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We propose a couple of general ways of constructing authentication schemes from actions of a semigroup on a set, without exploiting any specific algebraic properties of the set acted upon. Then we give several concrete realizations of this general idea, and in particular, we describe several authentication schemes with long-term private keys where forgery (a.k.a. impersonation) is NP-hard. Computationally hard problems that can be employed in these realizations include Graph Colorability, Diophantine Problem, and many others.

Introduction

In this paper, we propose several general Feige-Fiat-Shamir-like [START_REF] Feige | Zero knowledge proofs of identity[END_REF] constructions of authentication schemes (with long-term private keys) from arbi-trary actions. For a general theory of public-key authentication (a.k.a. identification) as well as early examples of authentication protocols, the reader is referred to [START_REF] Menezes | Handbook of Applied Cryptography[END_REF].

Suppose a (partial) semigroup S acts on a set X, i.e., for s, t ∈ S and x ∈ X, one has (st)(x) = s(t(x)) whenever both sides are defined. For cryptographic purposes, it is good to have an action which is "hard-to-invert". We deliberately avoid using the "one-way function" terminology here because we do not want to be distracted by formal definitions that are outside of the main focus of this paper. For a rigorous definition of a one-way function, we just refer to one of the well-established sources, such as [START_REF] Goldreich | Foundations of cryptography[END_REF]. It is sufficient for our purposes to use an intuitive idea of a hard-to-invert action which is as follows. Let X and Y be two sets such that complexity (or "size") |u| is defined for all elements u of either set. A function f : X → Y is hard-toinvert if computing f (x) takes time polynomial in |x| for any x ∈ X (which implies, in particular, that complexity of f (x) is bounded by a polynomial function of |x|), but there is no known algorithm that would compute some f -1 (y) in polynomial time in |y| for every y ∈ f (X).

In our context of actions, we typically consider hard-to-invert functions of the type f x : s → s(x); in particular, a secret is usually a mapping s, which makes our approach different from what was considered before. This idea allows us to construct several general Feige-Fiat-Shamir-like authentication schemes (with long-term private keys) from arbitrary actions, see Section 3. Then, in the subsequent sections, we give several concrete realizations of this general idea, and in particular, we describe several authentication schemes where recovering the prover's long-term private key from her public key is an NP-hard problem. We note however that what really matters for cryptographic security is computational intractability of a problem on a generic set of inputs, i.e., the problem should be hard on "most" randomly selected inputs. For a precise definition of the "generic-NP" class, we refer to [START_REF] Myasnikov | Group-based cryptography[END_REF]. Here we just say that some of the problems that we employ in the present paper, e.g. Graph Colorability, are likely to be generically NP-hard, which makes them quite attractive for cryptographic applications.

We also address an apparently easier task of forgery (a.k.a. misrepresentation, a.k.a. impersonation), and show that in most of our schemes this, too, is equivalent for the adversary to solving an NP-hard problem. To be more specific, by forgery we mean the scenario where the adversary enters the authentication process at the commitment step, and then has to respond to the challenge properly.

Finally, we note that there were other attempts at constructing authentication schemes based on NP-hard problems (e.g. [START_REF] Caballero-Gil | Strong Solutions to the Identification Problem[END_REF], [START_REF] Caballero-Gil | A Zero-Knowledge Identification Scheme Based on an Average-Case NP-Complete Problem[END_REF]), but these constructions are less transparent, and it is not immediately clear how or why they work.

When a composition of functions is hard-to-invert

Here we prove a simple but useful proposition about composing a hard-toinvert function with another function, which is not necessarily hard-to-invert. Now let y ∈ ψ(B). Since the domain of ψ is contained in the range of ϕ, this implies y ∈ f (A). Then we apply the algorithm A to y to get some a ∈ A. This takes polynomial time in |y|, and, in particular, the size of a is polynomial in |y|. Then we apply ϕ to a to get an element b ∈ B. This takes polynomial time in |a|, and therefore also in |y|. Since now ψ(b) = y, we have found a preimage of y under ψ in polynomial time in |y|, contradicting the assumption on ψ to be hard-to-invert. (b) Again, let f = ψ(ϕ) : A → C and suppose, by way of contradiction, that there is an algorithm A 1 that computes some f -1 (c) in polynomial time in |c| for every c ∈ f (A). Now let y ∈ ϕ(A). Since the domain of ψ contains the range of ϕ, we can apply ψ to y to get ψ(y) = c ∈ C. This takes polynomial time in |y|. Then we apply the algorithm A 1 to c to obtain some a = f -1 (c). This takes polynomial time in |c|, and therefore also in |y|. Now we claim that ϕ(a) = y, for if it was not the case, we would have y 1 = y such that ψ(y) = ψ(y 1 ) = c (since f (a) should be equal to c), contradicting the assumption on ψ to be injective.

Three protocols

In this section, we give a description of three generic authentication protocols (or, rather, "meta-protocols", or "primitives", since we do not give any implementation details in this section). Here Alice is the prover and Bob the verifier.

Protocol I

Suppose a set S acts on a set X, i.e., for any s ∈ S and x ∈ X, the element s(x) ∈ X is well-defined.

1. Alice's public key consists of a set X, a (partial) semigroup S, an element x ∈ X, and an element u = s(x) for some randomly selected s ∈ S; this u is her long-term private key. 2. To begin authentication, Alice selects an element t ∈ S and sends the element v = t(s(x)) ∈ X, called the commitment, to Bob. 3. Bob chooses a random bit c, called the challenge, and sends it to Alice.

• If c = 0, then Alice sends the element t to Bob, and Bob checks if the equality v = t(u) is satisfied. If it is, then Bob accepts the authentication.

• If c = 1, then Alice sends the composition ts to Bob, and Bob checks if the equality v = ts(x) is satisfied. If it is, then Bob accepts the authentication.

Protocol II

Yet another protocol involving a composition of actions (or mappings) is as follows.

1. Alice's public key consists of a set X, a (partial) semigroup S whose elements may act on X, an element x ∈ X, and an element z = r(x) for some randomly selected r ∈ S; this z is her long-term private key. 2. To begin authentication, Alice selects an element y ∈ X, together with two elements s, t ∈ S such that s(x) = y and t(y) = z. She then sends the element y (the commitment) to Bob. 3. Bob chooses a random bit c, the challenge, and sends it to Alice.

• If c = 0, then Alice sends the element s to Bob, and Bob checks if the equality s(x) = y is satisfied. If it is, then Bob accepts the authentication.

• If c = 1, then Alice sends the element t to Bob, and Bob checks if the equality t(y) = z is satisfied. If it is, then Bob accepts the authentication.

We note that selecting an element y at the commitment step of this protocol may be non-trivial; later in this paper we show how to implement this step in particular realizations of Protocol II.

Proposition 2. Suppose that after several runs of steps ( 2)-( 3) of the above Protocol II, both values of c are encountered. Then successful forgery in such a protocol is equivalent to compromising Alice's long-term private key, i.e., to finding r ∈ S such that z = r (x).

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with the commitment step by sending her own commitment y ∈ X to Bob, such that s (x) = y and t (y ) = z for some s , t ∈ S. Since she should be prepared to respond to both challenges c = 0 and c = 1, she should be able to produce s as well as t . Therefore, she is able to also produce their composition t s . The result now follows from: z = t (y ) = t (s (x)) = (t s )(x), so that r = t s .

Protocol III

In this protocol, the hardness of obtaining the long-term private key for the adversary can be based on "most any" search problem; we give some concrete examples in the following sections, whereas in this section, we give a generic protocol.

1. Alice's public key consists of a set S that has a property P. Her long-term private key is a proof (or a "witness") that S does have this property. We are also assuming that the property P is preserved by isomorphisms. 2. To begin authentication, Alice selects an isomorphism ϕ that can be applied to S, and sends the set S 1 = ϕ(S) (the commitment) to Bob. 3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the isomorphism ϕ to Bob, and Bob checks (i) if ϕ(S) = S 1 and (ii) if ϕ is an isomorphism.

• If c = 1, then Alice sends a proof of the fact that S 1 has the property P to Bob, and Bob checks its validity.

The following proposition says that in the Protocol III, successful forgery is equivalent for the adversary to finding Alice's private key from her public key, which is equivalent, in turn, to giving a proof (or a "witness") that S does have the property P. The latter problem can be selected from a large pool of NP-hard problems (see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]).

Proposition 3. Suppose that after several runs of steps ( 2)-(3) of the above Protocol III, both values of c are encountered. Then successful forgery in such a protocol is equivalent to finding a proof of the fact that S has the property P.

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with the commitment step by sending her own commitment S 1 to Bob. Since she should be prepared to respond to the challenge c = 0, she should know an isomorphism ϕ : S → S 1 . On the other hand, since she should be prepared for the challenge c = 1, she should know a proof of the fact that S 1 has the property P. Therefore, since ϕ is invertible, this implies that she can produce a proof of the fact that S has the property P. This completes the proof in one direction.

The other direction is trivial.

Remark 1. We note that finding a proof of the fact that a given S has a property P is not a decision problem, but rather a search problem (sometimes also called a promise problem), so we cannot formally allocate it to one of the established complexity classes. However, we observe that, if there were an algorithm A that would produce, for any S having a property P, a proof of that fact in time bounded by a polynomial P (|S|) in the "size" |S| of S, then, given an arbitrary S , we could run the algorithm A on S , and if it would not produce a proof of S having the property P after running over the time P (|S |), we could conclude that S does not have the property P, thereby solving the corresponding decision problem in polynomial time.

Subgraph isomorphism (Protocol II)

There is a classical realization of the Protocol I from Section 3 (actually, it also fits in with the Protocol III), based on the Graph Isomorphism problem, see [START_REF] Golderich | Proofs that yield nothing but their validity, or all languages in NP have zero-knowledge proof systems[END_REF]. We note that this decision problem is in the class NP, but it is not known to be NP-hard. Moreover, generic instances of this problem are easy, because two random graphs are typically non-isomorphic for trivial reasons. However, the problem that is actually used in [START_REF] Golderich | Proofs that yield nothing but their validity, or all languages in NP have zero-knowledge proof systems[END_REF] is a promise problem: given two isomorphic graphs, find a particular isomorphism between them. This is not a decision problem; therefore, if we are to allocate it to one of the established complexity classes, we need some kind of "stratification" to convert it to a decision problem. This can be done as follows. Any isomorphism of a graph Γ on n vertices can be identified with a permutation of the tuple (1, 2, . . . , n), i.e., with an element of the symmetric group S n . If we choose a set of generators {g i } of S n , we can ask whether or not there is an isomorphism between two given graphs Γ and Γ 1 , which can be represented as a product of at most k generators g i . To the best of our knowledge, the question of NP-hardness of this problem has not been addressed in the literature, but it looks like a really interesting and important problem.

Anyway, in this section, we describe a realization of the Protocol II from Section 3, based on the Subgraph Isomorphism problem. It is very similar to the Graph Isomorphism problem, but unlike the Graph Isomorphism problem, it is known to be NP-hard, see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]Problem GT48]. We also note that this problem contains many other problems about graphs, including the Hamiltonian Circuit problem, as special cases. The Subgraph Isomorphism problem is: given two graphs Γ 1 and Γ 2 , find out whether or not Γ 1 is isomorphic to a subgraph of Γ 2 .

1. Alice's public key consists of two graphs, Γ and Γ 2 . Alice's private key is a subgraph Γ 1 of Γ 2 and an isomorphism ϕ : Γ → Γ 1 . 2. To begin authentication, Alice selects an "intermediate" graph Λ, which is a subgraph of Γ 2 , and an isomorphic embedding ψ : Γ → Λ, with ψ(Γ) = Γ 1 . Then she sends the graph Λ (the commitment) to Bob, while keeping the embeddings ψ : Γ → Λ and τ : Λ → Γ 2 to herself. 3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the embedding ψ to Bob, and Bob checks if ψ is actually an embedding of Γ into Λ.

• If c = 1, then Alice sends the embedding τ to Bob, and Bob checks if τ is actually an embedding of Λ into Γ 2 .

We point out here the following corollary to our Proposition 2:

Corollary 1. Suppose that after several runs of steps ( 2)-( 3) of the above protocol, both values of c are encountered. Then successful forgery in such a protocol is equivalent to compromising Alice's long-term private key, i.e., to finding an embedding ϕ of Γ into Γ 2 .

We note that the problem alluded to at the end of this corollary (the Subgraph Isomorphism problem) is NP-complete, see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]Problem GT48].

A few more comments are in order.

• As it is usual with Feige-Fiat-Shamir-like authentication protocols, steps ( 2)-( 3) of this protocol have to be iterated several times to prevent a successful forgery with non-negligible probability.

• When we say that Alice "sends" (or "publishes") a graph, that means that Alice sends or publishes its adjacency matrix. Thus, the size of Alice's public key is roughly 2n 2 , where n is the number of vertices in Γ.

• When we say that Alice "sends a subgraph" of a bigger graph, that means that Alice sends the numbers {m 1 , m 2 , . . . , m n } of vertices that define this subgraph in the bigger graph. When she sends such a subgraph together with an isomorphism from another (sub)graph, she sends a map (k 1 , k 2 , . . . , k n ) → (m 1 , m 2 , . . . , m n ) between the vertices.

• Alice can construct the "intermediate" graph Λ at Step 2 of the protocol by simply discarding some randomly selected vertices (together with incident edges) of the graph Γ 2 that do not belong to Γ 1 . Since Alice knows an embedding of Γ into Γ 2 , she will then know an embedding of Γ into Λ, too.

Graph homomorphism (Protocol I)

In this section, we use the Graph Homomorphism problem that is known to be NP-complete, see [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]Problem GT52]. We have to briefly describe this problem first.

Given two graphs, Γ 1 and Γ 2 , the Graph Homomorphism problem asks whether or not there is a homomorphism f : Γ 1 → Γ 2 , i.e., a mapping from the vertex set of Γ 1 onto the vertex set of Γ 2 such that for any two adjacent vertices v 1 , v 2 of Γ 1 , their images f (v 1 ) and f (v 2 ) are adjacent in Γ 2 . We note that the Graph Homomorphism problem remains NP-complete even if Γ 2 is a triangle, see [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]Problem GT52].

Now the authentication protocol is as follows.

1. Alice's public key consists of two graphs, Γ 1 and Γ 2 . Alice's long-term private key is a homomorphism α : Γ 1 → Γ 2 . 2. To begin authentication, Alice selects a graph Γ together with a homomorphism β : Γ → Γ 1 and sends the graph Γ (the commitment) to Bob, while keeping β to herself. 3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the homomorphism β to Bob, and Bob checks whether β(Γ) = Γ 1 and whether β is a homomorphism (i.e., whether β takes adjacent vertices to adjacent ones).

• If c = 1, then Alice sends the composition αβ = β(α) to Bob, and Bob checks whether αβ(Γ) = Γ 2 and whether αβ is a homomorphism.

We now give a couple of comments on the above protocol.

• To generate her public key, Alice starts with a random graph Γ 2 and constructs Γ 1 as follows. She selects randomly a subset V of the vertex set of Γ 2 , and for each vertex v from V does the following. First, she replaces v by several new vertices u 1 , . . . , u k . These vertices are going to be mapped onto the vertex v by the homomorphism that Alice is trying to construct. Thus, Alice arbitrarily connects each u i to some other vertices adjacent to v. She repeats this procedure with each vertex from V and obtains her private homomorphism α as a composition of intermediate homomorphisms.

The same way Alice can construct a graph Γ from Γ 1 at the commitment step.

• We note that, instead of trying to find a homomorphism between given graphs, Eve can try to find any graph Γ that would map homomorphically onto both Γ 1 and Γ 2 , together with the corresponding homomorphisms. Then she can interfere at the commitment step and send this Γ to Bob, which will allow her to respond to either challenge by Bob successfully. The problem of finding such a graph Γ (a "common multiple" of two given graphs, so to speak) is of independent interest. We do not know whether it has been previously addressed in the literature.

Graph colorability (Protocol III)

Graph colorability (more precisely, k-colorability) appears as problem [GT4] on the list of NP-complete problems in [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]. We include an authentication protocol based on this problem here as a special case of the Protocol III from Section 3. We note that a (rather peculiar) variant of this problem was shown to be NP-hard on average in [START_REF] Venkatesan | Random Instances of a Graph Coloring Problem are Hard[END_REF] (the latter paper deals with edge coloring though). As we have pointed out in our Section 3, "most any" search problem can be used in Protocol III; we choose the graph colorability problem here just to illustrate this point, i.e., we do not claim that this is the best choice of underlying problem in terms of security, say.

1. Alice's public key is a k-colorable graph Γ, and her private key is a k-coloring of Γ, for some (public) k. 2. To begin authentication, Alice selects an isomorphism ψ : Γ → Γ 1 , and sends the graph Γ 1 (the commitment) to Bob. 3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the isomorphism ψ to Bob. Bob verifies that ψ is, indeed, an isomorphism from Γ onto Γ 1 .

• If c = 1, then Alice sends a k-coloring of Γ 1 to Bob. Bob verifies that this is, indeed, a k-coloring of Γ 1 .

Again, a couple of comments are in order.

• It is obvious that if Γ is k-colorable and Γ 1 is isomorphic to Γ, then Γ 1 is k-colorable, too.

• When we say that Alice "sends a k-coloring", that means that Alice sends a set of pairs (v i , n i ), where v i is a vertex and n i are integers between 1 and k such that, if v i is adjacent to v j , then n i = n j .

• Alice's algorithm for creating her public key (i.e., a k-colorable graph Γ) is as follows. First she selects a number n of vertices; then she partitions n into a sum of k positive integers: n = n 1 + . . . + n k . Now the vertex set V of the graph Γ will be the union of the sets V i of cardinality n i .

No two vertices that belong to the same V i will be adjacent, and any two vertices that belong to different V i will be adjacent with probability 1 2 . The k-coloring of Γ) is then obvious: all vertices in the set V i are colored in color i.

• If c = 0, then Alice sends the automorphism ψ to Bob, and Bob checks whether v = ψ(h) and whether ψ is an automorphism.

• If c = 1, then Alice sends the composite endomorphism ψϕ = ψ(ϕ) to Bob, and Bob checks whether ψϕ(g) = v and whether ψϕ is an endomorphism.

Here we point out that checking whether a given map is an endomorphism (or an automorphism) depends on how the platform group G is given. If, for example, G is given by generators and defining relators, then checking whether a given map is an endomorphism of G amounts to checking whether every defining relator is taken by this map to an element equal to 1 in G. Thus, the word problem in G (see e.g. [START_REF] Lyndon | Combinatorial Group Theory[END_REF] or [START_REF] Myasnikov | Group-based cryptography[END_REF]) has to be efficiently solvable.

Checking whether a given map is an automorphism is more complex, and there is no general recipe for doing that, although for a particular platform group that we describe in subsection 7.1 this can be done very efficiently. In general, it would make sense for Alice to supply a proof (at the response step) that her ψ is an automorphism; this proof would then depend on an algorithm Alice used to produce ψ. Proposition 5. Suppose that after several runs of steps ( 2)-( 3) of the above protocol, both values of c are encountered. Then successful forgery is equivalent to finding an endomorphism ϕ such that ϕ(g) = h, and is therefore NP-hard in some groups (and rings) G.

The proof is similar to that of Proposition 4. We also note that in [START_REF] Grigoriev | On the complexity of the "wild" matrix problems, of the isomorphism of algebras and graphs[END_REF], a class of rings is designed for which the problem of existence of an endomorphism between two given rings from this class is NP-hard.

A particular example of a group with the NP-hard endomorphism problem is given in the following subsection. Definition 1. Let F n be the free group of rank n. The factor group F n /F n is called the free metabelian group of rank n, which we denote by M n . Roman'kov [START_REF] Roman'kov | Equations in free metabelian groups[END_REF] showed that, given any Diophantine equation E, one can efficiently (in linear time in the "length" of E) construct a pair of elements u, v of the group M 2 , such that to any solution of the equation E, there corresponds an endomorphism of M 2 that takes u to v, and vice versa. Therefore, the endomorphism problem in M 2 is NP-hard (see e.g. [START_REF] Garey | Computers and Intractability, A Guide to NP-Completeness[END_REF]Problem AN8]). Thus, if a free metabelian group is used as the platform for the protocol in this section, then, by Proposition 5, forgery in that protocol is NP-hard.

Platform: Z * p

Here the platform group is Z * p , for a prime p. Then, since Z * p-1 acts on Z * p by automorphisms, via the exponentiation, this can be used as the platform for the Protocol II. In this case, forgery is equivalent to solving the discrete logarithm problem, by Proposition 5.

Proposition 1 .

 1 Let A, B and C be sets, and let ϕ : A → B and ψ : B → C be two functions such that computing ϕ(x) as well as ψ(x) takes time polynomial in |x| for any x for which the corresponding function is defined. (a) If ψ is hard-to-invert and the domain of ψ is contained in the range of ϕ, then the composition ϕψ = ψ(ϕ) is hard-to-invert. (b) If ϕ is hard-to-invert, ψ is injective (i.e., one-to-one), and the domain of ψ contains the range of ϕ, then the composition ϕψ = ψ(ϕ) is hard-to-invert. Proof. (a) Let f = ψ(ϕ) : A → C. By way of contradiction, suppose there is an algorithm A that computes some f -1 (c) in polynomial time in |c| for every c ∈ f (A).

7. 1 .

 1 Platform: free metabelian group of rank 2A group G is called abelian (or commutative) if [a, b] = 1 for any a, b ∈ G, where [a, b] is the notation for a -1 b -1 ab. This can be generalized in different ways. A group G is called metabelian if [[x, y], [z, t]] = 1 for any x, y, z, t ∈ G. The commutator subgroup of G is the group G = [G, G]generated by all commutators, i.e., by expressions of the form [u, v] = u -1 v -1 uv, where u, v ∈ G. The second commutator subgroup G is the commutator of the commutator of G.
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 Proposition 4. Suppose that after several runs of steps ( 2)-(3) of the above protocol, both values of c are encountered. Then successful forgery is equivalent to finding a k-coloring of Γ.

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with the commitment step by sending her own commitment Γ 1 to Bob. Since she should be prepared to respond to the challenge c = 0, she should know an isomorphism ψ between Γ and Γ 1 . On the other hand, since she should be prepared for the challenge c = 1, she should be able to produce a k-coloring of Γ 1 . Since she knows ψ and since ψ is invertible, this implies that she can produce a k-coloring of Γ. This completes the proof in one direction.

The other direction is trivial.

Endomorphisms of groups or rings (Protocol I)

In this section, we describe a realization of the Protocol I from Section 3 based on an algebraic problem known as the endomorphism problem, which can be formulated as follows. Given a group (or a semigroup, or a ring, or whatever) G and two elements g, h ∈ G, find out whether or not there is an endomorphism of G (i.e., a homomorphism of G into itself) that takes g to h.

For some particular groups (and rings), the endomorphism problem is known to be equivalent to the Diophantine problem (see [START_REF] Roman'kov | Unsolvability of the problem of endomorphic reducibility in free nilpotent groups and in free rings[END_REF][START_REF] Roman'kov | Equations in free metabelian groups[END_REF]), and therefore the decision problem in these groups is algorithmically unsolvable [START_REF] Yu | Hilbert's 10th Problem (Foundations of Computing)[END_REF], which implies that the related search problem does not admit a solution in time bounded by any recursive function of the size of an input.

We also note at this point that there is evidence (see e.g. [START_REF] Rónyai | Simple Algebras Are Difficult[END_REF]) that finding an isomorphism (or a nontrivial homomorphism) between (finitedimensional) algebras over Q is hard.

Below we give a description of the authentication protocol based on the endomorphism problem, without specifying a platform group (or a ring), and then discuss possible platforms.

1. Alice's public key consists of a group (or a ring) G and two elements g, h ∈ G, such that ϕ(g) = h for some endomorphism ϕ ∈ End(G). This ϕ is Alice's private key. 2. To begin authentication, Alice selects an automorphism ψ of G and sends the element v = ψ(h) (the commitment) to Bob. 3. Bob chooses a random bit c and sends it to Alice.