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Abstract  

Plants and insects have interacted for millions of years in terrestrial ecosystems and 

are essential to the function of the food web. These interactions can be classified 

based on different functional feeding groups and damage types, and provide 

information about the relationship between plants and insects. We focused this study 

on the Pleistocene deposit of Bernasso (Hérault, southern France). The Bernasso 

fossil leaf assemblage has been dated from 2.16-1.96 Ma and corresponds to a 

deciduous forest comprising both continental and Mediterranean species such as 

Caprinus orientalis Mill., Parrotia persica C. A. Mey. and Acer monspessulanum L., 

Sorbus domestica L., respectively. Twenty different plant species are represented by 

590 fossil leaves among which more than 36% present insect damage. Thirty-nine 

different damage types were found with galling being the most prominent. These 

types of interactions enable discussion about the ecological settings that prevailed at 

this epoch (forest age, precipitation, temperature). For instance, the mean annual 

precipitation was certainly higher than today in the region. Moreover, the results of 

this study offer the possibility to get new insights into the ecological paleoforest 

community.  

Keywords: paleoecology, paleoforest structure, Pleistocene, fossil leaves, insect 

damage
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1. Introduction 

There is no doubt that human activities in recent decades have impacted the 

climate (Ellis, 2011). Nowadays, some of these anthropogenic impacts have reached 

a tipping point, generating a “global change” (Turner et al., 1990; Heller and 

Zavaleta, 2009). The study of past climate thus can be very helpful to evaluate the 

impacts of the global change on multitrophic interactions and biodiversity (Dowsett et 

al., 2009; Salzmann et al., 2011). Regionally, for the northern Mediterranean realm 

and western Europe the highly diverse forest vegetation implies MATs 3-6°C higher 

than today with a respectively increased in mean annual precipitation (MAP) by 400 

mm and 230 mm respectively (Utescher et al., 2000; Contoux et al., 2012). The 

current climate change will probably upset ecological processes, especially between 

vegetation and insects.  

Interactions between plants and insects have played an important role in the 

structure of the food web and the study of their evolution could help to reconstruct 

climate dynamics (May, 1988; Wilf, 2008). Plant-insect interactions have also been 

shown to virulently impact entire modern ecosystems (Cornelissen, 2011). Distinctive 

signs found on fossil leaves are thus important to understand the evolution of 

interactions (Labandeira and Phillips, 1996; Wilf et al., 2001, 2006; Currano et al., 

2008; Wappler et al., 2009, 2012; Labandeira, 2013). Therefore, the fossil record 

offers a unique possibility for conducting meta-analysis and for analyzing the 

dependence between climate parameters and plant-insect interactions through 

geologic time (Wilf et al., 2001; Currano et al., 2010; Wappler, 2010; Knor et al., 

2012; Wappler et al., 2012; Labandeira and Currano, 2013). 

 Bernasso, a locality near Lunas (Hérault, southern France), provides a new 

snapshot of early Pleistocene multitrophic interactions between insects and plants. 

Previous studies on pollen records (Suc 1978) and fossil leaf assemblages (Leroy 

and Roiron 1996) suggest that Bernasso’s climate was warmer and wetter than 

today. However, a recent study based on CLAMP analysis, still not published yet, 

could suggest a climate certainly wetter but cooler than today (unpublished data). 

Moreover, Bernasso provides a rare glimpse into multitrophic interactions between 

insects and plants in a time period slightly wetter and under different temperatures, 

as well as a similar geographic configuration to today (Rohling et al., 2009; Raymo et 

al., 2011). Leroy and Roiron (1996) showed that Bernasso fossil leaves fossilized in a 

lacustrine deposit, represented a deciduous forest mainly dominated by Parrotia 
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persica C. A. Mey., Carpinus orientalis Mill and other important species as e.g. 

Zelkova ungerii Spach., Acer Monspessulanum L., Fraxinus ornus L., Sorbus 

domestica L. and Carya minor Nutt. Today, there is no exact modern analog for the 

Bernasso paleoforest anywhere in the world. Bernasso was a combination between 

typical Mediterranean plants species (A. monspessulanum, F. ornus…) and some 

Caucasian tree species such as P. persica (its last natural population is located 

around the Caspian Sea in Iran; Akhani et al., 2010).  

 The Bernasso deposits were formed 2.16-1.96 Ma ago, just after the beginning 

of glacial/interglacial cycles (-2.6Ma). Pollen assemblages show that during the time 

lapse of deposition, two glaciations occurred separated by an interglacial event (Suc, 

1978; Leroy and Roiron, 1996). Presently, studies show the possible impact of the 

glacial/interglacial cycles on precise species (DeChaine and Martin, 2006; DeLucia et 

al., 2012). For example, the genetic diversification of Myrtus communis in the 

Mediterranean region was possible because of a glaciation event around 2 Ma ago 

(Médail et al., 2012). In parallel, other studies suggest that the variability in 

abundance and diversity of plant-insect interactions could be due to temperature 

fluctuations (Currano et al., 2010), plant defense strategies (Coley and Barone, 

1996), and age of the forest (Fernandes et al., 2010). Furthermore, Nicole (2002) has 

shown that there is also a strong correlation between some plant species and 

interactions amongst them.  

In the present study, interaction structure of the paleoforest of Bernasso was 

investigated. This study corresponds to one of the first that focus on the herbivory 

structure of a forest ecosystem at the beginning of glaciation cycles. We tried to 

highlight, with the example of Bernasso, if interaction structures were already in 

agreement with climatic conditions or if forest ecosystems were still slowly 

acclimatized to the recurrent climatic fluctuation of that period. 

 

2. Material & Methods  

2.1 Study area 

The lacustrine Bernasso deposits (43°43'34"N, 3°15' 25"E) (Figure 1) are 

located 5km to the east of Lunas (Hérault, southern France) at an altitude of 512m 

asl (Suc, 1978; Leroy et Roiron, 1996). Bernasso is characteristic of the supra-

mediterranean bioclimatic zone. The MAT is around 12.05°C and the MAP is 

1070mm (Kessler and Chambraud, 1990). This region is now mostly dominated by 



ACCEPTED MANUSCRIPT

5 

deciduous taxa with maples (Acer monspessulanum, A. campestre L.), oaks 

(Quercus pubescens Willd) and ashes (Fraxinus oxyphylla L., F. excelsior L.). 

Bernasso lacustrine deposits, composed of diatomites, were formed 2 Ma ago. 

They are rich in plant remains (pollen and fossil leaves) (Suc, 1978; Leroy and 

Roiron, 1996). Basaltic flows (due to the activity of the Escandorgue volcano) shut a 

canyon valley and allowed the development of a lake in which diatom floras 

developed. Lacustrine deposits correspond to the early Pleistocene (Hilgen, 1991). 

Dating was done by the K/Ar analysis (Ildefonse et al., 1972) on the diatomite and 

completed with cyclostratigraphy (Suc and Popescu, 2005) and paleomagnetism 

work (Ambert et al., 1990). For more details, see Leroy and Roiron (1996).  

The Bernasso palaeoflora was mainly dominated by Carpinus orientalis, 

Parrotia persica, Zelkova ungeri and Carya minor and indicate that modern 

Caucasian flora could serve as models for such vegetation (Leroy and Roiron, 1996). 

Mediterranean species such as Acer monspessulanum, Sorbus domestica, Tilia sp. 

and Vitis sp. are examples of the macrofossils (Leroy and Roiron, 1996), Buxus L., 

Olea L., Ericaceae and Poaceae (Suc, 1978) are also preserved in the microfossils. 

Pollen analyses have shown a succession of three different climatic periods (Suc, 

1978). The base and top of the sequence correspond to cold periods (glaciations) 

and the regional vegetation was steppic. The intermediate period was warmer 

(interglacial) and allows the development of woody vegetation. The leaf fossils came 

from this last climatic period. 

Beside plant micro- and macrofossils, Bernasso diatomites provided few 

others fossils. For example, only two fossil insects have been found at Bernasso (a 

coleoptera and an orthoptera) (pers. obs. B.Adroit, 2013). 

2.2 Fossil leaves collection 

The collection includes more than 800 fossil leaves, collected between 1995 

and 2012. Only 590 were used for this study exclusively because the complete or 

almost completely preserved specimens were chosen. All the specimens are 

conserved in the leaf paleontological collection of Institut des Sciences de l’Evolution 

de Montpellier, France (ISEM). The collection is split into two sets according to the 

kind of preservation of the fossil. The first group contains 321 specimens (54.4% of 

all) preserved on the extracted rocks (hereafter Ro). The second group contains 269 

specimens (45.6% of all) totally removed from the diatomite with the peeling method 
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(hereafter BDC). With this method, the dried fossil leaf is fixated on a plastic film and 

placed between two glass slides with Canada balsam (fir resin). Only terrestrial 

angiosperms were taken into account in this study. The aquatic species 

Ceratophyllum L., ferns and conifers were excluded. For the complete flora list and 

illustrations, see Leroy and Roiron (1996).  

 

2.3 Fossil analysis and classification of damages 

The fossils were observed under a Leica MZ7.5 equipped with a Leica 

DFC300Fx camera. The BDC fossils were investigated under an Olympus MX51 

microscope. All of the plant-insect interactions were identified using the Guide to 

Insect Damage Types (DT) by Labandeira et al. (2007). Functional feeding group 

(FFG) and host specificity (HS) defined by Labandeira et al. (2007) were determined 

for each damage type indicated, host specificity is an index assigned for every DT 

between 1 and 3 (the higher the HS is, the more specialized the damage is). Two 

kinds of interactions are recognized: specialized damages that include galling, 

mining, piercing & sucking, and oviposition (damages with mainly HS=2/3) and 

external damages that comprise holes feeding, margin feeding, surface feeding, and 

skeletonization (damages with mainly HS=1). All data were compiled in a 

spreadsheet including leaf species, leaf quantity, DT, FFG (Table S1). 

 

2.4 Statistic analysis 

The R software (R Core Team, 2012) and its vegan package (Oksanen et al., 

2013) were used to perform rarefaction test in order to analyze diversity of FFG 

according to leaf quantity. A rarefaction test was also performed on the proportion of 

specialized damage types in regard to all damages. As the data does not follow a 

normal distribution, a Wilcoxon test was used when necessary to check if there was a 

significant difference between two species. At last, a Chi-squared test (α < 0.1%) was 

used to compare the proportion of DTs to the kind of fossils (Ro or BDC). The goal 

was to determine if the type of fossil preservation influenced conservation and/or 

detection of DTs. The statistical analyses were performed on leaf species 

represented by at least 20 specimens. Seven species were analyzed by statistics. 

 

3. Results  

3.1 Damage diversity and distribution on the leaf species 
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37% of the Bernasso leaves (220/590) displayed interactions with insects. 39 

different DTs were identified. These DTs are organized into external foliage feeding 

(with seven types of holes feeding, eight types of margin feeding, eight types of 

skeletonization, three types of surface feeding and one undetermined DT) and 

specialized foliage feeding (with four types of mining, seven types of galling and a 

single type of oviposition) (Figure 2). Oviposition is represented by a unique 

occurrence detected on a leaf of P. persica. Figure 3 illustrates the distribution of the 

seven FFGs within the different leaf species. P. persica and C. orientalis (the most 

abundant plant species) have the most important quantities of damages. P. persica 

has a noticeable dominance of galling while C. orientalis has a dominance of holes 

feeding and margin feeding. Galling represents half of the specialized damages (p < 

2.2e-16) (Figure 4) and its diversity is seven DTs. Moreover, specialized damages 

(21 DTs), in which galling is included, are significantly more diversified than external 

damage (18DTs) (p = 2.534e-12).  

At Bernasso four FFGs represent 90% of the total DTs: galling being 30% of 

the total interaction observed, hole feeding 24%, margin feeding 18% and 

skeletonization 18%. Galling is statistically more present than hole feeding (Wilcox-

test: p < 2.2e-16), margin feeding (Wilcox-test: p = 1.56e-12) and skeletonization 

(Wilcox-test: p < 2.2e-16). Hole feeding and margin feeding are statistically equally 

distributed (Wilcox-test: p = 0.1881) and skeletonization is less representative than 

hole feeding among the Bernasso fossil leaf collection (Wilcox-test: p = 3.116e-05). 

No statistically significant difference between margin feeding and skeletonization is 

observable (Wilcox-test: p.value= 0.078). Concerning the distribution of these four 

FFGs over the palaeoflora (Figure 3), galling is represented in 19 different species 

but is abundant only in four leaf species: P. persica (34% of the galling), A. 

monsepessulanum (10%), S. domestica (10%) and F. ornus (9%). Galling is more 

important on P. persica than A. monsepessulanum (p = 3.472e-05), S. domestica (p = 

3.472e-05) and F. ornus (p = 0.01231). The most important galling DT is DT32 (60% 

of all galling). It is also the main galling found on P. persica and A. monspessulanum 

(these 2 species contain 64% of DT32). Another important galling type is DT80 that 

represents 23% of all galling. Among this damage type DT80, 53% of its occurrences 

are present on S. domestica and F. ornus plant species. Skeletonization is present 

on 15 different species and 45% of this FFG is represented by DT16. This FFG is 

widely distributed but leaves of Acer have the largest proportion (36%) of total 
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skeletonization. Lastly, hole feeding and margin feeding are respectively found on 11 

and 14 species. These two FFGs are homogeneously present on all leaf species. 

Hole feeding is in correspondence to two DTs DT01 (25%) and DT02 (29%), 

whereas 63% of margin feeding is represented by DT12 only. 

3.2 Conservation bias 

First of all, there are statistically more fossil leaves within the Ro (54%) than 

the BDC (46%) dataset (Chi-squared test: p = 0.03; α = 1%; ddl = 1).  

BDC fossil leaves contain 70% of the total DTs detected while Ro fossils contain only 

30% of the DTs (Figure 5). This difference is significant (Chi-squared test: p < 0.01; α 

= 0.1%; ddl = 1) and is mostly due to two FFGs: margin feeding and galling (Figure 

5). These two FFGs are at least twice more abundant within BDC fossils than Ro 

fossils (Chi-squared test: p < 0.01; α= 0.1%; ddl = 1). Concerning the two other 

important FFGs (hole feeding and skeletonization), the difference between BDC and 

Ro fossil is not significant (Chi-squared test: p = 0.27 and p = 0.26; α = 0.1%; ddl = 

1). 

4. Discussion

4.1 Representative and taphonomic bias 

Rarefaction data shows that all the species exhibit damage. The sampling 

effort during the collecting field trips was sufficient for representing plant diversity 

from 300 fossil leaves (19.21 ± 0.74) 

Also the significant difference between the kinds of fossil preparation (BDC and Ro) 

could result from biases generated by the BDC preparation. This particular method 

could lead to an overestimation of margin feeding. During the transfer, parts of leaves 

could be torn. Moreover, the Canada balsam tends to blacken the margin of the 

leaves, mimicking the reaction after an insect feeding attack. On the contrary, an 

under-estimation of galling could occur for the Ro fossils. Most galls were more 

readily observed on BDC fossils, possibly due to the transparency of these fossils. 

4.2 Damage abundance on the paleoforest 

The two most abundant species P. persica and C. orientalis have had 40% of 

their leaves attacked. However, FFGs on these two dominant species are completely 

different. C. orientalis mostly contains hole feeding and margin feeding that are 
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general types of damage caused by polyphagous insects (Currano et al., 2008; Wilf, 

2008; Wappler, 2010). P. persica mainly have galling, a specialized interaction 

caused by oligophagous insects (Currano et al., 2010). P. persica also has a lot of 

generalist interactions (e.g., DT01, DT02, DT12), probably produced by polyphagous 

insects (Currano et al., 2008). These results are not exactly congruent with the 

hypothesis of Currano et al. (2010) that in modern ecosystems insects feed more on 

the dominant plant species (Novotny et al., 2006). Proportionally P. persica and C. 

orientalis are not the two most damaged species. The size of these two species can 

provide some explanation. Modern P. persica and C. orientalis in Iran can grow to the 

height of 15-20m (Abedi M., pers. comm. 2015). If it is estimated that sizes of these 

two species were the same at Bernasso 2 Ma ago, P. persica and C. orientalis 

should have been the dominate trees of the canopy in the Bernasso paleoforest and 

their leaves were subject to more intense sunlight than other species. This probably 

resulted in a more efficient photosynthesis for P. persica and C. orientalis and 

therefore an increase of C/N ratio in their leaves (Bazzaz, 1990; Barradas and Jones, 

1996). These two phenomena are both unfavorable for herbivorous organisms 

(Yamasaki and Kikuzawa, 2003). 

Furthermore, P. persica and C. orientalis have both specialist and generalist 

interactions. According to Currano et al. (2008), the physiology and/or anatomy of 

these two plants should be directly involved in their diversity of interactions. 

Proportionally A. monspessulanum and S. domestica are more attacked than P. 

persica and C. orientalis. 59% of A. monspessulanum leaves and 54% of S. 

domestica leaves possess damages. These proportions have to be compared to the 

number of leaves of each species. C. orientalis and P. persica are represented by 

more than 100 specimens, A. monspessulanum and S. domestica are only 

represented by ca. 20 specimens. It is necessary to have more A. monspessulanum 

and S. domestica specimens to statistically test these differences. However, it seems 

that the majority of insects adapted to feed on the two dominant species (C. orientalis 

and P. persica) and more specialized insects adapted for feeding on the other less 

represented plant species (A. monspessulanum and S. domestica). 

 

4.3 Community structure of the paleoforest: ecological parameters  

Specialized damages, especially galling, are an interesting tool to discuss a 

paleoforest community structure (Fernandes and Price, 1992; Fernandes et al., 
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2010). Figure 6 compares the quantity and the diversity of galling at Bernasso 

according to the theories of Fernandes et al. (1992, 2010). Three ecological 

parameters were analyzed: the age of Bernasso forest, the temperature and the 

precipitation at Bernasso ca. 2 Ma ago. The aim of figure 6 is to synthetize the 

following interpretation. 

At Bernasso, specialized damages, mainly due to galling, are important but 

undiversified (Figure 6). DTs 32 and 80 represent nearly 90% of the total galling 

diversity and they were found on almost all species (Table S1). Moreover their HS is 

low (Labandeira et al., 2007) even if galling, in general, represents a specialized FFG 

(e.g., Knor et al., 2013). This low diversity connected to the large quantity of galling is 

in contrast with Fernandes et al. (2010) (Figure 6). Indeed, when compared to the 

modern forests in the Hyrcanian region (Iran) (Leroy and Roiron, 1996), Bernasso 

could be considered as a late-successional forest. P. persica, Z. carpinifolia and C. 

orientalis are known in Iran to be the main species of late-successional forests 

(Djamali et al., 2008). According to Fernandes et al. (2010), in old forest such as 

Bernasso, there should be an expected important quantity and diversity of galling. In 

the case of Bernasso, the large quantity of galling may be explained by the age of the 

forest (Figure 6). Also, Fernandes and Price (1992) suggest that a cold temperature 

implies a low diversity and quantity of galling. Thus, the low diversity of galling at 

Bernasso could suggest low mean annual temperature (Figure 6). Lastly, 

precipitation may also be correlated with diversity and quantity of galling. A high ratio 

of precipitation seems to imply a low quantity and diversity of galling (Fernandes and 

Price, 1992). Thus, the high mean annual precipitation (Suc, 1978; Leroy and Roiron, 

1996) could also explain the low diversity of galling at Bernasso. All these information 

and data may support the results of the unpublished CLAMP data.  

 More generally, Bernasso fossils (590 specimens/20 species) have a 

particularly high diversity of different DTs (39 DTs), which is comparable to other 

fossil localities. The Oligocene locality of Quegstein (404 specimens/36 species) has 

4.5 ±1.6 DT for 50 leaves when Bernasso have 12.23 ± 2.38 DT for 50 leaves 

(Wappler, 2010). The locality of Rott, another Oligocene site (2476 specimens/112 

species) only has 7.5 ± 2.1 DT for 50 leaves (Wappler, 2010). Even if it is difficult to 

quantify insect diversity (because it is not always correlated to the diversity of 

damage; Currano et al., 2008), the large quantity of DTs at Bernasso could suggest 

an increased diversity of insects. However, 85% (34 DTs) of damage types are rare 
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and only 15% of them (6DTs: DT01, 02, 12, 16, 32, 80) are dominant. Carvalho et al. 

(2014) argued that the abundance of rare DTs could mainly be the result of the 

activity of multi-damaging insects. This may indicate that the Bernasso DT diversity 

could be biased by the presence and diversity of multi-damaging insects (Novotny et 

al., 2002; Currano et al., 2010).  

 

5. Conclusion 

 This study set up a snapshot of plant-insect interactions during the onset of 

the glacial/interglacial cycles. The Bernasso fossil leaf assemblage contained a large 

diversity of DTs, even if only 6 DTs represent more than 56% of the total of 

interactions. The most important damage evidenced is galling, but it is represented 

mostly by a unique DT (DT32). Based on previous studies (Fernandes and Price, 

1992; Fernandes et al., 2010), it appears that galling is undiversified despite its 

abundance. 

The overwhelming presence of galling at Bernasso can be explained by the 

community structure of a late-successional forest. Furthermore, the low diversity of 

galling could suggest that the mean annual precipitation was relatively high as 

indicated in previous studies (Suc, 1978; Leroy and Roiron, 1996) and the 

temperatures was cooler than modern day and could confirm the recent unpublished 

results (unpublished data)  

Finally, a Pliocene locality from southeast France (such as Armissan [Aude, 

France]; Saporta, 1893) would make for an interesting comparison to Bernasso and 

to bring out evolutionary trends or perturbation of plant-insect interactions due to 

installation of glaciation cycles. Also, it could be interesting to study galling patterns 

in the current Mediterranean and Caucasian forests to compare with Bernasso 

paleoforest. This level of comparison should highlight links between galling, 

temperature and precipitation and therefore, by extension, relationships between 

paleoclimatic fluctuations and changes in plant-insect interactions. 
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Figure 1: Map of the Hérault region showing the fossil locality of Bernasso (simplified 

from Leroy and Roiron, 1996). 

 

Figure 2: Representative insect damages on Bernasso leaves. A- Galling (DT32) on 

Parrotia persica preserved by Canada balsam method (BDC fossil); enlarged in B, 

DT32 are the small black dot, plenty on this leaf. C- Galling on Parrotia persica 

preserved by (Ro fossil); enlarged in D. E- Skeletonization (DT20) on Acer opalus; F- 

Hole (DT78) on Carpinus orientalis; G- Margin feeding (DT12) on Parrotia persica; H- 

Surface feeding (DT130) on Carpinus orientalis; enlarged in I; J- Mining (DT90) on 

Zelkova ungeri; enlarged in K.  

Scale bars: black= 0.5cm / stripes= 0.25cm. 

 

Figure 3: Interactions distribution (FFG) according Bernasso plant species. Box on 

the right is a highlight of the big one behind. Species in bold are the main 7 species 

with more than 20 specimens. Due to the diversity of maples, the genus Acer was 

individualized. 

 

Figure 4: Mean diversity of all damage types, specialized damage types and galling 

damages on Bernasso floras. The box-plots are based on the rarefaction data for 

each group of interactions considered for the database. 

 

Figure 5: Distribution of FFGs according to the fossil preparation. The grey bars 

represent the fossils preserved with Canada balsam method; the black bars 

represent the fossils preserved on the rock. 

The numbers are the exact quantity of damages. Chi-squared test enables to see the 

significance of the difference between Ro and BDC per FFG.  

***: alpha =0.1%. Lack of “***” means there is no significant difference. 

 

Figure 6: Overview of Bernasso forest. The different trees represent the 7 main 

species with more than 20 specimens. The purple circles near each tree represent 

the galling. The 2 different sizes of the circles indicate that there are more than 20% 

of leaves with galling for the bigger size, and less than 20% for the smaller.   

Information about galling was obtained comparing Bernasso Galling and data from 

Fernandes and Price (1996) and Fernandes et al. (2010). The symbols + and - 
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respectively means high and low.  

3 ecological parameters were used: {Left to the right} Age of Bernasso’s forest, Mean 

annual temperature at Bernasso (MAT), Mean annual precipitation at Bernasso (MAP).  
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Highlights 

• First studies of plant-insect interaction for the Pleistocene period in Europe.

• Provides insights for herbivory pattern at the onset glacial/interglacial cycles.

• Parrotia persica and Carpinus orientalis were the dominant species at

Bernasso.

• The Hyrcanian forest in Iran is a modern analogous of Bernasso paleoforest.


