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MULTIPLICATIVE CO~PLEXITY OF A PAIR OF BILINEAR FORMS AND OF THE POLYNOMIAL ~LTIPLICATION

 ). This model well simulates usual computation procedures with branching and cycling instructions depending only on the size of the initial data. This model is also convenient for studying complexity properties of parallel computations -"width" is the minimal number of processors on which the given computation can be realized with the minimal time equal to the "depth". Many well known procedures for algebraic calculations (e.g. multiplication of polynomials, matrices) can be described as straight-line computations. Prom the technical viewpoint the model under consideration permits to apply for achieving of bounds of computational cor@lexity with its help different algebraic appara-

In the present report we'll consider a problem of computation of a set of bilinear forms over noncommutative indeterminates ~C ~ ~ considered earlier in literature ( [I] , [START_REF] Winograd | On the number of multiplications necessary to com~ute certain functions[END_REF], [6] ). Straight-line~ ~J computa-~euJ tions will use 4 t~o-argument arithmetic operations an~[ one-argument operations of multiplications by elements of some field ~ (further we'll mean it as the main field). We fix the following measure of complexity. By multiplicative complexity (or simply complexity) of a straight-line computation we'll mean a number of two-argument multiplications and divisions in it ( [START_REF] Strassen | Die Berechnungskomplexit~t yon elementarsymmetrischen ~unktionen und yon Interpolationskoeffizienten[END_REF],[43, [6]). The complexity of a given set ~ is defined as usually as the minimal complexity of stralght-line computations which compute S . Using the results of [START_REF] Winograd | On the number of multiplications necessary to com~ute certain functions[END_REF], [6], we can bound ourselves (without increasing the bounds of complexity) only by straight-line computations of the following kind The complexity of a set of bilinear forms is equal to the rang of a set of its matrices of coefficients (the rang of a set of matrices is defined as the minimal number of matrices of rang 1 linear cover of which contains the given set of matrices). Analogously can be defined the rang of tensor [6j, the rang of an algebra as the rang of its structure tensor and the rang of a group G over a field F as the rang of its group algebra F ~G) ([ 6)). The rang of one matrix in the above-mentioned definition is equal to its usual rang.

In this report the following results are presented: the explicit formula for the rang of a pair of matrices over an algebraicallyclosed field (theorem I) and some its corollaries; the new upper bound on the multiplicative complexity over a finite field of the polynomial multiplication (theorem 2); the explicit form of the group of all rang-unchanging linear nonpeculiar transformations of the space of tensors of any given dimension (theorem 3); two effective methods of constructing of son~ tensors of rang non less that critical -such number that "almost every" tensor is of rang equal to this number (lemma 4.1 and theorem 4); some bounds on the critical rang (statemerit 4.2).

Pot any pair A , B of the square matrices we define the relation

BgA<=> z,~ (A,B)-z~ (A)

Lemma 1.1. The relation B . ~A is equivalent to the existence of such a matrix C that I)B=AC;

2) C is of the simple spectrum;

3) Ke~ C-~ Ket B -~ k'e't A

~'e define the relative rang of the matrix ~ relatively to the matrix A as follows:

(B/A) = m nc4 A z4 (B-C) Lemma 1.2.

~or every pair A ~B of the square matrices (A,B) = (A/+ (B/A)

(The proof of these two lemmas in the particular case when the matrix A is a unit one can be found in [START_REF] Rp~rgp~eb | 0d a~eOpa~eczo~ Ca_OZHOCTH Bh~Ac~e~ ~apH 6Ha~-ae~m~x @opM. 3an.~ay~.ce~sapoB ~e2m£vp. o~[END_REF]). We assume further in this item that the main field F is algebraically-closed.

Corollary 1. 

~ (A,B)= ~L:~(aL+'~)+ ~ j_ ~ (~i+~)+p +d-

The lemmas 1.1 and 1.2 are used in the proof of the theorem. Corollary 1.4. For nq X~(m~n)matrices over an algebraicallyclosed field (here and further [~] -is entier of 3~, t~/--L-~J ).

2. In the second item the new upper bound on the multiplicative complexity over the finite field F of the polynomial multiplication is proved.

The achieved upper bound has the form R'~q (D) where q is the characteristic of the fleld" F and the func~icn" ~q (N) grows (about f~ ) slowly than any fixed iteration of logarithm. It's better (in the sense of the multiplicative complexity) than earlier known upper bounds [START_REF] Karatsuba | ~u~tip~icatlon of multidigit numbers on automata[END_REF]- [START_REF] Schsnhage | Schnelle ~9~ltiplikatiOn yon Polynomen ~ber K~rpern der Charakteristik 2[END_REF] (in [START_REF] Schsnhage | Schnelle ~9~ltiplikatiOn yon Polynomen ~ber K~rpern der Charakteristik 2[END_REF] the bound C -R ' ~I R , ~n is presented).

The multiplicative complexity over the field F of the multiplication of two polynomials both of degree N (we denote this number by ~F (Pn)) is equal to the rang (or multiplicative complexity) over the field ~ of the following set of bilinear forms: 

F(Cl)(Pn-i )-< ]+1).cdq

n. q(n)

Let's remark that the function ~^(~) is inverse to some function 3of Grzegorczy~ o ~H _,_,~ "e a s y ( [START_REF] Grzegorczyk | Some classes of ~ecursive functions, Rozprawy, ~atematiczne ~[END_REF]). from the class t ~\ hl r r h 3. The following two kinds of transformations of the tensorproduct space UI~... ~ U K of the vector spaces UI~...~K doesn't change the rang of the tensors:

1) a nonpeculiar linear transformation in any componentO;(1-~L6K);----2) if for some L~ j the mappingf:UL--~U J is an isomorphism~--of the vector spaces, then the rang is unchanged under the following transformat ion:

-I Theorem 3. The group of all nonpeculiar linear transformations of the space ~I~.,-~UK, mapping the tensors of the rang 1 to the tensors of the rang I, coincides with the group generated by the transformations of the kinds I), 2). ~he idea of constructing %ensors of the rang non less the critical in the theorem 4 is like the idea of Strassen [START_REF] Strassen | Polynomials which are hard to compute[END_REF] for constructing the polynomials which are hard to compute, but our idea (in applying to the problem under consideration) gives some more strong lower bound (the critical rang), using unfortunately very fast-growing functions ~, ~.

In conclusion we bound the value of the critical rang. 

  (bilinear chain): at the first stage -computation of some linear forms~(fii~C;,_~ ~ ~ --r ~, ~v ~ at the second stage -execution of two-argument multiplications of the klnd(~l. I.g~I:!~) (~ ~ ~) C ~ K ~ N ); at the last stage -computation of some linear combinations of bilinear forms achieved at the second stage ( N -is the complexity of the bilinear chain).

  [START_REF] Strassen | Die Berechnungskomplexit~t yon elementarsymmetrischen ~unktionen und yon Interpolationskoeffizienten[END_REF]. For the fixed hi ~ (~I-L n)the rang of a pair of ~1×h matrices is equal to m L n ~ ~,~ ~} everywhere outside some Zarisskiclosed set of the dimension less than 2 ~I n .If the square matrices C ~ are nonpeculiar then ~9(A,B)=~ (CA~,C~9),so i t , s sufficient to find the rang of a pair of the matrices in the canonical Weierstrass-Y~eonecker form ([8], oh.12). According to the Kronecker's theorem every pair A ,B of I"IIXI"I matrices (over an algebraically~closed field) by the mentioned transformation can be reduced to the following quasidiagonal form: At the table all the possible kinds of the blocks are presented (the matrices in any pair of the corresponding in A and ~ blocks are of the same dimensions).Singular blocks GX(G+J)of the kind L : LCL z Singular blocks(6+~)X Regular blocks ~X S of the kind ~ : Regular square blocks of the kind O<D Theorem I. Let a pair A ~ of the matrlces over an algebralcally closed field in its canonical ~Yeierstrass-Kronecker form contains: blocks of the kind ~ (LG~ , la ~); b) K blocks of the kind ~ :(Kg,~1 K~I)'*"'gKSK~ Ka ); C) for every~ d~Lblocks each of the kind X and of the~d~-mension non less than 2x2 (may be ~-o o ) and l e t ~-m G ~ ~ ~, and all the regular blocks in both A and B form the square ~ M p matrices. Then

  --~--":I'b L~K-{,>O-~K~'~Iq~ over the noncommutative ZK O~i,,K_i Ln

4 .

 4 Henceforth we assume that the main field ~ of the characteristic ~ is algebraically-closed, and let ~q be the primitive field of the characteristic ~ ( ~ is prime or equal to zero). i Lemma 4.1. There exist such primitive-recursive functions ~:q:~qCnt,..., nK) , d:d, Cnl,...~nK) ~ M: M (h1~..., nK)that the rang of any tensor from the space Flqfl~)...~)FtlK is equal to ~q(n1~...~DK)(the critical rang) everT~there on some nonempty Zarisski-open see, and the coefficients of any tensor which rang is less than ~q satisfy some algebraic equation with the coefficients from ~O , of degree less than d and with the sum of the modules of the "coefficients (in the case when ~ = 0 ) less~ thanThe functions M ~ can be found in the class ~S of Grzegorczyk's hie rarchy.Theorem 4~j I) I ~t ~. , * ~E F q ~ --.--~ _ (~=N1.'°',D~be. ,. some elements, of. the degrees d 2 ~"',~2 over ~q , and~Elet_ ~I~'"~ ~ be the. coefflclents. (in any order) of some tensor FnnI(E)...@F'GrIK. ~e n Z ~( ~) ~' ~ 2) Let~=1 .... ~+~=M(ff~(g+1))~d+1 ~jl i. be the~o~efficients (in any order) of the integer t e n s o r ~1 ® . . . ~ ~-~ K • Then ~( ~) ~t o ( t h e numbers ~q ~ are taken from the lemma 4.1).

Statement 4 . 2 .

 42 For every ~ ~.--~ ~
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In the more general form these inequalities were proved in the recently published [START_REF] Fiduccia | Algebras having linear multiplicative complexity[END_REF].

Lemma 2.2. Let ~=~DI ~ . Then there is the following decomposition at the direct sum:

KC)

F(q)(Z~)-~ ~L • F (q

where K LJm for every ~ (certainly,~CK~= ~ !.

Let's define the ftmction ~ n (R) in the follo~lug m a n ~. We define ~O( 2 Theorem 2. ~or every

½F(q)(pn_~ )_~ n.~q(n)

We use the #~duction on t' 1. • Let for l'1 ~ ~(~>~4)the inequality is true. We set ~= ~-~ and using in succession the first inequality from the lemma 2.1, the lemma 2.2 and the inequality ~I ~ @ ~) ( ~) I -Z ~( ~) for any algebras ~, ~ (~]), the second inequality from the lemma 2.1, the induction conjecture, again lemma 2.2 and the monotony about chain of inequalities: ~F(q; (P[(~-~