > 0 such that, for any λ > 0 and for any EN(λ) =

(a1, a2, ..., aN(λ)) ∈ RN(λ) the following inequality holds,

ETN(λ)JN(λ)EN(λ) ≥ C−1
1 e−C1

√
λ||EN(λ)||22.

Proof. This is a Lebeau–Robbiano type spectral inequality [28]. By letting N be representing Nλ,
we get

ETNJNEN =
∑

1≤i,j≤N
ai
(
ei, ej

)
L2(ω)2

aj = ||
N∑
i=1

aiei||2L2(ω)2 ≥ C
−1
1 e−C1

√
λ||EN ||22,

where we have recalled the spectral inequality concerning the Stokes operator from the recent paper
[8, Theorem 3.1],

C1e
C1

√
λ

∫
ω

(∑
τi≤λ

aiei(x)

)2

dx ≥
∑
τi≤λ

a2
i .

Or equivalently, the preceding positive quadratic form can be read as

C1e
C1

√
λ

∫
ω

(
PN(λ)y

)2
dx ≥

∫
Ω

(
PN(λ)y

)2
dx, ∀ y ∈ H.
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(3) Nonlinear terms.
Next, we define the following bilinear map Q as well as trilinear functional B,{

Q : V × V → V ′
(u, v) 7→ div (u⊗ v)

,

B(u, v, w) :=
〈
Q(u, v), w

〉
V ′×V , ∀ u, v, w ∈ V.

Proposition 2.2 (Nonlinearity estimates). There exists a constant c0 such that for any u, v and
w in V, we have the following estimates,

B(u, u, w) =
〈
(u · ∇)u,w

〉
V ′×V if u ∈ Vσ,

B(u, v, w) + B(u,w, v) = 0 if u ∈ Vσ,

|B(u, v, w)| ≤ c0||u||
1
2

L2 ||v||
1
2

L2 ||∇u||
1
2

L2 ||∇v||
1
2

L2 ||∇w||L2 .

2.2. Open loop controlled (inhomogeneous) Navier–Stokes systems. The open loop con-
trolled equation is indeed an inhomogeneous equation with a force term located in the controlled
domain. A general inhomogeneous equation (without any restriction on force terms) is presented
by,

(2.2)


yt −∆y + (y · ∇) y +∇p = f(t, x), (t, x) ∈ (t1, t2)× Ω,

div y(t, x) = 0, (t, x) ∈ (t1, t2)× Ω,

y(t, x) = 0, (t, x) ∈ (t1, t2)× ∂Ω,

y(t1, x) = y0(x), x ∈ Ω,

where t2 can be taken as +∞. We are interested in the solutions under Leray’s weak solution
sense [29]: for any y0 ∈ H and any f ∈ L2

loc(t1, t2;V ′), the solution of equation (2.2) is some
y ∈ C([t1, t2];H) ∩ L2

loc(t1, t2;Vσ) such that, for any test function φ in C1([t1, t2];Vσ), the vector
field y satisfies the following condition:(

y(t), φ(t)
)
H =

(
y0, φ(0)

)
H +

∫ t

t1

〈
∆φ(s) + ∂tφ(s), y(s)

〉
V ′σ×Vσ

ds

+

∫ t

t1

(
y(s)⊗ y(s),∇φ(s)

)
L2(Ω)2

ds+

∫ t

t1

〈
f(s), φ(s)

〉
V ′σ×Vσ

ds,(2.3)

for every t ∈ [t1, t2].

Theorem 2.3 (Leray theorem on well-posedness and stability of the solutions). For any y0 ∈ H
and any f ∈ L2

loc(t1, t2;L2(Ω)2), the Cauchy problem (2.2) admits a unique solution. This unique
solution is also in H1

loc(t1, t2;V ′σ). Moreover, there exists some constant C0 independent of t1 and
t2 such that this unique solution satisfies,

1

2
||y(t, x)||2H +

∫ t

t1

||∇y(s, x)||2L2ds =
1

2
||y0||2H +

∫ t

t1

〈
f(s), y(s)

〉
V ′σ×Vσ

ds,(2.4)

||y(t, x)||2H +

∫ t

t1

||∇y(s, x)||2L2ds ≤ ||y0||2H + C0

∫ t

t1

||f(s)||2L2ds,(2.5)

for any t ∈ [t1, t2].
Furthermore, the Leray solutions are stable in the following sense. Let y (resp. z) be the Leray

solution associated with y0 (resp. z0) in H and f (resp. g) in the space L2
loc(t1,+∞;L2(Ω)2), then
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for w := y − z and for any t ∈ (t1,+∞) we have

||w(t)||2H +

∫ t

t1

||∇w(s, x)||2L2ds ≤
(
||w0||2H + C0

∫ t

t1

||(f − g)(s)||2L2ds

)
exp(CsE

2(t)),

E(t) := min

{
||y0||2H + C0

∫ t

t1

||f(s)||2L2ds, ||z0||2H + C0

∫ t

t1

||g(s)||2L2ds

}
.

Actually Theorem 2.3 holds for f in L2
loc(t1,+∞;V ′), for which the related inequalities are governed

by the L2(V ′σ)-norm of f and the constant C0 can be taken as 1.

2.3. Time-varying feedback laws, closed-loop systems, and finite time stabilization. In
this section we recall the precise definition of time-varying feedback laws as well as the related
closed-loop solutions.

Definition 2.4 (Closed-loop systems). Let s1 ∈ R and s2 ∈ R be given such that s1 < s2. Let the
time-varying feedback law on interval [s1, s2] be an application

(2.6)

{
U : [s1, s2]×H → H

(t; y) 7→ U(t; y).

Let t1 ∈ [s1, s2], t2 ∈ (t1, s2], and y0 ∈ H. A solution on [t1, t2] to the Cauchy problem associated to
the closed-loop system (1.1)–(1.2) with (2.6) for initial data y0 at time t1 is some y : [t1, t2] → H
such that

t ∈ (t1, t2) 7→ f(t, x) := 1ωU(t; y(t)) ∈ L2(t1, t2;L2(Ω)2),

y is a Leray solution of (2.2) with initial data y0 at time t1 and the above force term f(t, x).

Definition 2.5 (Proper feedback laws). Let s1 ∈ R and s2 ∈ R be given such that s1 < s2. A
proper feedback law on [s1, s2] is an application U of type (2.6) such that, for every t1 ∈ [s1, s2],
for every t2 ∈ (t1, s2], and for every y0 ∈ H, there exists a unique solution on [t1, t2] to the Cauchy
problem associated to the closed-loop system (1.1)–(1.2) with (2.6) for initial data y0 at time t1
according to Definition 2.4.

A proper feedback law is an application U of type (1.3) such that, for every s1 ∈ R and for every
s2 ∈ R satisfying s1 < s2, the feedback law restricted to [s1, s2] × H is a proper feedback law on
[s1, s2].

For a proper feedback law, one can define the flow Φ : ∆ × H → H associated to this feedback
law, with ∆ := {(t, s); t > s}: Φ(t, s; y0) is the value at time t of the solution y to the closed-loop
system (1.1)–(1.3) which is equal to y0 at time s.

Definition 2.6 (Finite time local stabilization of Navier-Stokes equations). Let T > 0. A T -
periodic proper feedback law U locally stabilizes the two dimensional Navier-Stokes equation in
finite time, if for some ε > 0 the flow Φ of the closed-loop system (1.1)–(1.3) verifies,

(i) (2T stabilization) Φ(2T + t, t; y0) = 0, ∀t ∈ R, ∀ ||y0||H ≤ ε,
(ii) (Uniform stability) For every δ > 0, there exists η > 0 such that(

||y0||H ≤ η
)
⇒
(
||Φ(t, t′; y0)||H ≤ δ, ∀ t′ ∈ R, ∀ t ∈ (t′,+∞)

)
.

2.4. Well-posedness of closed-loop systems. Finally we present well-posedness results con-
cerning closed-loop systems with stationary Lipschitz feedback laws. Concerning linear feedback
laws one has the following well-posedness result.
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Theorem 2.7. Let T > 0. Let given vector functions {ϕi}ni=1 ∈ H and bounded linear operators
{li}ni=1 : H → R. For any y0 ∈ H the Cauchy problem

yt −∆y + (y · ∇) y +∇p = 1ω

(∑n
i=1 li(y)ϕi

)
, (t, x) ∈ (0, T )× Ω,

div y = 0, (t, x) ∈ (0, T )× Ω,

y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

y(0, x) = y0(x), x ∈ Ω,

admits a unique solution.

As will consider finite time stabilization problems we also introduce “cutoff” type feedback laws.
For any r ∈ (0, 1/2] we find some smooth cutoff function χr ∈ C∞(R+; [0, 1]) satisfying

(2.7) χr(x) =

{
1 if x ∈ [0, r],

0 if x ∈ [2r,+∞),

and further define the following related Lipschitz operator Kr : H → H,

(2.8) Kr(y) := y · χr (||y||H) , ∀ y ∈ H,
satisfying, for some constant Lr depending on r,

||Kr(y)||H ≤ min{1, ||y||H},
||Kr(y)−Kr(z)||H ≤ Lr||y − z||H, ∀ y, z ∈ H.

Theorem 2.8. Let T > 0. Let r ∈ (0, 1/2]. Let given vector functions {ϕi}ni=1 ∈ H and bounded
linear operators {li}ni=1 : H → R. For any y0 ∈ H the Cauchy problem

yt −∆y + (y · ∇) y +∇p = 1ωKr
(∑n

i=1 li(y)ϕi

)
, (t, x) ∈ (0, T )× Ω,

div y = 0, (t, x) ∈ (0, T )× Ω,

y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

y(0, x) = y0(x), x ∈ Ω,

admits a unique solution.

Both the closed-loop systems with linear feedback laws and the closed-loop systems with Lipschitz
nonlinear feedback laws are well-posed correspond to Theorem 2.7 and Theorem 2.8, the detailed
proofs of which we omit. Indeed, local (in time) existence and uniqueness of solutions are based on
Leray’s theorem 2.3 concerning energy estimates and stability of the solutions, and Banach fixed
point theorem. Let the Lipschitz constant of the feedback law be L, let the feedback of y is always

bounded by C||y||H, and let ||y0||H = M . For some T̃ small enough to be fixed later on we consider
the Banach space,

X
T̃

:= C([0, T̃ ];H) ∩ L2(0, T̃ ;Vσ),

X
T̃

(2M) :=
{
y ∈ X

T̃
: ||y||2X

T̃
= ||y||2

C([0,T̃ ];H)
+ ||∇y||2

L2(0,T̃ ;L2)
≤ 4M2

}
,

as well as the following application,{
S : X

T̃
(2M) → X

T̃
y 7→ S(y),

where S(y) is the solution of Cauchy problem (2.2) with the initial state y0 and force (control) term
f = 1ωKr

(∑n
i=1 li(y)ϕi

)
. One can check that, thanks to Theorem 2.3, the preceding application is

a contraction map on X
T̃

(2M) for T̃ sufficiently small, e.g.

T̃ ≤ min
{

(4C0C
2)−1,

(
4C0L

2 exp(4CsM
4)
)−1
}
,
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thus admits a fixed point ỹ which is the unique solution of the closed-loop system. Moreover, since
ỹ = S(ỹ) is the solution of the Cauchy problem (2.2) with control f = 1ωKr

(∑n
i=1 li(ỹ)ϕi

)
, thanks

to Theorem 2.3, this solution also belongs to the space H1(0, T ;V ′σ). In the end, some a priori
energy estimates lead to global (in time) solutions.
We also emphasize that the Lipschitz condition is crucial in order to guarantee the uniqueness.
Otherwise one may need to use other compactness arguments to prove existence of solutions, see
for example [17].

2.5. On the choice of constants. In this section we conclude the values of the constants that
will be used later on, which also correspond to the constants that appeared in Theorem 1.1 and
Theorem 1.2.
• For any given λ > 0, we define

(2.9) γλ := C1e
C1

√
λλ and µλ :=

γ2
λ

λ2
= C2

1e
2C1

√
λ > 1.

• By recalling the definition of C1 in Proposition 2.1, we further select some C2 ∈ [3C1,+∞)
such that for all λ > 0,

(2.10) (1 + λC1)eC1

√
λ, 8(1 + λ)C2

1e
2C1

√
λ, 9c0C

3
1e

3C1

√
λ ≤ C2e

C2

√
λ,

and define

(2.11) rλ :=
(
C2e

C2

√
λ
)−1

.

• Then we choose some constant Q > 0 satisfying

(2.12) C1e
C1Qm, C2e

C2Qm ≤ e
Q2

64
m, ∀ m ≥ 1,

and select

(2.13) C3 :=
Q2

32
.

3. Quantitative rapid stabilization

Inspired by the recent work [37] on the stabilization of the heat equations, we directly define the
following stationary feedback law

(3.1) Fλy := −γλPN(λ)y, ∀ y ∈ H,
and consider the following closed-loop system,

(3.2)


yt = ∆y − (y · ∇)y −∇p− γλ1ωPNy in Ω,

div y = 0 in Ω,

y = 0 on ∂Ω,

where, and from now on, we simply denote N(λ) by N . Furthermore, the low frequency system
satisfies

(3.3)
d

dt

(
PNy

)
= PN

(
∆y
)
− PN

(
(y · ∇)y

)
− γλPN

(
1ωPNy

)
.

Because y lives in H, we can decompose

y(t, x) = Py(t, x) =

∞∑
i=1

yi(t)ei,

P (1ωei) =
∞∑
j=1

(
1ωei, ej

)
L2(Ω)2

ej =
∞∑
j=1

(
ei, ej

)
L2(ω)2

ej ,
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which further implies

PN
(

1ωPNy
)

= PN
(

1ω

N∑
i=1

yi(t)ei

)
=

N∑
i=1

N∑
j=1

yi(t)
(
ei, ej

)
L2(ω)2

ej .

Furthermore, for y in Vσ the nonlinear term (y · ∇)y (which is equivalent to div (y⊗ y)) belongs to
the space V ′, thus

PN
(
(y · ∇)y

)
=

N∑
i=1

〈
(y · ∇)y, ei

〉
V ′×Vei,

moreover

PN
(
∆y
)

= −
N∑
i=1

τiyiei.

By defining

(3.4) XN (t) :=


y1(t)
y2(t)
...

yN (t)

 , YN (t) :=


−
〈
(y · ∇)y, e1

〉
V ′×V(t)

−
〈
(y · ∇)y, e2

〉
V ′×V(t)

...
−
〈
(y · ∇)y, eN

〉
V ′×V(t)

 , AN :=


−τ1

−τ2

...
−τN

 ,

we know that the finite dimensional system XN (t) satisfies the following ordinary differential equa-
tion,

(3.5) ẊN (t) = ANXN (t)− γλJNXN (t) + YN (t).

Let us consider the following Lyapunov functional on H: for every y ∈ H,

(3.6) V (y) := µλ (PNy,PNy)L2(Ω)2 +
(
P⊥Ny,P⊥Ny

)
L2(Ω)2

= µλ||XN ||22 +
(
P⊥Ny,P⊥Ny

)
L2(Ω)2

,

satisfying
||y||2L2(Ω)2 ≤ V (y) ≤ µλ||y||2L2(Ω)2 , ∀ y ∈ H,

where

||XN ||22 :=
N∑
i=1

y2
i =

(
PNy,PNy

)
L2(Ω)2

.

Let T > 0. Concerning the variation of the value of the above Lyapunov function, at least
when the solution is regular enough, for example y ∈ C1([0, T ];V ′σ) ∩ C0([0, T ];Vσ) and (thus)
PNy ∈ C1([0, T ];HN ), one has

d

dt
V (y(t)) = µλ

d

dt
||XN ||22 +

d

dt

(
P⊥Ny,P⊥Ny

)
L2(Ω)2

,

= 2µλX
T
NẊN + 2

〈
P⊥Ny,

d

dt

(
P⊥Ny

)〉
Vσ×V ′σ

,

= 2µλX
T
N

(
ANXN − γλJNXN + YN

)
+ 2

〈
P⊥Ny,

d

dt
y

〉
Vσ×V ′σ

,

where the value of −XT
NYN is given by〈

PN
(

(y · ∇)y
)
,PNy

〉
V ′σ×Vσ

=
〈
P
(

(y · ∇)y
)
,PNy

〉
V ′σ×Vσ

=
〈
(y · ∇)y,PNy

〉
V ′×V = B

(
y, y,PNy

)
.

Eventually, according to Theorem 2.3 and Theorem 2.7, the solution y lives indeed in the space
H1(0, T ;V ′σ) ∩ C0([0, T ];H) ∩ L2(0, T ;Vσ). This further implies that ∆y and (y · ∇)y belong to
L2(0, T ;V ′), the finite dimensional projection YN is in L2(0, T ;RN ), d

dt(XN ) is in L2(0, T ;RN ), XN

is in C0([0, T ];RN ), d
dt(PNy) is in L2(0, T ;HN ), d

dt(P
⊥
Ny) and d

dty live in L2(0, T ;V ′σ). Consequently,

the preceding equations hold in the distribution sense in L1(0, T ).
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Moreover, on the one hand, thanks to Proposition 2.1, Proposition 2.2, as well as the choice of
γλ and µλ, we have

2µλX
T
NẊN ,

= 2µλX
T
N (AN − γλJN )XN + 2µλX

T
NYN ,

≤ −2µλγλ

(
C1e

C1

√
λ
)−1
||XN ||22 − 2µλ||∇PNy||2L2(Ω) + 2µλ|B

(
y, y,PNy

)
|,

≤ −2µλλ||XN ||22 − 2µλ||∇PNy||2L2(Ω) + 2µλc0||y||L2(Ω)||∇y||L2(Ω)||∇PNy||L2(Ω),

≤ −2µλλ||XN ||22 − 2µλ||∇PNy||2L2(Ω) + 2µλc0||y||L2(Ω)||∇y||2L2(Ω).

On the other hand,

2

〈
P⊥Ny,

d

dt
y

〉
Vσ×V ′σ

,

= 2
〈
P⊥Ny,∆y − (y · ∇)y − γλ1ωPNy −∇p

〉
Vσ×V ′σ

,

= −2
(
P⊥Ny, y

)
Vσ
− 2γλ

(
P⊥Ny, 1ωPNy

)
L2(Ω)2

− 2
〈

(y · ∇)y,P⊥Ny
〉
V ′σ×Vσ

,

= −2
∞∑

i=N+1

τiy
2
i − 2γλ

(
P⊥Ny, 1ωPNy

)
L2(Ω)2

− 2B
(
y, y,P⊥Ny

)
,

≤ −2

∞∑
i=N+1

τiy
2
i + 2γλ||P⊥Ny||L2(Ω)||1ωPNy||L2(Ω) + 2B

(
y, y,PNy

)
,

≤ −3

2
λ||P⊥Ny||2L2(Ω) −

1

2
||∇P⊥Ny||2L2(Ω) + λ||P⊥Ny||2L2(Ω) +

γ2
λ

λ
||XN ||22 + 2c0||y||L2(Ω)||∇y||2L2(Ω),

≤ −1

2
λ||P⊥Ny||2L2(Ω) −

1

2
||∇P⊥Ny||2L2(Ω) + µλλ||XN ||22 + 2c0||y||L2(Ω)||∇y||2L2(Ω).

Combining the preceding three inequalities, we further derive that

d

dt

(
V (y(t))

)
≤ −2µλλ||XN ||22 − 2µλ||∇PNy||2L2(Ω) + 2µλc0||y||L2(Ω)||∇y||2L2(Ω)

− 1

2
λ||P⊥Ny||2L2(Ω) −

1

2
||∇P⊥Ny||2L2(Ω) + µλλ||XN ||22 + 2c0||y||L2(Ω)||∇y||2L2(Ω),

≤ −µλλ||XN ||22 −
1

2
λ||P⊥Ny||2L2(Ω) −

1

2
||∇y||2L2(Ω) + 4µλc0||y||L2(Ω)||∇y||2L2(Ω),

≤
(
−λ

2

)
V (y(t))− 1

2
||∇y||2L2(Ω) + 4µλc0||y||L2(Ω)||∇y||2L2(Ω),

≤
(
−λ

2

)
V (y(t))− ||∇y||2L2(Ω)

(
1

2
− 4µλc0V

1
2 (y(t))

)
.(3.7)

Keep in mind that the continuous function V (y(t)) ∈ W 1,1(0, T ) and that inequality (3.7)
holds almost everywhere with both hand sides being L1(0, T ). Inspired by the above formula,
at first by ignoring the first term in the right hand side of (3.7), we know that the value of
min{V (y(t)), (8µλc0)−2} decreases with respect to time. Therefore, if V (y(0)) < (8µλc0)−2 then
the value of V (y(t)) is always strictly smaller than (8µλc0)−2. As a consequence in the preceding
inequality one can next ignore the second term involving ∇y, which results in the fact that the
Lyapunov functional V (y(t)) decay exponentially with decay rate λ/2.
More precisely, by the choice of rλ from (2.10)–(2.11), for any initial data y0 ∈ H satisfying
||y0||L2(Ω) ≤ rλ we have

V (y0) ≤ µλ||y0||2L2(Ω) ≤ µλr
2
λ ≤ (9µλc0)−2 < (8µλc0)−2,
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which, combined with the fact due to inequality (3.7) that for almost every t in (0, T ),

d

dt

(
min

{
V (y(t)), (8µλc0)−2

})
≤ 0,

implies that the continuous function min
{
V (y(t)), (8µλc0)−2

}
is always smaller than (9µλc0)−2.

Hence V (y(t)) is always smaller than (9µλc0)−2, which, combined with inequality (3.7), yields that
for almost every t in (0, T ),

d

dt

(
V (y(t))

)
≤
(
−λ

2

)
V (y(t)).

Therefore, the continuous function V (y(t)) verifies

V (y(t)) ≤ e−
λ
2
tV (y(0)), ∀ t ∈ [0, T ].

Consequently

||y(t)||2L2(Ω) ≤ V (y(t)) ≤ e−
λ
2
tV (y(0)) ≤ e−

λ
2
tµλ||y(0)||2L2(Ω) ≤ C

2
1e

2C1

√
λe−

λ
2
t||y(0)||2L2(Ω).

Therefore, for any initial data y0 ∈ H satisfying ||y0||L2(Ω) ≤ rλ the unique solution decays
exponentially,

||y(t)||L2(Ω) ≤ C1e
C1

√
λe−

λ
4
t||y(0)||L2(Ω),∀ t ∈ [0,+∞),

||Fλy(t)||L2(Ω) ≤ γλ||y(t)||L2(Ω) ≤ λC2
1e

2C1

√
λe−

λ
4
t||y(0)||L2(Ω),∀ t ∈ [0,+∞),

which can be quantified in the following theorem.

Theorem 3.1 (Local stabilization with linear feedback laws). For any λ > 0, for any ||y0||H ≤ rλ,
and for any s ∈ R the Cauchy problem

yt −∆y + (y · ∇)y +∇p = −γλ1ωFλy, (t, x) ∈ [s,+∞)× Ω,

div y = 0, (t, x) ∈ [s,+∞)× Ω,

y(t, x) = 0, (t, x) ∈ [s,+∞)× ∂Ω,

y(s, x) = y0(x), x ∈ Ω,

(3.8)

has a unique solution in C0([s,+∞);H) ∩ L2
loc(s,+∞;Vσ). Moreover, this unique solution verifies

||y(t)||H ≤ C1e
C1

√
λe−

λ
4

(t−s)||y0||H, ∀ t ∈ [s,+∞),(3.9)

||Fλy(t)||H ≤ C2e
C2

√
λe−

λ
4

(t−s)||y0||H, ∀ t ∈ [s,+∞).(3.10)

Nonlinear feedback laws
Actually similar result also holds for nonlinear feedback laws Krλ (Fλy) provided by equations

(2.7)–(2.8) and (3.1). From the preceding theorem we observe that for initial state ||y0||H ≤ r2
λ,

the unique solution y(t) of the Cauchy problem (3.8) satisfies

(3.11) ||Fλy(t)||L2(Ω) ≤ C2e
C2

√
λe−

λ
4

(t−s)||y0||L2(Ω) ≤ C2e
C2

√
λr2
λ = rλ, ∀ t ∈ [s,+∞).

Now, we replace the linear feedback law Fλ by Krλ (Fλy) (see equation (2.8)), which satisfies

(3.12) ||Krλ (Fλy) ||L2(Ω) ≤ min{1,
√

2||y||L2(Ω)}.

Indeed, if ||Fλy||L2(Ω) ≤ 2rλ, then since the operator norm ||Fλ|| ≤ γλ ≤ r−1
λ , we have,

||Krλ (Fλy) ||L2(Ω) ≤ ||Fλy||L2(Ω) ≤
√

2rλ||Fλy||L2(Ω) ≤
√

2rλ||Fλ||||y||L2(Ω) ≤
√

2||y||L2(Ω).

If ||Fλy||L2(Ω) > 2rλ, then by the definition of Krλ we know that Krλ (Fλy) = 0, which completes
the proof of the condition (3.12).
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Finally, we show that for ||y0||H ≤ r2
λ the solution of the closed-loop system with feedback law

Krλ (Fλy) also decays exponentially. Indeed, it suffices to prove that the solution y verifies

Krλ (Fλy(t)) = Fλy(t), ∀ t ∈ [s,+∞),

which, by recalling the definition of Krλ in (2.7)–(2.8), is true according to (3.11),

||Fλy(t)||L2(Ω) ≤ C2e
C2

√
λ||y0||L2(Ω) ≤ C2e

C2

√
λr2
λ = rλ, ∀ t ∈ [s,+∞).

Theorem 3.2 (Local stabilization with nonlinear Lipschitz feedback laws). For any λ > 0, for any
||y0||H ≤ r2

λ, and for any s ∈ R the Cauchy problem
yt −∆y + (y · ∇)y +∇p = −γλ1ωKrλ (Fλy) , (t, x) ∈ [s,+∞)× Ω,

div y = 0, (t, x) ∈ [s,+∞)× Ω,

y(t, x) = 0, (t, x) ∈ [s,+∞)× ∂Ω,

y(s, x) = y0(x), x ∈ Ω,

(3.13)

has a unique solution in C0([s,+∞);H) ∩ L2
loc(s,+∞;Vσ). Moreover, this unique solution verifies

||y(t)||H ≤ C1e
C1

√
λe−

λ
4

(t−s)||y0||H, ∀ t ∈ [s,+∞),

||Fλy(t)||H ≤ C2e
C2

√
λe−

λ
4

(t−s)||y0||H, ∀ t ∈ [s,+∞).

4. Quantitative null controllability with cost estimates

In this section we construct feedback laws (controls) that yield the solutions decay to zero in
finite time.

Theorem 4.1. There exists C3 > 0 such that, for any T ∈ (0, 1), for any y0 ∈ H satisfying

||y0||H ≤ e−
C3
T we construct an explicit control f(t, x) for the controlled system (1.1) such that the

unique solution with initial data y(0, x) = y0(x) verifies y(T, x) = 0. Moreover,

||f(t, x)||L∞(0,T ;H) ≤ e
C3
T ||y0||H.

Proof. For the ease of presentation, we only consider the case when 1/T = 2n0 with n0 ∈ N∗. The
other cases can be treated via time transition, i.e. if T ∈ (2−m−1, 2−m) then we simply let the
feedback law U(t; y) := 0 on the time interval [2−m−1, T ]. More precisely, we consider the following
partition of [0, T ] and piecewise feedback laws,

Tn := 2−n0

(
1− 1

2n

)
, In := [Tn, Tn+1), λn := Q222(n0+n) for any n ≥ 0,(4.1)

for any n ≥ 0 we consider the control (feedback law) as Fλn on interval In.(4.2)

Control design.

Step 1. Let the constant RT > 0 be sufficiently small to be fixed later on. First, for ||y0||H ≤ RT , on
the interval I0 we consider the closed-loop system (1.1)–(1.2) with feedback law U := Fλ0
and initial data y(0, x) = y0(x). Assuming that RT ≤ rλ0 , then according to Theorem 3.1
the closed-loop system has a unique solution ỹ|Ī0 that decays exponentially with decay rate
λ0/4.

Step 2. Next, we consider the closed-loop system with feedback law Fλ1 and y(T1, x) := ỹ(T1, x)
on I1. Again we assume ||y(T1)|| ≤ rλ1 to find a unique solution ỹ|Ī1 that is exponentially
stable.

Step 3. By continuing this procedure on In and by always assuming ||y(Tn)|| ≤ rλn , we find a stable
solution ỹ|In .

Step 4. We denote this constructed solution ỹ|[0,T ) ∈ C0([0, T );H) by y|[0,T ).
Step 5. For some sufficiently small RT we prove that ||y(Tn)|| is indeed smaller than rλn for every

n ∈ N, and show that the solution tends to zero as y(T ) := limt→T− y(t) = 0.
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Step 6. Eventually, thanks to Step 5, y|[0,T ] is the unique solution of the Cauchy problem (2.2) with
the control term f given by f |In := Fλny|In ,∀n ≥ 0, which satisfies y(T ) = 0.

Step 7. We calculate precise cost estimates.

First we assume that for every In the value ||y(Tn)||L2 is smaller than rλn , which, together with
Theorem 3.1, implies that the solution y|In verifies

||y(t)||L2(Ω) ≤ C1e
C1Q2n0+ne−

Q2

4
22(n0+n)(t−Tn)||y(Tn)||L2(Ω), ∀t ∈ In,(4.3)

||Fλny(t)||L2(Ω) ≤ C2e
C2Q2n0+ne−

Q2

4
22(n0+n)(t−Tn)||y(Tn)||L2(Ω), ∀t ∈ In.(4.4)

Consequently, for every n ≥ 1 the value of y(Tn) is dominated by

||y(Tn)||L2(Ω) ≤

(
n−1∏
k=0

C1e
C1
√
λke−

λk
4

2−(n0+k+1)

)
||y0||L2(Ω),

=

(
n−1∏
k=0

C1e
C1Q2n0+ke−

Q2

8
2n0+k

)
||y0||L2(Ω),

≤

(
n−1∏
k=0

e
Q2

64
2n0+ke−

Q2

8
2n0+k

)
||y0||L2(Ω),

=

(
n−1∏
k=0

e−
7Q2

64
2n0+k

)
||y0||L2(Ω),

= exp

(
−7Q2

64
2n0(2n − 1)

)
||y0||L2(Ω).(4.5)

Observe that the above inequality also holds for n = 0. Furthermore, for any n ≥ 1 and for any
t ∈ In the control term is bounded by

(4.6) ||Fλny(t)||L2(Ω) ≤ C2e
C2Q2n0+n ||y(Tn)||L2(Ω) ≤ exp

(
−5Q2

64
2n0+n−1

)
||y0||L2(Ω),

Clearly, the right hand side of the inequalities (4.5) and (4.6) tend to 0 as n tends to∞. Therefore,
it suffices to prove the assumption ||y(Tn)||L2 ≤ rλn to close the “bootstrap” and to conclude the
null controllability. By recalling the definitions of λn, rλn , and Q we know that

e−
Q2

64
2n0+n ≤ (C2e

C2Q2n0+n)−1 = (C2e
C2
√
λn)−1 = rλn , ∀ n ∈ N.

Hence, it suffices to find some RT > 0 such that

RT exp

(
−7Q2

64
2n0(2n − 1)

)
≤ e−

Q2

64
2n0+n ≤ rλn , ∀ n ∈ N.(4.7)

Thus one can take

(4.8) RT := e−
Q2

32
2n0 = e−

Q2

32T = e−
C3
T where C3 =

Q2

32
.

It only remains to estimate the controlling cost. Thanks to (4.6) we know that

||f(t)||L2(Ω) ≤ ||y0||L2(Ω), ∀ t ∈ [T1, T ].

As for t ∈ [0, T1) and the control f |I0(t), we have

||Fλ0y(t)||L2(Ω) ≤ C2e
C2Q2n0 ||y0||L2(Ω) ≤ e

Q2

64
2n0 ||y0||L2(Ω) ≤ e

C3
T ||y0||L2(Ω).
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In conclusion, for any ||y0||H ≤ e−
C3
T , the constructed solution y(t, x) and control f(t, x) satisfy

||y(t, ·)||L2(Ω) and ||f(t, ·)||L2(Ω) −→ 0+, as t→ T−,

||y(t, ·)||L2(Ω) and ||f(t, ·)||L2(Ω) ≤ e
C3
T ||y0||L2(Ω), ∀ t ∈ [0, T ].

�

Remark 4.2. If we replace the linear feedback laws {Fλny}∞n=1 by {Krλn
(
Fλny

)
}∞n=1 on interval

In, then similar result holds. Indeed, according to Theorem 3.2 it suffices to find some initial state
such that for every n ∈ N the value of ||y(Tn)|| is smaller than r2

λn
. More precisely, instead of

taking some RT > 0 that verifies (4.7), one only needs to find R̃T := e−
Q2

16T = e−
2C3
T satisfying

R̃T exp

(
−7Q2

64
2n0(2n − 1)

)
≤ e−

Q2

32
2n0+n ≤ r2

λn , ∀ n ∈ N,

to guarantee that for every n ∈ N we have ||y(Tn)||L2 ≤ r2
λn

.

5. Small-time local stabilization

As in the preceding section, we only focus on the case when T = 1/2n0 with n0 be integer. We
also adapt the same construction of Tn and λn given by (4.1) in Section 4.

Theorem 5.1 (Small-time local stabilization of Navier-Stokes equations). Let T = 1/2n0 with
n0 ∈ N∗. The following T -periodic feedback law U(t; y) : R×H → H satisfying (3.12),

U
∣∣
[0,T )×H(t; y) := Krλn (Fλny) , ∀ y ∈ H,∀ t ∈ In, ∀ n ∈ N,(5.1)

is a proper feedback law for system (1.1)–(1.2). Moreover, for some effectively computable constant
ΛT this feedback law stabilizes system (1.1)–(1.2) in finite time:

(i) (2T stabilization) Φ(2T + t, t; y0) = 0, ∀ t ∈ R, ∀ ||y0||H ≤ ΛT .
(ii) (Uniform stability) For every δ > 0, there exists an effectively computable η > 0 such that(

||(y0||H ≤ η
)
⇒
(
||Φ(t, t′; y0)||H ≤ δ, ∀ t′ ∈ R, ∀ t ∈ (t′,+∞)

)
.

Proof of Theorem 5.1. We mimic the prove of the finite time stabilization of the heat equations
[16, 37], as relatively standard, see also [19, 35, 36] for similar results. The proof is followed by five
steps:

Step 1. The feedback law U is a proper feedback law, i.e. for any y0 ∈ H and for any initial time
s ∈ R there exists a unique global (in time) solution.

Step 2. Null controllability: Φ(T, 0; y0) = 0 for any y0 satisfying ||y0||H ≤ R̃T = e−
2C3
T . Moreover,

(5.2) ||Φ(t, 0; y0)||H ≤ e
C3
T ||y0||H, ∀ ||y0||H ≤ e−

2C3
T , ∀ t ∈ [0, T ].

Step 3. For any η̃ > 0, there exists some ε(η̃) ∈ (0, η̃) such that

(5.3) ||Φ(t, s; y0)||H ≤ η̃, ∀ ||y0||H ≤ ε(η̃), ∀ s ∈ [0, T ), ∀ t ∈ [s, T ].

Step 4. 2T stabilization: Φ(2T, s; y0) = 0, for any s ∈ [0, T ), for any y0 satisfying ||y0||H ≤
ε
(
e−

2C3
T

)
=: ΛT .

Step 5. Uniform stability as direct consequence of Step 2–4.

Step 1. It suffices to prove that for any s ∈ [0, T ) the closed-loop system has a unique solution on
[s, T ]. Indeed, thanks to Theorem 2.8 there exists a unique solution on In for any In that intersects
with [s, T ). Hence we find a unique solution y in C0([s, T );H) ∩ L2

loc(s, T ;Vσ). Observe that

the control (provided by the related feedback law) is smaller than 1, i.e.||f(t, x)||L2(s,T ;H) ≤
√
T .



SMALL-TIME STABILIZATION OF NAVIER–STOKES EQUATIONS 15

Theorem 2.3 implies that the solution y is indeed in C0([s, T ];H)∩L2(s, T ;Vσ). Finally, thanks to
Theorem 2.3 again, the unique solution y never blow up,

||y(t, x)||2H + ||∇y(t, x)||2L2(s,t;L2) ≤ ||y0||2H + C0(t− s), ∀ t ∈ (s,+∞).

Step 2. This step is a consequence of Theorem 4.1 and Remark 4.2.

Step 3. Thanks to the fact that ||f(t, x)||H ≤ 1 and Theorem 2.3, there exists T̃ ∈ (0, T ) such
that

||Φ(t, s; y0)||H ≤ η̃, ∀ ||y0||H ≤ η̃/2, ∀ s ∈ [T̃ , T ), ∀ t ∈ [s, T ].

Observe that the feedback law U on [0, T̃ ) is composed by finitely many stationary feedback laws
on intervals {In}, while, thanks to Theorem 3.2, on each of these intervals In the system is locally
exponentially stable. Consequently, there exists some ε = ε(η̃) ∈ (0, η̃/2) such that

||Φ(t, s; y0)||H ≤ η̃/2, ∀ ||y0||H ≤ ε, ∀ s ∈ [0, T̃ ), ∀ t ∈ [s, T̃ ].

Step 4 is a trivial combination of Step 2 and Step 3 by taking ε
(
e−

2C3
T

)
.

Step 5 follows directly from Step 2–4. For instance, for δ > 0, we can take

δ1 := min{ε(δ), e−
2C3
T } < δ and η := ε(δ1) < δ1 < δ.

Indeed, for s ∈ [0, T ), and for ||y0||H ≤ η, thanks to the choice of η as ε(δ1), Step 3 yields,

||y(t)||H = ||Φ(t, s; y0)||H ≤ δ1, ∀ t ∈ [s, T ].

Next, thanks to the choice of δ1, Step 3 and Step 2 lead to

||Φ(t, s; y0)||H = ||Φ(t, T ; y(T ))||H ≤ δ, ∀ t ∈ [T, 2T ],

Φ(2T, s; y0) = Φ(2T, T ; y(T )) = 0.

�
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