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Abstract
In the context of energy transition, industrial plants that heavily rely on electricity face more and more price volatility. 
To continue operating in these conditions, the directors become continually more willing to increase their flexibility, 
i.e. their ability to react to price fluctuations. This work proposes an intuitive methodology to mathematically model 
electro-intensive processes in order to assess their flexibility potential. To this end, we introduce the notion of reservoir, 
a storage of either material or energy, that allows models based on this paradigm to have interpretations close to the 
physics of the processes. The design of the reservoir methodology has three distinct goals: (1) to be easy and quick to 
build by an energy-sector consultant; (2) to be effortlessly converted into mixed-integer linear or nonlinear programs; 
(3) to be straightforward to understand by nontechnical people, thanks to their graphic nature. We apply this method-
ology to two industrial case studies, namely an induction furnace (linear model) and an industrial cooling installation 
(nonlinear model), where we can achieve significant cost savings. In both cases, the models can be quickly written using 
our method and solved by appropriate solver technologies.

Keywords  Electro-intensive industrial process · Electricity-price volatility · Mixed-integer linear programming · Global 
optimisation

1  Introduction

Current industries tend to consume large quantities of 
energy, often electricity, during several stages of their pro-
cesses: in aluminium production, to extract the material 
from alumina; in cement making, to crush the limestone 
and heat the kiln; in paper fabrication, to pulp the ground 
wood. An industrial site is said to be electro-intensive 
when the costs of energy compose a large part of the retail 
price. In this case, the dependency on electricity prices is 
very high in order to remain competitive. The literature 
mostly focuses on electricity in this context, as its price can 
be very volatile, as opposed to other fuels like natural gas.

Nevertheless, these industrial sites can often tune their 
processes in order to decrease their electricity consump-
tion during the most expensive periods; they could also 
benefit from selling flexibility services to the electrical 

network, by reducing their consumption when the opera-
tor asks for it [3]. To achieve this cost reduction, they can 
make use of decision-support systems based on math-
ematical modelling of their processes. For example, the 
heating of a cement kiln can be reduced when the fuel 
price is too high or completely stopped if the revenue from 
the cement is not sufficient to cover the production costs. 
However, the achieved consumption drop is frequently the 
result of a trade-off:

•	 in some cases, the system is operated differently to 
use another fuel (fuel switching), and this has little 
to no impact on the process. For instance, a cement 
kiln can switch from natural gas to flare gas or other 
industrial by-products [8]; in ethylene production, 
production plants can typically use several fuels 
including naphtha or diesel oil [15, 27];
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•	 in others, the only flexibility is to stop the process and 
lose some production (load shedding), which means 
that some orders cannot be fulfilled. For example, in 
aluminium smelting, any reduction of the electrical 
current fed into the electrolysis potlines implies a loss 
of production [33];

•	 other flexibility levers can be available, such as load 
shifting or scheduling, depending on the exact pro-
cess, with varying degrees of impact on the produc-
tion and the consumption. The paper industry falls 
into this category, with production plan reorder-
ing [10].

Indeed, the plant directors would welcome global mod-
els, describing the whole set of processes, that allow 
them to make the best decisions for their energy con-
sumption based on price forecast. To this end, each 
industrial process in the factory should be modelled 
to provide a consumption–production mathematical 
formulation. These models do not need to offer highly 
detailed insights into the machines: the goal is not to 
have a real-time control of the physics thereof. In fact, 
our aim is rather to get an estimation of the consumption 
of the process depending on how it is operated. Moreo-
ver, the staff might not have the required knowledge of 
operational research to build such models: they have to 
rely on external consultants to do so.

This article proposes a generic paradigm to help con-
ceive such approximate formulations, so that they can be 
used to characterise the flexibility of a given process by 
the means of mathematical optimisation. The low-level 
basic block of this paradigm is the reservoir, which yields 
simple optimisation models while having a great expres-
sive power.

For example, an oven might be modelled as two such 
reservoirs: a material tank (expressed in tonnes) and 
an energy storage (in joules). Over time, the oven loses 
some thermal energy, which can be modelled as losses 
from the energy reservoir. The oven is mainly controlled 
by its temperature, constrained to some operating range; 
this temperature is determined as a function of both the 
material and the energy reservoirs. The expressive power 
of the proposed paradigm comes from the fact that a res-
ervoir may represent an actual physical storage or be more 
abstract (such as an energy storage or any quantity useful 
for modelling).

The complete oven model must also contain other 
blocks, named processes: these can impact the reservoirs, 
such as heating the oven. Only those processes might con-
sume energy, such as electricity or natural gas for oven 
burners. A set of reservoirs only represents the state of the 
industrial machine, while processes interact with this state.

Using reservoir-based models for industrial processes 
has several advantages over typical ad hoc models, espe-
cially in the context of building many such models in a 
short amount of time:

•	 Reservoir-based models are built from a small number 
of intuitive components (described in Sect. 2). Consult-
ants can quickly grasp the main ideas.

•	 Reasoning about such a model is easier than with 
pure mathematical notations, as this paradigm sug-
gests representing the processes as legible diagrams. 
This graphical representation helps communicate with 
technical experts of the industrial process and nontech-
nical managers.

•	 The resulting optimisation models are often linear 
mixed-integer (MILPs).

•	 Conversion into computer code is straightforward 
once the building blocks are implemented. A software 
implementation may even propose a graphical inter-
face to build the complete optimisation model, similar 
to MATLAB/Simulink [31]. Almost no adaptations are 
then required to fit the parameters of such a model to 
known data (as highlighted in Sect. 6.1).

This article first details the developed reservoir taxonomy 
in Sect. 2, and some usage examples in Sect. 3, including 
diagrams. Even though the resulting problems are gener-
ally linear, more complex (i.e. nonlinear) behaviours can be 
implemented, as explained in Sect. 4. Based on this expe-
rience, we build a typology of processes in Sect. 5. Our 
numerical results are presented in Sect. 6, both for fitting 
a reservoir model to industrial data and for assessing the 
flexibility within an industrial site. We conclude in Sect. 7.

2 � Reservoir taxonomy

To develop the aforementioned simplified models, four 
kinds of building blocks are needed. Each of them is 
directly associated with a mathematical formulation. In 
the following notations, boldface indicates optimisation 
variables, as opposed to constants, typeset in roman.

•	 The reservoir, which is as close to the intuition of stor-
age as possible: the level �t is only impacted by the 
inflow ��t and the outflow ���t . 

 These inflow and outflow variables link the reservoir 
to other parts of a global plant model. In the paper 
industry, for instance, the excess of pulp production 
may be stored before it is used by the paper machines, 

(1)�t+1 = �t + ��t − ���t .
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which indicates some decoupling between the produc-
tion and the consumption—in other words, a source 
of flexibility.

•	 The decaying reservoir, whose distinct feature is to have 
leaks �����t in its content. 

 Those leaks can be modelled with any kind of math-
ematical relationship: they can depend on the state of 
the reservoir �t , but also on the state of other reservoirs. 
For example, an industrial oven naturally loses some 
thermal energy over time.

•	 The observer, which is not a reservoir per se. Its state 
is a function of other reservoirs’ state, denoted by the 
variables �t , �t … : 

 It is mainly useful to implement bounds based on the 
state of a reservoir, such as the temperature in an oven, 
when it is modelled with both an energy reservoir and 
a mass one.

•	 On top of these, external processes must be added to 
impact the state of the reservoirs, by imposing some 
value to the inflow and outflow variables. Two exam-
ples are heaters (they increase the level of a given heat 
reservoir) and chemical reactions (they transform some 
products into some others).

Each of these reservoirs may impose constraints on its 
level variable �t , such as bounds (like minimum and maxi-
mum temperatures), ramping constraints (e.g. to limit the 
temperature variations) or process-dependent constraints 
(an oven cannot be tapped before its content is melted, 
for instance).

The flows between reservoirs may need to be coupled, 
especially when a given process is modelled as multiple 
reservoirs. This kind of constraint is common for heat trans-
fer, for example: the quantity of heat transferred is propor-
tional to the flow of heat-transfer fluid.

Aggregating those building blocks constructs models 
for the whole process. The final step to mathematically 
formulate the complete plant is to assemble the various 
systems in one model.

3 � Reservoir models

This section shows a series of models that can be obtained 
with the methodology described in Sect. 2. All the exam-
ples are taken from the industry, with HVAC (Sect. 3.1) 
being present in many sites; ovens (Sect. 3.2) are mostly 
present in metallurgy, whereas electrolysis (Sect. 3.3) is a 

(2)�t+1 = �t + ��t − ���t − �����t .

(3)�t = f
(
�t , �t …

)
.

major process in chemistry. These examples are all electro-
intensive processes: a typical metallurgical EAF is around 
30 MW, while it is not uncommon to have electrolysis pot-
lines of 50 MW.

Our goal is to produce simple and approximate models: 
they are used to detect the flexibility potential of a plant, 
not to perform complex real-time control on the pro-
cesses. This is why linear models are usually good enough 
for our purposes. Would they fail in giving a good enough 
estimation, nonlinearities would have to be introduced (as 
done in Sect. 4).

One of the main advantages of the proposed method-
ology is that the models can be summarised by drawings, 
while retaining many details. This allows easy designing of 
models, while the actual formulation for the links between 
the reservoirs must be dealt with in more details outside 
the drawings.

3.1 � HVAC

Heating, ventilation and air conditioning (HVAC) is a kind 
of system often found in the industry (food processing, 
supermarket warehouses, pharmaceutical plants, etc.), but 
also in offices. This kind of process is usually not the most 
electro-intensive that can be found, but the industrial part-
ners often agree with its flexibilisation (as opposed to their 
main business).

The proposed model works on a single energy reservoir, 
corresponding to the room whose temperature is con-
trolled (or a set of rooms, or an industrial shed), as shown 
in Fig. 1. Exploiting the thermal inertia of the area, the 
HVAC system can be turned off to save on energy while 
keeping an acceptable temperature.

A series of external processes heats or cools down the 
room by adding or removing energy (heating and air 
conditioning): they are the inputs and outputs of the 
reservoir. Moreover, the reservoir level decreases due to 
thermal losses, which depend on the temperature dif-
ference between the inside and the outside of the room. 
An observer reservoir is used to control directly the room 
temperature.

The corresponding mathematical formulation is the 
following.

•	 The standard decaying reservoir model is used for the 
energy. It defines the main decision variable of this 
system: the energy within the room, denoted by �t at 
time t. Its state equation takes into account the heater 
( �������t ), the chiller ( ��t ) and thermal losses ( ������t ; 
these may very well be negative, if the outside tem-
perature is higher than that of the room). 
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 The decay quantity ������t can be approximated as 
directly proportional to the temperature difference 
between the room (denoted by �t ) and the outside 
( Tout

t
 ) [9], the coefficient being denoted by k. 

•	 Using an observer, the temperature is linked with the 
energy through the specific heat of the air Cp and the 
mass of air in the room m (which is considered con-
stant): 

 This temperature has strict bounds ( Tmin and Tmax ) that 
are imposed inside the observer: 

Remark 1  As the mass of air m is considered fixed, those 
constraints are linear. This approximation works well, 
because the volume of air to heat or cool down sees 
almost no variations in typical HVAC conditions. Sec-
tion 3.1.1 considers a use case where this hypothesis no 
more holds.

External processes relate the heater and the chiller 
to their energy consumption (for example, electric-
ity, �����������t , and natural gas, ���t ; a superscript h 
denotes the chiller, while ac is used for the air condi-
tioning). The exact relationships f and g are not made 
explicit here: 

(4)�t+1 = �t + �������t − ��t − ������t .

(5)������t = k ×
(
�t − Tout

t

)
.

(6)�t = Cp ×m × �t .

(7)Tmin ≤ �t ≤ Tmax.

 These relationships may be either exact or approxi-
mated, depending on the need for precision. A basic 
model for these relations could use an efficiency or a 
coefficient of performance to relate the energy con-
sumption and the produced effect (either heating or 
air conditioning).
The initial conditions indicate the state of the room to 
model at the beginning of the optimisation horizon, 
which gives the initial energy ( �0 ) based on the initial 
temperature ( T0 ): 

In a practical application, to fit this kind of model on 
experimental data, three important variables stand 
out: the energy that is pushed into or extracted from 
the room, the measured temperature and the outside 
temperature. These variables are sufficient to get the 
values for all the needed parameters (k for the losses 
and the product Cp m for the temperature). With linear 
regressions, the parameter Cp m is determined as the 
proportion coefficient between the energy and the tem-
perature variations. With the same technique, the loss 
coefficient k may be determined from (4).

This model is simpler than existing ones in the litera-
ture [18, 19], but similar to models used in the context 
of flexibility [29].

(8)�������t =f
(
�����������h

t
, ���h

t

)
,

(9)��t =g
(
�����������ac

t
, ���ac

t

)
.

(10)�0 = Cp ×m × T0.

Fig. 1   An HVAC installation 
modelled with reservoirs

Energy 
reservoir

[J]Hea�ng Air condi�oning
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Thermal losses
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Remark 2  This formulation neglects the effects rooms 
may have on each other. Those may be included in such a 
model by using an energy reservoir per room. The losses 
would then depend on the connected rooms.

Also, the average specific heat variations in the room are 
neglected, as well as the temperature uniformity hypoth-
esis is made, i.e. the air is considered homogeneous.

3.1.1 � Industrial cooling

A very similar model can be built for industrial cooling. 
The main differences are that no heating is performed, 
and that cooling can be done with two processes: either 
a cooling tower (whose efficiency depends on the out-
side temperature) or a chiller.

This model is more complicated due to the heat 
exchanges between the three components (the pro-
cesses to cool and the two cooling mechanisms): the 
mass of heat-transfer fluid cannot be assumed to be 
constant. Indeed, the flows of hot and cooled water can 
be variable, but also the split between the two cooling 
processes. Each part of the model has two reservoirs: one 
for heat and the other for water, as shown in Fig. 2. The 
flows between those reservoirs must be coupled by the 
means of temperature and the water’s heat capacity C:

The model is thus the following. Subscript CT denotes 
the cooling tower, p the processes that must be cooled, 
and B the buffer to which the chiller is connected. The 
arrow → denotes a flow between two components.

(11)� ���heat = C × � × � ���water.

•	 Neither the water nor the heat reservoirs are decaying, 
as this decay is usually very small in these applications. 

•	 The total water and energy from the processes must 
correspond to the input scenario. 

•	 The flows of water and energy are linked. 

•	 The buffer’s temperature must be within acceptable 
bounds for the processes, as its water is directly sent 
back to the processes. 

This model is simpler than existing ones [30], even for 
similar applications, and has fewer parameters to fit [26]. 

(12)
�������,�+� = �������,� + ������→��,� − �������→�,� .

(13)
������,�+� = ������,� + ������→�,� − �������→�,� .

(14)
�CT ,t+1 = �CT,t + Cwater × Tp,t × ������→��,�

− �CT→�,t − f
(
�CT,t

)
.

(15)

�B,t+1 = �B,t + Cwater × Tp,t × ������→�,� + �CT→B,t

− Cwater × �B,t × ������→�,� − g
(
�chiller,t

)
.

(16)������→��,� + ������→�,� = waterp,t .

(17)�CT,t = Cwater × �������,� × �CT,t .

(18)�B,t = Cwater × ������,� × �B,t .

(19)�CT→B,t = Cwater × �������→B,t × �CT,t .

(20)Tmin ≤ �B,t ≤ Tmax.

Fig. 2   Industrial cooling mod-
elled with reservoirs
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Actually, in Sect. 6.2, we only use manufacturer-provided 
data to perform flexibility estimation. The real perfor-
mance may significantly differ from the specifications [25], 
but such a precision in the numerical results is usually not 
required for our use case.

A highly similar model can be used for petrochemical 
chains, like ethylene production [15]. More complex mod-
els can still be suited to mixed-integer linear formulations, 
but cannot be expressed as reservoirs; they also come with 
higher computational costs with traditional optimisation 
tools [13].

3.2 � Oven

A more complex example of reservoir modelling is the 
industrial oven (see Fig. 3), which heats large quantities 
of material (several tonnes) to high temperatures (around 
1000 ◦C ), usually with a high thermal inertia (which allows 
for turning off or reducing the heating from time to time). 
Different kinds of mechanisms can be used to heat the 
materials: gas or oil burners (for relatively low tempera-
tures), electric arcs (for conductive materials), etc.

An oven model is similar to HVAC in that it has an 
energy reservoir. However, the main difference is that the 
quantity of material to heat may vary significantly and thus 
cannot be neglected. This material is modelled as a second 
reservoir, coupled with the first one.

The relationships in this model are more intricate than 
in the previous ones: quantity of material, energy and 

temperature are tightly and nonlinearly intertwined. For 
instance, when heating, the impact on temperature is 
not direct: for the same quantity of heating, the impact 
on temperature is less when the oven contains a large 
quantity of material than when it is almost empty.

In order for the oven to meet its operational goals, 
it must provide the needed quantities of material at 
the right temperature. When material is removed from 
the oven, it has lost an associated quantity of energy—
but not temperature. However, when new material is 
inserted into the oven, this matter is at the outside tem-
perature; it brings some energy into the oven, but lowers 
the overall temperature.

All in all, the obtained mathematical formulation is 
the following.

•	 A first reservoir considers the material, �t : some may 
be added ( ��+

t  ) or removed ( ��−
t

 ) at any time step. 

•	 A decaying reservoir is used for the energy. Adding 
or removing material has an impact on the energy 
content (with the specific heat Cp , as previously). The 
withdrawn matter is at the oven temperature; how-
ever, the added material has a lower temperature, 
namely Tout

t
 : 

(21)�t+1 = �t + ��+
t
− ��−

t
.

(22)�0 = 0,

Fig. 3   Industrial oven as 
reservoirs
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 The losses take the same form as previously, being 
linked to the temperature difference with the exterior: 

•	 Likewise, an observer gives the temperature, but this 
time nonlinearly: 

 This nonlinearity is not a problem for the temperature 
bounds, as constraint (7) can be rewritten in joules-
kilograms without using constraint (25): 

•	 The heater is still an external process that consumes 
energy: 

As opposed to the HVAC model, this formulation can-
not be linear due to the losses, as they involve tempera-
ture (24), i.e. the ratio between the energy and the mass. 
These issues are discussed in Sect. 4.

Remark 3  This model exploits the hypothesis that the spe-
cific heat Cp remains constant with temperature. Also, it 
does not consider phase change, i.e. it only allows to heat 

(23)

�t+1 =�t + �������t − ������t

+ Cp × ��+
t
× Tout

t

− Cp × ��−
t
× �t

(24)������t = k ×
(
�t − Tout

t

)
.

(25)�t = Cp ×�t × �t .

(26)Cp × Tmin ×�t ≤ �t ≤ Cp × Tmax ×�t ,

(27)�������t = f
(
�����������t , ���t

)
.

material, not to melt it. A large quantity of energy being 
required for the material to change phase, adding this pos-
sibility in the model would require another reservoir that 
specifically deals with the molten part.

3.2.1 � Induction furnace

Induction furnaces are a kind of industrial oven. They 
work by magnetic induction: the bucket containing the 
metal to melt (such as cast iron) is surrounded by a coil 
through which high-voltage alternative currents are 
sent. The created magnetic field induces eddy currents in 
the metal, which in turn heats it. The power dissipated in 
the metal is directly proportional to the electrical power 
fed into the circuit �elec

t
 , with a constant ratio � , as shown 

in Appendix 1.
A reservoir model that fits this kind of furnace would be 

made up of two reservoirs: a mass reservoir that evolves at 
discrete time steps and an energy decaying reservoir (filled 
and emptied at the same time as the mass reservoir). There 
is no need for a temperature observer, but only a “binary” 
observer that indicates whether the required total energy 
has been transferred to the metal at the end of the batch. 
The model is shown in Fig. 4.

The corresponding model in mathematical form is the 
following:

•	 The mass reservoir is fixed for a given batch: 

•	 The energy reservoir is filled by electrical currents: 

(28)�t = m0.

Fig. 4   Induction furnaces 
modelled with reservoirs
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•	 The observer reservoir imposes that, at the end of the 
batch, the total energy in the bucket is at least at the 
required level: 

•	 Initially, the energy reservoir indicates that the material 
is at the exterior temperature: 

Typical models for such furnaces deal with the details of 
the electromagnetic field required to melt the metal [1, 
23], which is too cumbersome for our application.

3.3 � Electrolysis

The chemical industry and metallurgy often use electroly-
sis, with aluminium smelting being a prime example. A 
potline is typically made of hundreds of individual baths, 
where the electrochemical reactions take place. Each of 
them can be controlled independently and turned off to 
save energy, but with a loss of production [33].

In front of the potline, there is a single transformer from 
AC to DC current; its output has a relatively low voltage 
(around 5 V, usually), but very high amperage (multiple 
hundreds of kiloamperes are not rare) [2, 4, 33]. After the 
transformer, all pots resemble ovens (as in Sect. 3.2): they 
are heated by the current that flows through them, so that 
their bath remains in a given temperature range where the 
electrochemical reaction can happen.

The main difference with ovens is that the contents of 
the pots have smaller fluctuations: inputs are continuous, 
so the mass increases at a predictable and constant rate; 
the product is siphoned off periodically, typically once per 
day [2, 4, 33]. However, the contents of the bath continu-
ously evolve: the alumina and the carbon anode are trans-
formed into aluminium and gas, the actual reactions being 
Al2O3+3C → 2Al + 3CO and 2 Al2O3+3C → 4Al + 3CO2 . 
As such, 415 kg of carbon anode (not fed continuously, 
the anode being replaced after a few weeks) is consumed 
to produce 1 t of metallic aluminium, and this carbon is 
ejected as exhaust gas (carbon mono- and dioxide) [32]. 
Nevertheless, these exhausts are neglected in our model.

The flexibility impacts the production in a slightly more 
complicated way than in the aforementioned processes: it 
depends (approximately linearly) on the average current 

(29)�t+1 = �t + � �elec
t

.

(30)�T ≥ f
(
m0

)
.

(31)�0 = Cp ×m0 × Tout
0

.

through the pot, as long as the temperature is in the right 
range (which is controlled by voltage) [22].

As a consequence, the electrolytic bath model contains 
four reservoirs: 

1.	 The energy is included as a decaying reservoir, exactly 
like in previous models (4) and (23), with some energy 
contribution due to the alumina input �������

+

t
 and to 

the metallic aluminium output ����
−
t

 , but also due to 
the fact that the reaction is exothermic (with �H being 
the enthalpy change due to the reaction): 

 Again, the coefficient CX
p

 is the specific heat of material 
X. The thermal losses can be expressed linearly with 
respect to the temperature difference with the outside: 

2.	 The carbon anode reservoir can only be consumed 
by the electrochemical reaction (it is replaced during 
maintenance, which we do not mean to optimise): 

3.	 The alumina reservoir is constantly fed and consumed 
by the electrochemical reaction: 

4.	 The aluminium reservoir is filled by the electrochemical 
reaction and periodically emptied: 

5.	 The temperature observer depends on the com-
plete mass within the electrolytic bath. A simplifying 
assumption is to consider that the temperature is uni-
form within the bath: 

 As for oven (26), the temperature bounds can be writ-
ten linearly based on this expression: 

6.	 The last block within the process, the electrochemical 
reactions, is modelled as processes, whose conversion 

(32)�t+1 = �t + �������t − ������t + C
Al2�3

p × ����2�3

+

t
× Tout

t
− CAl

p
× ����

−
t
× �t + �H × ����

+
t
×
(
�t − Tout

t

)

(33)������t = k ×
(
�t − Tout

t

)
.

(34)��t+1 = ��t − ���
−
t
.

(35)������ t+1
= ������ t

+ �������

+

t
− �������

−

t
.

(36)���t+1 = ���t + ����
+
t
− ����

−
t
.

(37)

�t =
(
C
Al2O3

p ×���2�3 t
+ CC

p
×��t + CAl

p
×���t

)
�t .

(38)

Tmin ×
(
C
Al2O3

p ×������ t
+ CC

p
×��t + CAl

p
×���t

)
≤ �t ,

(39)

�t ≤ Tmax ×
(
C
Al2O3

p ×������ t
+ CC

p
×��t + CAl

p
×���t

)
.
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rates k′′
X

 depend on the average current through the 
bath ( �t ): 

7.	 The AC-DC converter must be modelled as an external 
process to provide the required power to heat the bath; 
moreover, the actual amperage must be explicitly rep-
resented in the model for the electrochemical reaction 
rate: 

8.	 Finally, the initial conditions are set according to the 
way the process is managed: the process is rarely 
started from scratch (with a temperature equal to Tout

0
 ), 

but rather continuously operated.

The model is shown in Fig. 5. Existing models tend to use 
electrochemical multiphysics techniques [16, 35], which 
are not well-suited for light applications like flexibility 
estimation.

Remark 4  Observer Eq. (37) might consider directly the 
sum of all three material reservoirs (alumina, carbon and 
metallic aluminium), without a distinction between the 
various materials: their specific heats are of the same order 
of magnitude (between 700 and 900 J/K kg ). This approxi-
mation is justified in the context of flexibility, as the model 

(40)����
+
t
= k��

Al
× �t , ���

−
t
= k��

C
× �t ,

(41)�������

−

t
= k��

Al2O3
× �t .

(42)�������t = f
(
�����������t , �t

)
.

does not need to be very precise. This simplification is use-
ful when fitting the model to actual data, as fewer param-
eters must be estimated.

Remark 5  If the electrical current is not considered for flexi-
bilisation, then the model can be simplified, as the elec-
trochemical reaction then becomes constant: the mass 
reservoir levels only change when the bath is powered on 
(and thus when the electrochemical reaction takes place). 
The only possible values are then naturally discrete.

4 � Nonlinearity

Another great advantage of the proposed methodology 
is that most models are linear. However, these can be 
limiting for some behaviours that cannot be completely 
represented with linear equations. For those cases, such 
as ovens (for which a conceptual model is presented in 
Sect. 3.2), nonlinearities can be introduced in the reservoir 
formalism.

Those nonlinearities can be dealt with in different ways.

•	 Use of nonlinear nonconvex solvers  Nonlinear equali-
ties such as (37) make standard optimisation solvers 
unusable because of their nonconvexity. Therefore, 
the solvers must be able to deal with nonconvex con-
straints and (often) mixed-integer variables. Programs 
like Couenne [5], POD [24] (global solvers, not relying 
on the convexity assumption), or Bonmin [7] (approxi-
mating the problem as convex) must then be used. The 
most recent versions of standard optimisation solvers 

Fig. 5   Electrolysis modelled 
with reservoirs
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like CPLEX [17] and Gurobi [14] now allow for certain 
types of nonconvexity (CPLEX 12.7 accepts nonconvex 
quadratic objective functions, whereas Gurobi 9.0 also 
tackles quadratic nonconvex constraints).

•	 Linear reformulations  Another option is to formulate 
the problem linearly. The main technique we used for 
this is discretisation: instead of having continuous vari-
ables, some of them are only allowed to take discrete 
levels. The choice of variables for discretisation is made 
so that, when these variables take a fixed value, the 
constraint becomes linear. For example, constraint (37) 
is linear once the mass is known. Binary variables are 
then used to choose among the various discrete values, 
which keeps the overall linearity.

4.1 � Discretisation

Discretisation is an approximation of the previous mod-
els. It can however be used in some cases without being a 
rough estimate, due to the actual operational conditions: 
for instance, industrial ovens are often loaded by batches, 
whose sizes can be used to define the discretisation levels.

An oven like in Sect.  3.2 can be reformulated with 
this discretisation approach, more specifically by rewrit-
ing the temperature definition  (25). Instead of having 
a continuous variable �t , it takes its value in a discrete 
set M =

{
Mi | i ∈ [1,M]

}
 . For example, instead of 

having an oven whose mass may freely vary between 
500 kg and 5 t , its discretised version may only take the 
values  in  M = {500, 1500, 2500, 3500, 5000} kg ,  or 
M = {500, 1000, 1500, 2000, 3500, 5000} kg if more pre-
cision is needed for low masses.

In order to linearise the quotient �t = �t∕Cp �t , the fol-
lowing expression can be used:

Implementing this in a mathematical optimisation model 
can be done in a classical way [20, 21, 34]. New variables 
are introduced:

•	 The binary variables �(i)
t  indicate whether the material 

contents of the oven �t take the discrete value Mi.
•	 The continuous variable �t is defined as the quotient 

�t∕Cp �t.
•	 The continuous variable �(i)

t  is defined as the quo-
tient �t∕Cp �t if �t = Mi , and zero otherwise. These 

�t =
�t

Cp �t

, ∀t ∈ T

=

⎧⎪⎨⎪⎩

�t∕Cp M1 if�t = M1

�t∕Cp M2 if�t = M2

⋮

�t∕Cp MM if�t = M�M�

, ∀t ∈ T.

variables could be called “partial temperatures”, as 
their sum yields the temperature.

Then, constraints are added to impose those semantics.

•	 Exactly one discrete mass value is possible at any time 
step: 

•	 The mass is then defined as a linear combination of 
those binary choices: 

•	 Similarly, the temperature is given by the sum over all 
partial temperatures: 

•	 The partial temperatures �(i)
t  are linked to the binary 

choices by the following upper and lower bounds: 

 The two last bounds are required to be specified sepa-
rately, to ensure that a partial temperature is forced to 
be zero if the corresponding mass level is chosen, and 
takes its expected value otherwise.

Thanks to this technique, the temperature definition 
becomes linear. It could be extended to more general 
expressions.

This formulation can be strengthened in order to 
improve solving times. The bounds on the partial tem-
peratures �(i)

t  should be as tight as possible to keep good 
solving times; this issue motivated the choice of tem-
perature �t = Et∕Cp �t over the raw quotient of variables 
�t∕�t , as the factor 1∕Cp can reduce the values that are 
considered by several orders of magnitude.

•	 The bounds on the partial temperatures also have 
lower bounds, using the same binary variables: 

(43)
∑
i∈M

�
(i)
t = 1, ∀t ∈ T.

(44)�t =
∑
i∈M

�
(i)
t Mi , ∀t ∈ T.

(45)�t =
∑
i∈M

�
(i)
t , ∀t ∈ T.

(46)

�
(i)

t ≥
�t

Cp Mi

−
Emax

Cp mmin

(
1 −�

(i)

t

)
, ∀t ∈ T, ∀i ∈ M,

(47)�
(i)
t ≤

�t

Cp Mi

, ∀t ∈ T, ∀i ∈ M,

(48)�
(i)
t ≤

Emax

Cp mmin

�
(i)
t , ∀t ∈ T, ∀i ∈ M.
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•	 The mutual exclusion of the m(i)
t  can be further imposed 

with clique constraints: 

4.2 � Benchmark

The two nonlinear models are benchmarked against each 
other, in order to compare their performance when solving 
the same problem. We use an oven-like model to heat a 
given quantity of metal that may be added at any rate and 
time (which gives a nonlinear model). Fifty time steps are 
considered. Heating happens with temperature ramping 
constraints. All models have been written using JuMP [11] 
in Julia [6].

Those models are all compared to a base line, which 
heats the material as soon as possible (while respecting 
the same ramping constraints) and keeps it at the right 
temperature until the end of the horizon.

The results are shown in Table 1. When a high precision 
is needed in the discretised variables, both CPLEX [17] and 
Gurobi [14], two state-of-the-art mixed-integer linear solv-
ers, have troubles to reach a very low gap, albeit their solu-
tions are more than satisfying for industrial applications. 
In the same time budget, the nonlinear formulation with 

(49)�
(i)
t ≥

Emin

Cp mmax

�
(i)
t , ∀t ∈ T, ∀i ∈ M

(50)
∑
i∈V

�
(i)
t ≤ 1, ∀t ∈ T, ∀V ⊆ M ∶ |V| ≥ 2

open-source nonlinear solvers achieves a better solution, 
without being hindered by discretised variables.

5 � Process typology

Based on these models, we can derive a typology of indus-
trial processes based on a few characteristics. Table 2 does 
so according to two criteria, focusing on the flows of mate-
rial to process:

•	 the inputs to the process: are they continuous or peri-
odical?

•	 the outputs from the process: are they continuous or 
periodical?

Those two questions can be equivalently formulated as 
follows. Is the mass currently processed constant? How can 
it vary (continuously, periodically)?

Combined, these three parameters indicate how the 
process could be modelled. A mass that is constant (HVAC) 
or highly predictable (electrolysis, batches; kilns to a lesser 
degree) can result in model simplifications. Completely 
variable masses often imply nonlinearity (as most ovens, 
see Sect. 4).

The diagrams shown in Sect. 3 also help build another 
typology, this time based on the potential flexibility levers 
for each process. Indeed, the presence of a decaying heat 
energy reservoir indicates that the process is amenable to 
load shifting: even if heating is stopped, the process might 

Table 1   Solving time for the various nonlinear models

All solvers were stopped after approximately 1 h of computations, even when they did not find the optimum solution (nonzero gap). Those 
tests were run on a machine with two Intel Xeon E5-2650v4 (2.2 GHz) and 128 GB of RAM

Model Underlying solver Time (s) Solution cost (€) Gap reported 
by the solver 
(%)

Cost improvement with 
respect to reference (%)

Reference: reach target temperature as soon as 
possible

CPLEX 12.7.1 0.02 10,793.25 0.00 –

Reservoir model: linearisation by discretisation 
(16 levels)

CPLEX 12.7.1 3610.37 8208.23 2.68 23.95
Gurobi 7.5.0 3600.02 8034.72 2.12 25.56

Reservoir model: nonlinear (continuous) Bonmin 1.8.4 3600.59 7259.46 – 32.74
Couenne 0.5.4 3601.39 7260.20 100 32.73

Table 2   Typology of industrial 
processes to help reservoir 
modelling

Process Mass Inputs Outputs

HVAC Constant (Constant mass: no inputs nor outputs)
Kiln Variable Continuous Continuous
Oven (including electric arc 

furnace, induction furnace)
Batch Discrete (batches: 

when starting)
Discrete (batches: when done, e.g. 

molten metal)
Electrolysis Variable Continuous Discrete (periodical: e.g. every day)
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still continue to produce, albeit probably at a lessened 
rate. If multiple fuels are possible for heating, then fuel 
switching can be used. For all noncontinuous processes, 
load scheduling can be applied; for continuous processes 
whose production can be tuned (like electrolysis), exploit-
ing flexibility may lead to load shedding. The processes 
that are studied in Sect. 3 are included in Table 3.

6 � Flexibility potential of industrial 
processes

Some models developed in Sect. 3 are now fit to industrial 
data, and the flexibility potential of the processes is esti-
mated based on historical scenarios. A major hypothesis 
is that exploiting the flexibility for these industrial sites 
has no impact on the electricity market, as they do not 
consume enough electricity.

All optimisation models have been written using 
JuMP [11] in Julia [6]. The source code for the simulations 
is available online at the following address:

https​://githu​b.com/douro​uc05/Indus​trial​Proce​ssFle​xibil​
isati​on.jl.

6.1 � Induction furnace

The induction furnace of Sect. 3.2.1 needs three param-
eters. The first one, � , characterises the energy level 
depending on the initial temperature of the material. The 
second one, � , is the efficiency of converting the electrical 
power into heat (see Appendix 1). The last one, � , indicates 
the energy losses.

Each sample s ∈ S  , taken from historical measure-
ments, corresponds to one use of the furnace. It mainly 

consists in a power curve Pt
s
 , indicating the average 

power injected through the circuits each hour (a melt-
ing cycle lasts 12 h). To have a better fit, each sample 
may have its own value of � , denoted by �s . The values 
of the �s are brought closer together by a constraint lim-
iting the variance of the �s to 0.001. All in all, fitting the 
parameters is done through the following optimisation 
program (a convex QCQP), based on the reservoir model 
of Sect. 3.2.1:

To evaluate the results of this model, we use a leave-one-
out procedure [12]: for each sample s ∈ S , we solve the 
previous optimisation program over the samples S�{s} 
to get a value �S�{s} , and we average the obtained square 
errors to predict the energy of s based on �S�{s} . It results 
in a root-mean-square error on our data set of 65.194 kWh 
(the ratio of this error to the average energy is 1.78%).

Once a reservoir model is fit, it can be used to esti-
mate the flexibility potential of the process. To this end, 
we compare our reservoir-based optimisation to current 
fixed consumption profiles on a historical price scenario 
(an average day of January 2016 on the Belgian day-
ahead market). No optimisation is currently performed 
on the schedule: the smelting process always starts at 
the same hour and lasts for 12 h.

Related constraints must be added to the formulation 
in order to implement real-world constraints. Mostly, the 
peak power is limited, and the heating cannot abruptly 
change. Three constraints are thus added for each time 
step: a minimum and a maximum power ( Pmin and Pmax , 
respectively), and a ramping constraint ( �min and �max 
are, respectively, the minimum and maximum ratios by 
which the electrical consumption is allowed to change 
from hour to hour).

The complete model is therefore the following, where 
ph indicates the price of electricity for the hour h (in €/
MWh), ch the electrical consumption (in MWh) and Eh the 
energy of the metal to melt:

(51)

min
∑
s∈S

(
�t
s
− Es

)2

s.t.�0
s
= � ×ms × T0 ∀s ∈ S

�t
s
= �t−1

s
+ �

s
× Pt

s
− � ∀s ∈ S,∀t ∈ T

|S| × � =
∑
s∈S

�
s

∑
s∈S

(
�
s
− �

)2

≤ 0.001

� ≥ 0

�s ≥ 0 ∀s ∈ S

� ≥ 0

� ≥ 0

Table 3   Analysis of flexibility levers available in industrial processes

Process Potential flexibility levers

HVAC Thermal inertia: load shifting
Kiln Thermal inertia: load shifting (production 

delayed)
Starting time: load scheduling
Fuel switching

Continuous oven Thermal inertia: load shifting (production 
delayed)

Fuel switching
EAF Thermal inertia: load shifting (production 

delayed)
Starting time: load scheduling

Electrolysis Thermal inertia: load shifting
For a long period of time, becomes load 

shedding!

https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl
https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl
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Per heat, using a reservoir model to decide the heating 
power, hour per hour, could decrease the costs by 8.35% 
per heat, from €239.11 to €219.15; over a year, this corre-
sponds to more than €15,000 of savings. The main differ-
ence in the planned power consumption is that its peak is 
shifted to exploit the lowest prices during the production 
period (as shown in Fig. 6).

Computationally speaking, this model allows to opti-
mise the required power to a given price scenario in a frac-
tion of a second: a 95% confidence interval is 0.03 ± 0.01 
s (with either CPLEX 12.7.1 or Gurobi 7.5.0). Fitting the 
parameters is also very quick, as the leave-one-out valida-
tion phase takes less than 2 min for the available data. The 
from-scratch implementation in Julia takes 150 lines, but 
the process could be automatised with a GUI to build the 
reservoir model. These characteristics are very appealing 
for energy-sector consultants, who may want to estimate 
the flexibility potential of an industrial site in very little 
time: most of the effort can be spent on actual discussions 
on the flexibility solutions that can be implemented.

6.2 � Industrial cooling

Based on industrial data from a polypropylene-film plant, 
a model similar to that of Sect. 3.1.1 can be tuned. All the 
needed physical constants are known and match the data 
set. The model is then fed with scenarios of water volumes 
to cool down. In practice, the price scenarios can be esti-
mated in advance, while the heat and water volumes are 
known with a high precision.

(52)

min

H∑
h=1

ph ch

s.t. E0 = �mT0,

EH = �mTH ,

Eh = Eh−1 + � ch − � ∀h ∈ {1, 2…H − 1}

Pmin ≤ ch ≤ Pmax ∀h ∈ {1, 2…H}

�min ch ≤ ch+1 ≤ �max ch ∀h ∈ {1, 2…H}

The processes in Fig. 2 have to be specified in more 
details. A linear model is deemed sufficient for our 
needs, using coefficients of performance, and the func-
tions f and g can be written as:

Thus, two energy budget constraints (14) and (15) become:

Two other constraints must be added for the cooling pro-
cesses, as they have a limited maximum power:

Remark 6  Variable coefficients of performance are not 
considered in this case in order to keep the model simple. 
The increased complexity is not justified in a context of 
approximate models.

In order to compare the impact of flexibility on the 
cooling behaviour, the temperature bounds are set in 
two different ways:

•	 either Ttarget ± 0.5 ◦C (low-flexibility scenario), as cur-
rently implemented in the studied use case

•	 or Ttarget ± 3 ◦C (high-flexibility scenario), the maximum 
temperature variation that the production equipment 
may tolerate, based on a deeper analysis of their data 
sheets

(53)f
(
�CT,t

)
= copCT × �CT,t ,

(54)f
(
�chiller,t

)
= copchiller × �chiller,t .

�CT,t+1 = �CT,t + Cwater × Tp,t × ������→��,�

− �CT→B,t − copCT × �CT,t .

�B,t+1 = �B,t + Cwater × Tp,t × ������→�,� + �CT→B,t

− Cwater × �B,t × ������→�,� − copchiller × �chiller,t .

(55)�CT,t ≤ PCT,max,

(56)�chiller,t ≤ Pchiller,max.

Fig. 6   Comparison of con-
sumption profiles between the 
existing fixed solution and the 
result of the optimisation
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The model includes three nonlinear constraints: (17), (18), 
and (19). They are implemented as nonlinear constraints; 
we also compare this formulation to a finely discretised 
linear version. In practice, the nonconvex formulation can 
be solved to optimality faster than the discretised version 
with a time horizon of 8 h (Table 4).

In order to compare these two flexibility scenarios, a 
rolling-horizon algorithm is implemented. This choice 
helps keep the running times low: the optimisation pro-
gram is run for 8 h; then, the result for the first time step is 
used as the initial condition for the next program, whose 
horizon is shifted by one time step. Even though it is closer 
to the plant operating conditions and therefore better esti-
mates the actual flexibility potential, it no more guaran-
tees a global optimality over the complete time horizon.

When using this methodology on a synthetic heat 
inflow to cool down1, the energy costs can be lowered by 
24% when going from the low- to the high-flexibility sce-
nario (Fig. 7): it goes from €123,569 down to €93,909 for 
1 week (with a price scenario corresponding to the first 
week of January 2016 on the Belgian day-ahead market). 
Results on historical data are highly similar. What is more, 
the obtained solution uses the extra flexibility to lower 
the temperature before an increase in both the electricity 
price and the heat to eliminate: this is exactly the expected 
kind of solution.

Similarly to the induction furnace (Sect. 6.1), compu-
tation times are very encouraging: a complex, real-sized, 
nonconvex model can be solved quickly to optimality 
(albeit only using Gurobi 9.0’s new nonconvex function-
alities). Model-building times are again reduced to a very 
low amount: each model corresponds to 100 lines of Julia 
when implemented from scratch, with very little thought 
required to build the reservoir model, even for someone 
who is not a specialist of these processes.

7 � Conclusion

The reservoir framework helps build models of actual 
industrial processes. It does so by following a physically 
based approach, around the concept of storage (either 
material or energy). This principle corresponds to the 
industrial and physical reality, as these models can cor-
rectly approximate the behaviour of processes. Such res-
ervoir models can lend themselves to interpretation about 
flexibility (as performed in Sect. 5).

This framework defines a series of blocks that can be 
used to think about processes. However, it does not specify 
anything about the actual energy consumption. For now, 
they are supposed to be easily represented by so-called 
processes. They may hide different kinds of mathematical 
expressions, from a constant efficiency that translates fuel 
consumption into energy (which is probably the best fit 
for this framework, due to its simplicity) to more complex 
models.

Simple extensions to the proposed building blocks 
allow modelling more processes. For example, a crusher 
can correspond to a reservoir that transforms one product 
(such as rock) into another one (like gravel), with a conver-
sion rate that depends on the energy consumption. The 
major problem of this kind of formulation is that linearity 
is forgone. More work is needed to look into these kinds 
of generalisations, and the way to produce linear models 
from slightly different building blocks.

Nevertheless, without needing many alterations, the 
reservoirs can already be used to study the impact of flexi-
bility on some industrial processes, as done in Sect. 6. More 
generally, reservoir-based models share many similarities 
and are still able to deal with many different processes, 
while being lightweight.
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Table 4   Comparison between 
the two formulations, for a 
time horizon of 8 h, with a time 
step of 1 h

25 discretisation steps are used for the temperature. The programs are solved within a rolling-horizon 
algorithm; averages are based on its iteration. The mixed-integer linear model could not be solved 
over the 1-week horizon due to memory problems (the formulation is too large). Those tests were run 
with CPLEX 12.7.1 (MILP formulation), Couenne 0.5.4 and Gurobi 9.0.0 (nonconvex formulation), on a 
machine with two Intel Xeon E5-2650 (2.2 GHz) and 128GB of RAM

Mixed-integer linear Nonconvex

CPLEX 12.7.1 Couenne 0.5.4 Gurobi 9.0.0
Number of constraints 1120 100
Number of variables 480 (378 integers) 102 (0 integers)
Average number of explored nodes 1,193,050,714 2,210,153 662,159
Average solving time (s) 62,742.96 3694.52 46.95

1  No historical scenario could be shown in article due to the data 
being proprietary.
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Fig. 7   Obtained experimental result for one scenario: increasing flexibility lowers the energy costs by 24%
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Appendix: Mathematical derivation 
of the induction furnace’s electrical 
efficiency

The power dissipated by eddy currents can be expressed 
as a linear function of the electrical current in the coil. 
Indeed, the dissipation is related to the maximum mag-
netic field Bmax (if it varies sinusoidally in time) [28]:

where e is thickness, f current frequency, � material resistiv-
ity. In an induction furnace, f is fixed, � depends on mate-
rial, the other parameters are a function of the furnace’s 
geometry. The only variable is thus the maximum mag-
netic field, which can be given by Ampère’s law, as the coil 
corresponds to a solenoid with N wire turns and a total 
wire length of �:

� is the permeability of the metal to heat and the bucket, 
and I is the intensity of the electrical current. This formula 
can be rewritten to exhibit the electrical power P in the coil 
instead of the current I, using Ohm’s law P = R I2:

Finally, the dissipated power in the metal is linked to the 
injected electrical power by:

(57)Peddy =
�2

6

e2 B2
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f 2

�
,

(58)B = �
N

�
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(59)B = �
N

�

√
P

R
.

Peddy =
�2

6

e2 f 2

�

�
�
N

�

√
P

R

�2

=
�2

6

e2 f 2

�
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6 ��2 R2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

constant

P.

In other words, the power dissipated in the metal is 
directly proportional to the electrical power fed into the 
circuit, with a constant ratio.
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