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Abstract

Thermal stress weathering is now recognized to be an active and significant geomorphological process on airless bodies.
This study aims to understand the key factors governing thermal stresses in rocks on airless bodies through extensive
numerical calculations and analytic analyses. Some of the key factors governing thermal stresses, are found to be the
diurnal surface temperature variation, the second-order spatial gradient of the temperature field, the thermal skin depth,
and the rock size of interest. Microscopic (grain-scale) thermal stresses are driven primarily by the amplitude of the
magnitude of the maximum diurnal temperature variation at said depth. Macroscopic (rock-scale) thermal stresses are
more complex, and their nature fundamentally depends on two length scales: the thermal skin depth and the rock size of
interests. For rock sizes larger than the thermal skin depth, macroscopic thermal stresses are driven primarily by second
(and higher) order spatial gradients of temperature. For rock sizes smaller than the thermal skin depth, macroscopic
thermal stresses are primarily driven by the ratio of rock size to thermal skin depth with macroscopic thermal stresses
being greatest when this ratio is 1/2. Additionally, scaling relations for diurnal surface temperature variation, time-rate-
of-change of surface temperature, as well as peak microscopic (grain-scale) and macroscopic (rock-scale) thermal stresses
are derived to provide a more accessible modeling tool. These scaling relations are remarkably accurate when compared to
both the numerical calculations as well as three-dimensional finite element calculations. The model formulation, results,
and scaling relations provided here allow the estimation of diurnal temperatures and thermal stresses on rocks of various
size and materials on airless bodies at any orbital distance with a broad spectrum of spin rates. Lastly, we postulate and
confirm that there is a critical spin rate where macroscopic thermal stresses will be greatest.
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1. Introduction

In most terrestrial environments, geomorphology is gov-
erned by a combination of physical, chemical, and biologi-
cal processes with aeolian, fluvial, frost, and chemical pro-
cesses being the primary drivers (Wellman and Wilson, 1965;
Cooke and Smalley, 1968; Hallet, 2006; Veverka, 1984). In
arid terrestrial environments many of these processes are
inactive (Viles et al., 2018; Hall, 1999), and even fewer are
active in airless, extraterrestrial environments. Surface mor-
phology evolution on airless planetary bodies, such as the
Moon, Mercury, and asteroids, has historically been pri-
marily attributed to impact cratering, micrometeorite bom-
bardment (Housen et al., 1979; Horz and Cintala, 1997);
Collisions with solar and galactic cosmic rays, irradiation,
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implantation, and sputtering from solar wind particles also
cause a space weathering of these surfaces (Brunetto et al.,
2015). Despite the fact that these airless bodies experience
large diurnal temperature variations (on the order of „ 100
K), thermal stress weathering has long been presumed to
be of little significance in the inner solar system. Within
the last decade, thermal stress weathering has been revis-
ited with greater rigour and is now suspected to play an im-
portant role in rock breakdown, regolith generation, crater
degradation, and landscape evolution in Earth’s deserts and
cold regions (Hall, 1999; Lamp et al., 2017), Mars (Viles
et al., 2010; Eppes et al., 2015), Mercury (Molaro and Byrne,
2012), Moon (Molaro et al., 2015; Mazrouei et al., 2016; Mo-
laro et al., 2017), near-Earth asteroids (Graves et al., 2019;
Delbo et al., 2014; Dombard et al., 2010; Jewitt, 2012), and
perhaps comets (Shestakova and Tambovtseva, 1997; Tam-
bovtseva et al., 1999; Pajola et al., 2017; El-Maarry et al.,
2015; Aĺı-Lagoa et al., 2015).

Field observations of thermal stress weathering on Earth
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have been well-documented (Ollier, 1969; Rice, 1976; Sieges-
mund et al., 2000; Koch and Siegesmund, 2004; Weiss et al.,
2004; Viles, 2005; Sumner et al., 2007; Eppes et al., 2010;
Aldred et al., 2016; Collins and Stock, 2016; Lamp et al.,
2017). In particular, McFadden et al. (2005), Eppes et al.
(2010) and (Eppes et al., 2016) observed that most crack
features in boulders lying in the deserts of Arizona, east
United States, Australia, and Mongolia exhibited an N-S
orientation, strong circumstantial evidence that these crack
features were driven by thermal stresses induced by heat-
ing from the sun moving along an E-W path relative to the
boulder. Similar crack feature orientations have be observed
by the rovers on Mars (Eppes et al., 2015). If thermal stress
weathering is operative in bodies with atmospheres, then it
is very likely more effective on airless bodies where the lack
of an atmosphere enables larger diurnal temperature varia-
tions and faster rate of temperature change (Jewitt and Li,
2010). However, even in arid terrestrial environments there
remains some degree of doubt regarding the assumption that
thermal stress weathering is dominate over the freeze-thaw
mechanism (Carpinteri and Paggi, 2007; Hall, 1999). This
assumption has been addressed, to some degree, through
laboratory experiments. The earliest primitive laboratory
experiments were carried out by Griggs (1936) and Black-
welder (1933), who concluded that thermal stress weathering
is likely insignificant, unless rapid cooling is achieved via wa-
ter quench. However, more modern laboratory experiments
of (Luque et al., 2011; Levi, 1973; Delbo et al., 2014; Collins
and Stock, 2016; Hazeli et al., 2018) have demonstrated that
thermal stress weathering is operative even in anhydrous en-
vironments.

Most of our classical understanding of rock breakdown and
subsequent regolith evolution on airless bodies in the solar
system has been gleaned from observations on the Moon
coupled with studies of returned samples of lunar regolith
(Gault et al., 1972; Gault and Wedekind, 1978; Basilevsky
et al., 2013; Krishna and Kumar, 2016). However, recent
observations on near-Earth asteroids (NEAs), e.g. Itokawa
(Yano et al., 2005) and 433 Eros (Bell et al., 2002; Clark
et al., 2001; Murchie et al., 2002), and main-belt asteroids
(MBAs), e.g. 243 Ida (Veverka et al., 1996; Chapman, 1996),
suggest that regolith generation and evolution on asteroids
is quite different from that of the Moon (Gaffey, 2010).
Therefore, in most of the cases expanding our Moon under-
standings and observations to other solar system objects,
e.g. NEAs, is not necessarily appropriate.

In the case of asteroids, tests and observations directly
on these bodies are extremely valuable, but extremely rare.
Numerical and analytical studies in conjunction with remote
experiments in this area would increase our understanding
of their surface evolution. In order to assess the effects of
thermal cycles on the surface of asteroids, experiments have
been conducted so far on asteroid analogs. Levi (1973) con-
firmed the thermal fatigue hypothesis in specimens of two
H-chondrites. Recently Molaro and Byrne (2012); Molaro

et al. (2015, 2017) performed series of finite element studies
to show the significance of thermal stress on airless bodies.
Delbo et al. (2014); Hazeli et al. (2018) experimentally tested
and conducted numerical studies to respectively determine
thermal cycling degradation rates of meteorites and regolith
on NEAs. These works suggest that the lifetime of surface
rocks against thermal fatigue is, in general, shorter than the
lifetime due to breakdown by micrometeorite bombardment.

However, recently Basilevsky et al. (2015) raised doubts
regarding the effectiveness of thermal fatigue. They note
that lunar observations show large boulders with no clear
signs of thermal degradation even after 20 ´ 400 Ma.
Basilevsky et al. (2015) conclude that this is evidence of
irregularities in the model of Delbo et al. (2014), which cal-
culates thermal degradation rates on fast rotating (6 hour
periods) NEAs. In their claim, Basilevsky et al. (2015) ap-
proximate thermal stresses as being independent of the ro-
tation period, and thus assume that the degradation rates
per thermal cycle on fast rotating (6 hour periods) bodies
is approximately the same as on very slow rotating bodies
with „700 hour periods. This was shown to be poor ap-
proximation by Ravaji et al. (2018), who demonstrated that
macroscopic thermal stresses on a body with a „700 hour
period may be an order of magnitude smaller than on a body
with a 6 hour period. Thus, the lunar observations noted by
Basilevsky et al. (2015) are not necessarily evidence of irreg-
ularities in the model of Delbo et al. (2014), since the macro-
scopic thermal stresses are so different in the two cases. Here
we derive a more accurate scaling approach that accounts for
the strong dependence of spin rate on thermal stresses.

The efficacy of thermal stress weathering has tradition-
ally been believed to be driven largely by two main factors:
(i) diurnal surface temperature variation ∆Ts (Todd, 1973;
Yong and Wang, 1980; Molaro et al., 2015) and (ii) rate
of surface temperature change dTs{dt (Todd, 1973; Richter
and Simmons, 1974; Molaro et al., 2017). Moreover, these
two driving factors are themselves largely governed by many
other conditions, e.g. orbital distance, rotation rate, orien-
tation relative to the Sun, latitude, presence of shadows, at-
mosphere, and thermophysical material properties. For ex-
ample, Molaro et al. (2017) noted that thermal stress weath-
ering is anticipated to be the most effective on slow rotating
bodies, e.g. the Moon, as well as bodies with small orbital
distances, e.g. Mercury and the NEA (3200) Phaethon which
have perihelion distances of 0.3 and 0.14 AU, respectively.
Here, we propose quantitative classifications of slow/fast ro-
tating bodies from a thermal stress standpoint and derive
simple scaling relations for thermal stresses that demon-
strate strong agreement with the full three-dimensional fi-
nite element calculations of Molaro et al. (2015, 2017).

The current paper aims to provide a more general under-
standing of thermal stresses in rocks on the surface of celes-
tial bodies with a vast range of spins and orbital distances
as well as thermophysical and thermoelastic properties. The
continuum mechanics perspective on the thermal stresses is
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discussed in section 2. The thermal stress weathering model
utilized in this paper is briefly outlined in section 3. Key
factors governing diurnal temperature variations, time-rate-
of-change, spatial gradients, and temperature fields are dis-
cussed in section 4. In section 5 we explore implications of
the key aspects of the spatiotemporal temperatures fields
on thermal stresses. This section corroborates, builds upon,
and attempts to generalize recent work of (Molaro et al.,
2015, 2017), who first reported several of the key factors
discussed here. In particular, our discussion and analytic
analysis of macroscopic thermal stresses section 5 provides
additional interpretations and clarity. Simple, yet accurate
and powerful scaling relations provided in this sections are
indeed fruits of such a deep fundamental approach. Finally,
summary and conclusions are provided in section 6.

2. The continuum mechanics perspective on thermal
stresses and terminology

In much of the literature on thermal stress weathering,
the two main driving factors, i.e. ∆Ts and dTs{dt, have been
regarded as different mechanisms, typically termed thermal
fracture/fatigue and thermal shock, respectively. However,
these two mechanisms are, in fact, quite similar from a con-
tinuum mechanics standpoint. Both mechanisms involve the
development of internal stresses that are required to ensure
that the compatibility equation, c.f. (Sadd, 2014), of contin-
uum mechanics is satisfied, i.e.

∇ˆ p∇ˆ εq “ 0. (1)

These compatibility equations pertain to the total strain
tensor ε, which may be additively decomposed into elas-
tic and thermal parts, respectively, i.e. ε “ εe ` εt. The
thermal strain tensor mathematically describes the thermal
expansion field of the body, which for isotropic materials is
simply εt “ α∆T I, where α is the local linear thermal ex-
pansion coefficient and I denotes the second-order identity
tensor. The elastic strain tensor εe describes the part of the
deformation that is due to internal stresses (e.g. stretching
resulting from an applied force). The total strain tensor re-
lates to the actual observed deformation of the body, which
is a combination of elastic and thermal contributions.

Consider now a stress-free (isotropic) body, i.e. εe “ 0,
that is free to expand in all directions (unconstrained). As
such, the total strain tensor is exactly equal to the thermal
strain tensor, i.e. ε “ εt “ α∆T I. It is easily seen that both
homogeneous and linear spatial variations of the thermal
expansion field α∆T satisfy Eq. (1). However, non-linear
spatial variations of α∆T do not generally satisfy this com-
patibility equation, implying that a non-zero elastic strain
field, i.e. εe ‰ 0, is required to satisfy Eq. (1) and hence a
non-zero stress field. This stress field required to maintain
compatibility is the so-called thermal stress.

The term thermal fracture/fatigue is intended to denote
cases for which the thermal stresses are primarily produced

by non-linear spatial variations in the local thermal expan-
sion coefficient α. Typically, these spatial variations are on
the grain-scale of the material where neighboring grains may
have vastly different thermal expansion coefficients (and at
the grain-scale the thermal expansion coefficients may be
anisotropic). For a given material, the magnitude of these
thermal stresses scales with the diurnal temperature varia-
tion, ∆Ts, c.f. (Turcotte and Schubert, 2014).

On the other hand, the term thermal shock is meant to
convey that the thermal stresses are produced due to rapid
changes in the surface temperature, i.e. |dTs{dt| " 0. Ex-
perimental observations have led much of the community to
view |dTs{dt| ą 2 K/min as a critical threshold, above which
rocks are susceptible to breakdown via thermal shock (Todd,
1973; Richter and Simmons, 1974). However, the thresh-
old of 2 K/min is criticized by more recent researchers, e.g.
in experimental and numerical study conducted by Eppes
et al. (2016), and emphasis is placed on the importance of
spatial temperature gradient instead of surface temperature
rate (Boelhouwers and Jonsson, 2013; Molaro, 2015). In-
deed, it should be recognized that although dTs{dt is em-
pirically related to the magnitude of thermal stress and the
efficacy of thermal shock, it is not the fundamental govern-
ing factor. According to the heat conduction equation, i.e.
ρcp

dT
dt “ k∇2T, with k, ρ and cp denoting thermal conduc-

tivity, density and heat capacity, respectively, a rapid sur-
face temperature change will inevitably induce a spatially
non-linear temperature field, and the magnitude of dTs{dt is
(nearly) proportional to the magnitude of the second-order
(and higher) spatial gradients of temperature. According
to compatibility equation, i.e. Eq. (1), it is in fact, these
second-order ∇2T (and higher) spatial gradients of temper-
ature that govern the thermal stresses associated with so-
called thermal shock. This seems to have been recognized
by (Lu and Fleck, 1998), but seems to have been misunder-
stood in some of the more recent literature. This distinction
is particularly important when considering thermal shock
of different materials. For example, the thermal diffusivity,
k{ρcp, of metals is roughly „ 100 times larger than that
of rocks, so the same surface temperature heating rate of 2
K/min would generate thermal gradients, ∇2Ts, that are „
100 times smaller in metals as compared to rocks. This is
fundamentally why a 2 K/min heating rate may crack rocks,
but may be inconsequential for metals. That said, dTs{dt
is obviously easier to measure in the laboratory, field, or
through remote observations.

Essentially all fracture and fatigue processes are acti-
vated by internal stresses within the body exceeding some
material-dependent threshold measure. In order to satisfy
compatibility, i.e. Eq. (1), thermal stress fields are necessar-
ily induced by second-order (and higher) spatial gradients
of α∆T . Depending on how those spatial gradients come
about, the community has adopted different terminology,
namely thermal fracture/fatigue (for ∇2α ‰ 0 and ∇2T „ 0)
and thermal shock (for |dT {dt| “ pk{ρcpq

ˇ

ˇ∇2T
ˇ

ˇ Á 2 K/min);
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however, this may have led to unnecessary confusion, as
noted by Molaro et al. (2015). Delbo et al. (2014) have at-
tempted to resolve this confusion by casting their framework
in terms of microscopic (grain-scale) thermal stresses and
macroscopic (boulder-scale) thermal stresses, both of which
may operate simultaneously on airless planetary bodies in
the inner solar system. Indeed, the macroscopic (rock-scale)
stress is the driving force for N-S oriented cracks observed
on the Earth surface (McFadden et al., 2005; Eppes et al.,
2010, 2016), while the microscopic one is the root of gran-
ular disintegration in Earth rocks (Hall and André, 2003;
Gómez-Heras et al., 2006; Eppes and Griffing, 2010). The
fact that both mechanisms may be operating simultaneously
makes linear scaling of Basilevsky et al. (2015) particularly
problematic. A more rigorous scaling will be proposed in
this paper.

3. A model for thermal stresses

For the present investigation, we make use of the thermal
stress weathering model proposed by Delbo et al. (2014). A
brief overview of this model is provided here. The model
considers an unconstrained spherical rock of diameter D on
the surface of an asteroid, comet, moon, or planet with a
spin rate of ω. The rock is considered part of a contin-
uum regolith bed. As the body rotates in relation to the
Sun, the rock experiences oscillating non-linear temperature
fields, which generate thermal stresses throughout the rock.
These thermal stresses, if of sufficient magnitude, can grad-
ually (or catastrophically) drive crack growth.

In addition to these macroscopic geometric considera-
tions, the model accounts for an idealized heterogeneous

Fig. 1: Schematic of a spherical rock with an idealized microstructure
composed of inclusions, e.g. chondrules, of radius ri positioned on a
cubic lattice with nearest-neighbor spacing `. At any macroscopic loca-
tion z, there is a coresponding microscopic spatial coordinate y, whose
origin lies at the center of the inclusion nearest to the macroscopic
location z of interest.

microstructure composed of spherical inclusions, e.g. chon-
drules, of radius ri and spacing `, as shown in Fig. 1. Here,
we assume a microstructure similar to that of ordinary con-
drite materials, i.e. ri “ 1.16 mm and ` “ 1.4 mm according
to (Delbo et al., 2014).

Here, we limit the scope of the present paper to providing
a more fundamental understanding of the thermal stresses
that drive thermal stress weathering. The requisite equa-
tions of the Delbo et al. (2014) thermal stress weathering
model are restated here for convenience.

Combined macroscopic and microscopic stresses:

σ “ Σ` σTM , (2)

where σ denotes the equibiaxial in-plane pecn direction)
normal components of the total (combined) thermal
stresses, which is additively decomposed into corresponding
macroscopic pΣq and microscopic pσTM q components. Σ
denotes the macroscopic thermal stress associated with
macroscopic non-linear thermal gradients, i.e. ∇2T ‰ 0.
σTM denotes the corresponding normal component of the
microscopic thermal stresses generated by heterogeneous
thermal expansion coefficients in the microstructure, i.e.
∇2α ‰ 0. Both the macroscopic and microscopic thermal
stresses contribute to thermal stress weathering.

Macroscopic stress generated by thermal field:

Σpz, tq “
QαE

p1´ νq

D
ż

0

ˆ

T pζ, tq ´ T pz, tq

3D
` (3)

p2z ´Dqp2ζ ´Dq

D3
T pζ, tq

˙

dζ,

where α, E, ν denote the assumed macroscopic (homoge-
nized) isotropic thermoelastic properties of the rock. z is
the rock depth, shown in Fig. 1 and note that ζ is the inte-
gral dummy variable. Here, the assumed macroscopic prop-
erties are taken to be α “ 8.5 ˆ 10´6 K´1, E “ 74.2 GPa,
and ν “ 0.28, which are representative of ordinary chondrite
materials (Delbo et al., 2014). Building on the analytic so-
lution for macroscopic thermal stress fields in an isotropic,
homogeneous plate, c.f. (Bruno A. Boley, 2012), Wilkerson
(2014) showed that the corresponding normal component
of the macroscopic thermal stress fields in an isotropic, ho-
mogeneous sphere is well approximated by Eq. (3). This
solution assumes that the temperature field varies spatially
with depth and is otherwise constant in the other two spatial
dimensions, i.e. T pz, tq. In section 5, it will be shown that
non-linear temperature fields, i.e. ∇2T ‰ 0, are required to
generate non-zero values of the macroscopic stress Σ.
Q in Eq. (3) denotes an empirical dimensionless geometri-

cal factor obtained from finite element calculations bridging
between thermal stress values in a semi-infinite plate and
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those of a sphere. Q “ 1 for a semi-infinite plate, and varies
from Q „1/3 to Q „3/4 for spherical geometries. Informed
by finite element calculations, here we approximate this ge-
ometrical factor as

Q “ max

ˆ

1

3
,

3

4

D ` 4δ

D ` 12δ

˙

(4)

where δ is the thermal skin depth, which is an approximate
measure of the depth at which surface temperature ampli-
tude is attenuated by a factor of 1{e, (Titus and Cushing,
2012), i.e.

δ “

d

kP

πρcp
. (5)

Microscopic stress generated by heterogeneities:

σTM pz; y, tq “
1

2
K˚∆α∆T pz, tqˆ (6)

"

r3i `
´3 ´ 1 0 ď }y} ď ri

1
2r

3
i

`

}y}´3 ` `´3
˘

ri ď }y} ď `,

where ∆T pz, tq ” 2ˆ
`

T pz, tq ´ T̄
˘

denotes the current diur-
nal temperature variation at various depths with T̄ denoting
the average temperature experienced during a full diurnal
cycle. K˚ and ∆α denote parameters that depend on the
variation in thermoelastic properties of the heterogeneities
in the material microstructure.

K˚ “
12µmKiKm

3KiKm ` 4µmKm ` 4µmpKi ´Kmqr3i `
´3

∆α “ αi ´ αm

where µ, K and α are shear modulus, bulk modulus and
thermal expansion, respectively, with subscripts i and m
referring to inclusion and matrix. Here, the values for these
two material parameters are taken as K˚ “ 75.3 GPa and
∆α “ 1.9ˆ 10´6 K´1, which are representatives of ordinary
chondrite materials (Medvedev et al., 1985; Flynn, 2006;
Hazen, 1977).

Heat diffusion towards the subsurface:

ρcp
BT pz, tq

Bt
“ k

B2T pz, tq

Bz2
, (7)

governs the temperature fields that evolve throughout the
day as a function of time t and depth z. The celestial body
being analyzed is assumed to be significantly larger than
the thermal skin depth, and hence an asymptotic boundary
conditions is utilized at large depths, i.e. BT {Bz|z"δ “ 0.
We consider a surface element (facet) located at the equator
of an atmosphereless body whose axis of rotation is perpen-
dicular to its orbit. For such a facet, energy conservation
provides the surface boundary:

εσBT
4pz “ 0, tq ´

BT pz, tq

Bz

ˇ

ˇ

ˇ

ˇ

z“0

“
p1´AqS@

r2
xcosωty (8)

where x¨y denotes the Macaulay brackets, S@ is the solar
constant at 1 AU, A the bolometric Bond’s albedo, ε the
infrared emissivity, and σB the Stefan-Boltzman constant.

Following the arguments of (Delbo et al., 2014), we as-
sume that the temperature field in a rock that is embed-
ded within regolith may be adequately approximated by a
one-dimensional thermal transport model. Further details
of the assumed radiative boundary conditions utilized are
provided in (Spencer et al., 1989). Here, the thermophysi-
cal properties are taken to be representative of those found
on S-type asteroids, i.e. thermal diffusivity of k{ρcp “ 1.08
mm2 s´1, thermal inertia of Γ “ 1, 800 J m´2 s´0.5 K´1,
and a bolometric albedo of A “ 0.1 (Opeil et al., 2010).
Here we assume that k, ρ and cp are depth and temperature
independent, which is known to be an approximation. Tem-
perature dependent parameters would slightly increase the
values of diurnal temperatures as shown in Fig. 7 of Delbo
et al. (2015).

Together, Eqs. (2)–(8) constitute the necessary set of
equations whose numerical solutions provide predictions of
the thermal stress of rocks on airless bodies. In the next
section, results of this model will be utilized to provide a
clearer picture of the key factors governing thermal stress
in the inner solar system.

4. Key factors governing diurnal temperature vari-
ations, rates, gradients, and fields

4.1. Scaling diurnal surface temperature variations

We begin with a discussion of the factors influencing the
maximum diurnal surface temperature variations (difference
between the minimum and the maximum diurnal tempera-
tures), denoted here as ∆T̂s, with various rotation periods
P “ 2π{ω and orbital distances r. Throughout this paper
ˆ̈ will generally denote the maximum value of said variable.
According to Eq. (6), the magnitude of the maximum mi-
croscopic stresses near the surface are directly proportional
to ∆T̂s, and hence the diurnal surface temperature variation
is expected to be a vital factor governing the thermal stress
weathering lifetime of rocks.

Numerical solutions of Eqs. (7)–(8) are shown in Fig. 2 for
a subsolar surface element on the equator. The open circles
in Fig. 2 demonstrate how the maximum diurnal surface
temperature, i.e. ∆T̂s, is affected by the rotation period P on
S-type asteroids at r “ 1 AU. The rotation period is varied
from P “ 6 minutes (240 rotations per day) representative
of very fast (likely small and monolithic) rotators, e.g. 2000
DO8, to P “ 29.5 Earth days (708 hours) representative
of very slow rotators, e.g. Earth’s Moon. ∆T̂s is found to
increase monotonically with increasing rotation period, i.e.
slow rotators experience larger diurnal surface temperature
variations than fast rotators.
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Fig. 2: The magnitude of ∆T̂s{T̂eq , ∇T̂s, ∇2T̂s and dT̂s{dt at the
surface for a boulder located on the equator at the surface of a body
at 1 AU with respect to rotation periods (where ˆ̈ generally denote the
maximum value of said variable in this paper). The markers denote
numerical calculations whereas the solid lines show approximations due
to Eq. (11)–(12). The labels of the vertical axis are given in the legend
of the figure.

The monotonically increasing trend displayed by the open
circles in Fig. 2 is to be expected, since in the limit of an
infinitely fast rotator, i.e. P Ñ 0, the diurnal temperature
variation will approach zero, i.e. ∆T̂s Ñ 0, due to the fact
that an infinitely fast rotator will experience nearly isother-
mal conditions for each latitude. On the other hand, the
subsolar surface on a slow rotator is exposed to solar rays
for longer periods of time, thereby allowing it to heat to
higher temperatures. In the limit of an infinitely slow ro-
tator, the maximum subsolar diurnal temperature variation
will approach the maximum subsolar equilibrium model tem-
perature (Incropera et al., 2007), i.e.

∆T̂s Ñ Teq ”
4

c

1´A

εσB

S@

r2
. (9)

For the S-type asteroids modeled here, Teq „ 394 K at r “ 1
AU. A rotation rate of P “ 708 hours is not slow enough
for ∆T̂s to converge to Teq, and extrapolation of the results
shown in Fig. 2 suggests that this convergence will occur for
P Á 105 ´ 106 hours.

The thermal parameter is a non-dimensional measure of
how effectively a body’s surface temperature can keep pace
with diurnal changes in the insolation (Spencer et al., 1989),

and is expressed as

Θ ”
Γ
?
ωr3

4
a

εσBp1´Aq3S3
@

. (10)

Qualitatively, the delay between a change in illumination
on a surface element and the corresponding change in tem-
perature, i.e. thermal inertia, can be masked by a very
slow rotation. In other words, a surface element on the
non-illuminated part of an extremely slow rotator will be
cold regardless of the value of thermal inertia because the
changes in illumination happen very slowly and one can-
not tell whether it is cold because there was no heat con-
ducted towards the subsurface (low thermal inertia) or be-
cause there was sufficient time for the energy in lower layers
to be radiated into space. Conversely, a facet on an ex-
tremely fast rotator will stay warm when it is not illuminated
even if the thermal inertia is low. The thermal parameter,
Θ, defined as the ratio between the radiative and the ro-
tational time scales, is what determines the effects of heat
conduction towards the subsurface on the time evolution of
the temperature. Θ „ 10´1´102 for most near-Earth aster-
oids. Isosurface lines of constant Θ as a function of orbital
distance and rotational period are provided for reference in
Fig. 5.

For moderately fast rotators, i.e. P À 10 hours, the max-
imum diurnal surface temperature variation is found to be
roughly proportional to the inverse of the thermal param-
eter, i.e. ∆T̂s9Θ´1, which implies that Θ∆T̂s is approxi-
mately constant for all fast rotators. On the other hand,
for slow rotators, i.e. ω Ñ 0, ∆T̂s Ñ ζ8Teq where ζ8 “ 2{3

defines the fraction of Teq that ∆T̂s is apparently converging
to in Fig. 2 for the maximum rotation period of interest, i.e.
P „ 103 hours (i.e. ∆T̂s{T̂eq is about 2/3 for rotation period
of 103 hours in Fig. 2). Here, a simple empirical relation-
ship is proposed to smoothly transition between these two
regimes, i.e.

1

∆T̂s
“

Θ

lim
ωÑ8

Θ∆T̂s
`

1

ζ8Teq
, (11)

where lim
ωÑ8

Θ∆T̂s “ 1.12 ˆ Teq is a reference scaling factor

obtained from extrapolation of the numerical calculations
provided in Fig. 2.

Considering its simplicity, the agreement between Eq. (11)
(solid black line in Fig. 2) and the numerical calculations
(open black circles) is quite remarkable. Even more remark-
able is the fact that Eq. (11) accurately predicts the effect
of varying thermophysical properties as well as orbital dis-
tances on maximum diurnal surface temperature variations
as shown in Fig. 3. For example, Θ for S-type asteroid is
roughly 3 times greater than corresponding case of C-type
asteroid with Γ = 640 J m´2 s´0.5 K´1 and A “ 0.02 (Delbo
et al., 2014), and hence ∆T̂s will be roughly 3 times higher
on fast rotating C-type asteroids as compared with fast ro-
tating S-type asteroids at the same spin rate and orbital
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distance. On the other hand, Teq is roughly equal on both
S-type (Teq “ 394 K at 1 AU from the Sun) and C-type
(Teq “ 402 K at 1 AU from the Sun) asteroids, and hence

∆T̂s will be roughly equal for slow rotating S-type and C-
type asteroids at the same spin rate and orbital distance.
Likewise, the maximum diurnal surface temperature vari-
ation monotonically decreases with orbital distance as r´2

for fast rotators and r´1{2 for slow rotators according to
Eqs. (9)–(11). That said, it should be noted that in gen-
eral a fast rotator, from a thermal diffusion standpoint, is
defined as a body with Θ " 1, and hence the minimum spin
rate necessary to classify a body as a fast rotator depends
on the orbital distance as shown in Fig. 4. For example, the
minimum spin rate to classify a body as a fast rotator at 1
AU is 8 times smaller at 2 AU according to Eq. (10).

Fig. 3: Diurnal surface temperature variation ∆T̂s (normalized by equi-
librium model temperature Teq) as a function of the thermal param-
eter Θ. There is remarkable agreement between scaling law provided
by Eq. (11) shown as solid red line, and numerical data shown as blue
circles. The numerical data includes predictions at various orbital dis-
tances and for 2 sets of thermophysical material properties, i.e. ordinary
and carbonaceous chondrites.

According to Molaro et al. (2015), the equatorial diur-
nal temperature variations on the Moon, i.e. ∆T̂ „ 290 K,
may drive thermal weathering. They made it clear that the
threshold required to drive crack propagation via thermal
stresses is not well constrained in this environment. Never-
theless, if we consider this temperature amplitude as a suffi-
cient driving force on the Moon, it is important to note that
same situation is possible at different conditions as well. For
example, at 1 AU, a similar equatorial diurnal temperature
variation is achieved on very slow rotating S-type asteroids
with a period of P Á 640 hours, according to Fig. 2. That

said, the same diurnal temperature variation can be achieved
on much faster rotating S-type asteroids whose orbits bring
them closer to the Sun, e.g. P Á 25 hours at 0.5 AU and
P Á 1.4 hours at 0.1 AU.

4.2. Scaling time-rate-of-change in surface temperatures
from diurnal temperature variations

In addition to diurnal temperature variation, the max-
imum time-rate-of-change in surface temperatures, i.e.
|dT̂s{dt|, has long been considered (albeit with some confu-
sion) an even more important factor governing the efficacy
of thermal stress weathering (Richter and Simmons, 1974).
Numerical solutions of the maximum time-rate-of-change in
surface temperatures as a function of rotation period (at
r “ 1 AU) are shown as red stars in Fig. 2 for S-type aster-
oids. Here, |dT̂s{dt| decreases monotonically with increas-
ing rotation period P , i.e. fast rotators have higher surface
temperature rates than do slower rotators. This trend is
opposite from that observed for ∆T̂ , which scales roughly
as P 1{2 on fast rotators, where as |dT̂s{dt| scales roughly
as P´1{2 on fast rotators. An overly simplified, yet illus-
trative, explanation for this particular scaling is that the
average surface temperature time-rate-of-change is propor-
tional to the ratio of the diurnal temperature variation and
the period over which the temperature changes from max-
imum to minimum, i.e. |dTs{dt|avg9∆T̂ {P29P

´1{2. Hence,

provided that |dT̂s{dt|9|dTs{dt|avg then such a scaling re-
lationship is expected. On the other hand, with respect to
orbital distance r, |dT̂s{dt| scales very similarly to that of
∆T̂ as shown in Fig. 4. Therefore, we make use of these ar-
guments to provide a simple relationship for the dependence
of the maximum time-rate-of-change in surface temperature
on rotation period and orbital distance, i.e.

ˇ

ˇ

ˇ
dT̂s{dt

ˇ

ˇ

ˇ
« β

ˇ

ˇ

ˇ
dT̂s{dt

ˇ

ˇ

ˇ

avg
« 2β

∆T̂s
P

, (12)

where ∆T̂ is approximated via Eq. (11) with β « 2.5 being
a proportionality constant between |dT̂s{dt| and |dTs{dt|avg.
Remarkable agreement between numerical calculations of
|dT̂s{dt| (shown as pink stars) and the simple approxima-
tion given by Eq. (12) (pink lines) is shown in Fig. 2.

While it has received warranted criticism, c.f. Boelhouw-
ers and Jonsson (2013); Viles et al. (2010) and Eppes et al.
(2016), in much of the literature |dT̂s{dt| Á 2 K/min is as-
sumed to be a threshold criterion that must be achieved in
order for thermal stress weathering to be an effective process
on bodies with thermal diffusivities similar to rocks (Hall,
1999). For the S-type asteroids modeled here, this criterion
is met for very fast rotating near-Earth asteroids, e.g. P À 1
hour at r “ 1 AU, or moderately fast rotating asteroids with
very small perihelion, e.g. P À 10 hours at r “ 0.1 AU.

Consider now that either |dT̂s{dt| Á 2 K/min or ∆T̂ Á 100
K could plausibly be taken as overly simplified criterion for
the initiation of thermal stress weathering. Here we compute
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Fig. 4: Normalized ∆T̂s, |∇T̂s| and |∇2T̂s| at the surface of an S-
type asteroid versus orbital distance and thermal parameter Θ. The
numerical calculations are normalized by the corresponding value at 1
AU. Here the rotation period is taken to be 6 hours.

spin and orbital distance conditions that met either crite-
ria. In this simple case, thermal stress weathering would
be anticipated on either fast or slow rotators as shown in
Fig. 5 regions I, II and III. For near-Earth S-type as-
teroids, thermal stress weathering would be expected to be
ineffective on asteroids with intermediate rotation rates, e.g.
1 hr À P À 100 hr , region IV . This band-gap will increase
with increasing perihelion distance, e.g. 0.1 hr À P À 103

hr for S-type asteroids in the Main-belt (r “ 2.5 AU). Like-
wise, the width of this band-gap will decrease with decreas-
ing perihelion, and completely vanish at sufficiently small
perihelions, e.g. r À 0.5 AU for S-type asteroids, as shown
in Fig. 5. A vanishing band-gap implies that at such small
orbital distances, thermal stress weathering would be antic-
ipated to be effective on all S-type asteroids, regardless of
spin rate.

4.3. Noting correlations in temporal and spatial gradients of
surface temperatures

While Fig. 5 is helpful to elucidate some of the key gov-
erning factors affecting thermal stress weathering, the crite-
rion utilized are overly simplistic, and will be shown to be
insufficient in subsequent sections of this paper. In particu-
lar, we note that the temporal gradients of surface temper-
ature, i.e. |dT̂s{dt|, do not directly enter into the calcula-
tion of macroscopic stress, i.e. Eq. (3). Rather, the macro-
scopic stress distribution through the interior of the rock,
i.e. Σpz, tq, is a function of the degree of non-linearity in the
spatial distribution of temperature T pz, tq. The magnitude
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Fig. 5: A map for S-type asteroids indicating the spin rates and or-
bital distances necessary to achieve classical criteria for thermal stress
weathering, i.e. ∆Ts ě 100 K and dTs{dt ě 2 K/min, according to
Eq. (11) and Eq. (12). Isosurface lines indicate corresponding values
of the thermal parameter Θ on S-type asteroids.

of the second-order spatial gradient of surface temperature,
i.e. |∇2T̂s|, is one (albeit insufficient) measure of the degree
of non-linearity in T pz, tq.

Numerical calculations of the dependence of |∇2T̂s| on
rotation period P are shown (as blue triangles) in Fig. 2,
where the dependence on P is identical to that of |dT̂s{dt|.
Such a scaling should be anticipated, since these quanti-
ties are proportional according to the heat equation, i.e.
|dT̂s{dt| “ pk{ρcpq|∇2T̂s|. Therefore, |∇2T̂s| may be ade-
quately approximated as the quotient of Eq. (12) and ther-
mal diffusivity, which is shown (as a blue line) to agree with
numerical calculations (blue triangles) in Fig. 2.

Additionally, the scaling of |∇2T̂s| with orbital distance
is shown in Fig. 4. Note that the assumed thermal stress
weathering criterion of |dT̂s{dt| Á 2 K/min is equivalent
to |∇2T̂s| Á 5.5 K/cm2 for S-type asteroids. Obviously,
|dT̂s{dt| is easier to measure experimentally than |∇2T̂s|;
however, |∇2T̂s| is a more fundamental factor governing
macroscopic stresses. Nevertheless, in subsequent sections,
|∇2T̂s| will be shown to be an insufficient measure of how
macroscopic surface stresses scale with rotation period and
orbital distance. For completeness, Fig. 2 and Fig. 4 pro-
vide numerical calculations (red diamonds) of |∇T̂s| as a
function of rotation period and orbital distance, respectively.
In subsequent sections, it will be shown that (as should be
expected) the first spatial gradient of surface temperature,
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|∇T̂s|, is not correlated with thermal stresses as noted by
Molaro et al. (2015).

5. Effect of diurnal temperature variations
and gradients on thermal stress fields

Here we turn our attention to elucidating the manner by
which diurnal temperature variations and spatial gradients
govern microscopic and macroscopic thermal stresses. Sec-
tion 5.1 provides a discussion of microscopic (grain-scale)
thermal stresses and their correlation with the diurnal tem-
perature variation ∆T . Our analytic analysis largely agrees
with the overall trends of and attempts to generalize the
two-dimensional finite element calculations of Molaro et al.
(2015), although the magnitude of our calculated micro-
scopic thermal stresses are roughly an order of magnitude
lower than those of Molaro et al. (2015) which made use of
rigid boundary conditions. Section 5.2 provides a discus-
sion of macroscopic (rock-scale) thermal stresses and their
complex dependence on rock size, thermal skin depth, and
second-order (and higher) spatial gradients of the tempera-
ture field. Our analytic analysis largely agrees (both in over-
all trends and magnitudes) with the full three-dimensional
finite element calculations of Molaro et al. (2017), and in
subsection 5.3 builds upon and attempts to generalize their
results through simple scaling laws that can be easily applied
to a wider range of spin rates and orbital distances as well
as to bodies with different thermophysical and thermoelastic
material properties. Lastly, subsection 5.4 generalizes and
provides a physical interpretation of the non-monotonic de-
pendence of macroscopic thermal stresses on rotational pe-
riod first reported by Ravaji et al. (2018) Note that through-
out the following sections, variation indicates the difference
between the maximum and minimum values of a variable ex-
perienced throughout a full thermal cycle at a given spatial
location. The term gradient corresponds to a local spatial
derivative of a particular field quantity.

5.1. Proportionality between diurnal temperature
variations and microscopic thermal stresses

Microscopic thermal stresses (σTM ) develop due to spatial
fluctuations in the local thermal expansion coefficients, i.e.
∇α ‰ 0, throughout the heterogeneous structure of rocks.
For bodies heated primarily by solar radiation, the maxi-
mum microscopic thermal hoop stress, i.e. σ̂TMs , will occur
near the surface where temperature variations are largest,
and may be computed by maximizing Eq. (6), i.e.

σ̂TMs “ K˚∆α∆T̂s max

ˆ

1´ vi,
1` vi

2

˙

, (13)

where vi ” r3i {`
3 is the volume fraction of chondrules. Due

to the proportionality between diurnal surface temperature
variations and maximum microscopic thermal stress, i.e.
σ̂TMs 9∆T̂s, spin rate, orbital distance, and thermophysical

material properties have identical affects on both maximum
microscopic thermal stresses and diurnal surface tempera-
ture variations. For example, the effect of rotational period
P on σ̂TMs will follow the same monotonically increasing
(non-linear) trend as the open black circles in Fig. 2, as
demonstrated in Ravaji et al. (2018). Likewise, the mono-
tonically decreasing (non-linear) dependence of orbital dis-
tance r on σ̂TMs will follow the trend of the open black circles
in Fig. 4. The combined effect of rotational period and or-
bital distance on the maximum microscopic thermal stresses
are shown as a contour map in Fig. 6. The contour map
is generated via combination of Eq. (13) and Eq. (11). As
expected, microscopic thermal stresses are highest on slow
rotating bodies, e.g. Moon, that pass close to the Sun. Note
that a diurnal temperature variation of ∆T̂s „ 100 K (blue
line in Fig. 5) generates a maximum microscopic thermal
stress of σ̂TMs „ 11 MPa (yellow region in Fig. 6) on S-type
asteroids. Additionally, it is evident in comparing Fig. 5 and
Fig. 6 that constant values of Θ produce constant values of
σ̂TMs .

Recall that for fast rotating asteroids the diurnal surface
temperature variation is inversely proportional to the ther-
mal parameter, i.e. ∆T̂s9Θ´1, and hence σ̂TMs 9Θ´1. It so
happens that K˚∆αp1 ` viq and Teq are roughly equal on
both S-type and C-type asteroids, where as Θ is roughly
3 times higher on S-type asteroids than C-type asteroids.
As such, it follows that the maximum microscopic thermal
stresses on slow rotating C-type and S-type asteroids will be
roughly equal, where as σ̂TMs will be roughly 3 times higher
on fast rotating C-type asteroids.

Microscopic stresses were also analyzed by Molaro et al.
(2015), who reported thermal mismatch stresses on the
order of 100-200 MPa for rocks on the Moon. This dis-
crepancy is primarily associated with a different choice of
boundary conditions. In their case the material is assumed
to be rigidly confined in both lateral directions. Such
boundary condition causes that even a homogeneous body
will develop (in-plane equibiaxial) thermal stresses under
uniform temperature field, i.e. σ̄ “ ´Eα∆T . However,
in Delbo et al. (2014) traction-free boundary conditions
are utilized to represent an unconfined rock resting on a
near frictionless surface. Under these boundary conditions,
a homogeneous body, i.e. ∆α “ 0, subject to uniform
temperature fields, i.e. ∇T “ 0, will not develop micro
scale stresses. These later boundary conditions more closely
mimic the reality of a rock undergoing thermal expansion
while resting upon a bed of regolith, since the boulder is
free to expand and contract on the surface. Even when the
boulder is embedded within regolith, it is doubtful that the
regolith can impose any significant constraints, since the
rock’s stiffness is orders of magnitude larger than that of
the regolith. To make our results comparable, the effect
of this rigid boundary condition may be approximately
removed from Molaro et al. (2015) reported results through
the principle of superposition, i.e. σ “ σ̄ ` σTM , where σ̄
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Fig. 6: Contour plot demonstrating the combined effect of rotation
rate and orbital distance (assuming zero eccentricity and inclination)
on the maximum microscopic thermal stress, i.e. σ̂TM

s , within a 10
cm rock on an S-type asteroid. For reference, the rotation rate and
average orbital distances of various planetary bodies (Hergenrother and
Whiteley, 2011) is shown.

is the average stress in the domain. The reported values
of σ and σ̄ lead to σTM „ 36 MPa for P „ 700 hr at 1
AU. The primary difference between this value and ours
is associated with the different materials assumed in each
study, K˚ “ 134 GPa and ∆α “ 0.4ˆ10´5 K´1 in (Molaro
et al., 2015) versus K˚ “ 75 GPa and ∆α “ 0.19 ˆ 10´5

K´1, which explains the roughly factor of 4 discrepancy
between the modified values from σTM „ 36 MPa in
(Molaro et al., 2015) and our calculations (σTM „ 9 MPa)
for P „ 700 hr at 1 AU. Given the various assumptions,
the agreement between our scaling relations for microscopic
thermal stresses and the modified finite element results of
Molaro et al. (2015) is quite remarkable. This agreement
provides a degree of confidence in the scaling relationships,
which are far more general and accessible for the broader
community.

5.2. The complex relationship between macroscopic
stresses and spatiotemporal temperature fields

We now turn our attention to the spatiotemporal macro-
scopic (in-plane equibiaxial) thermal stresses, i.e. Σpz, tq,
and its complex relationship with the spatiotemporal tem-
perature fields, i.e. T pz, tq. Here the spatiotemporal temper-
ature and macroscopic stress fields are computed via Eq. (7)
and Eq. (3), respectively. Examples of T pz, tq and Σpz, tq as
well as dT pz, tq{dt are shown in Fig. 7 for a 10 cm boulder on
a fast rotating (P “ 0.6 hr) and a slow rotating (P “ 103 hr)

S-type asteroid at 1 AU from the Sun. Our results are qual-
itatively similar to that reported by Molaro et al. (2017) de-
spite our different modeling approach and choice of thermo-
mechanical properties, rotation periods, and boulder sizes.
Comparing Fig. 7(a) and (b), it is evident that the peak
tensile macroscopic stress in the faster rotator (P “ 0.6 hr)
is Σ̂ „ 0.7 MPa, which is roughly 2.5 times larger than the
peak macroscopic stress in the slow rotator (P “ 103 hr) of
Σ̂ „ 0.3 MPa. This trend is opposite of what was observed
for microscopic stresses, i.e. σ̂TMs „ 0.9 MPa and σ̂TMs „ 7
MPa for P “ 0.6 hr and P “ 103, respectively, at 1 AU, c.f.
Fig. 6. As discussed earlier, the peak microscopic stresses are
proportional to temperature variation, ∆Ts, which increases
with increasing rotation period, as shown in Fig. 2. On the
other hand, the peak macroscopic stress, Σ̂, is more closely
correlated with second gradient of temperature, ∇2T̂s, which
was shown in Fig. 2 to decrease with increasing rotation pe-
riod.

This point is further clarified by comparing the macro-
scopic surface stress reported in Fig. 7(a) and (b) with cor-
responding surface temperature in Fig. 7(c) and (d), for
which it is evident that the peaks of temperature history
and macroscopic thermal stress are out of sync. In the case
of the slow rotator (P “ 103 hr), thermal stress is negligible,
Σ „ 0, when the temperature is at its maximum and min-
imum values. This is due to the fact that the macroscopic
stress is a function of temperature gradients and not the
temperature magnitude. The maximum and minimum tem-
peratures occur when temperature rate at depth z is zero,
dT {dtpzq “ 0, c.f. Fig. 7(d) and (f), which for a slow rotator
implies that the second-order thermal gradients at depth z
are small, i.e. ∇2T pzq „ 0 via the heat conduction equation,
and hence the macroscopic stresses are also small. On the
other hand, the peak macroscopic stress at various depths,
i.e. Σ̂pzq, is well correlated with the the peaks of dT {dtpzq
as observed in comparing Fig. 7 (b) with Fig. 7 (f).

For slow rotators, a remarkable agreement between the
shape of the surface temperature time-rate-of-change pro-
file, i.e. solid lines in Fig. 7(f), and the macroscopic stress,
i.e. Fig. 7(b), is observed. This implies that spatiotempo-
ral macroscopic stress is proportional to rate of temperature
change at surface, i.e. Σpz, tq9dTsptq{dtˆ fpzq, where fpzq
determines the spatial dependence of the macroscopic stress.
It is interesting to note that for z „ D{5 in Fig. 7(b) that
the macroscopic stress are nearly zero throughout the day.
Although not shown, the macroscopic stresses at z „ 4D{5
are also roughly zero throughout the day. Furthermore, the
macroscopic stress will tend to reverse sign at these loca-
tions, e.g. a tensile stress for z À D{5 and z Á 4D{5,
but a compressive stress for D{5 À z À 4D{5, and vice-
a-versa. This is somewhat analogous to mechanical bending
with z „ D{5 and z „ 4D{5 acting as the so-called neu-
tral axes. The sign of the thermal stress at the surface can
generally be determined via the following procedure. For
slow rotators, the surface stress will be tensile from sunset
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to sunrise (cooling phase), and compressive from sunrise to
sunset (heating phase). The interior (D{5 À z À 4D{5)
thermal stress will generally follow the opposite trend, e.g.
compressive from sunset to sunrise, and tensile from sunrise
to sunset, c.f. Fig. 7(b), (d), and (f). For fast rotators, the
surface macroscopic stress is generally compressive when the
surface temperature is higher than the temperature at some
depth, e.g. z „ D{5. Likewise, when the surface tempera-
ture is cooler than at z „ D{5, the surface stress tends to be
in tension. For example, in the beginning of the solar day,
on the surface, temperature is higher than that at D{5 and
therefore the corresponding thermal stress is negative (com-
pressive) in Fig. 7(a). If we roughly assume z “ D{5 “ 2
cm is one of the neutral axes of the 10 cm rock in Fig. 7
(shown as yellow curve in the plots). In other words, the
surface stress changes sign when the surface temperature
crosses over the yellow curve in Fig. 7(c). Similar trends are
also reported by Eppes et al. (2016) where observed crack-
ing, as measured by acoustic emissions, occurs at the same
times of the day that our modeling predicts.

In comparing Fig. 7(c) and (d), we can see one of the
fundamental differences between the fast rotators and slow
rotators when it comes to macroscopic thermal stresses. In
this case of the slow rotator shown Fig. 7(d) and (f), the
temperature history and its time derivative do not vary too
much with respect to location. Hence, the corresponding
maximum, minimum, and zero thermal stresses occur al-
most at nearly the same time, regardless of depth, as shown
in Fig. 7(b). However, for the fast rotator shown in Fig. 7(c),
there is a significant phase lag (roughly z{δ) between tem-
perature on the surface and temperature at other depths,
which complicates matters. In this case, the temperature
history and its time derivative vary significantly with re-
spect to location and thus, the peak of the corresponding
thermal stress shifts as well. Furthermore, due to this phase
lag, the shape of the macroscopic thermal stress profiles are
completely different than the shape of the temperature rate
profiles, c.f. Fig. 7(a) and (e), whereas the shapes of the
stress and temperature rate profiles are nearly identical on
slow rotators, c.f. Fig. 7(b) and (f).

To better understand the relationship between temper-
ature fields and stress fields, it is illustrative to consider
an idealized temperature field whose spatial dependence
can be described by an n-th order polynomial, i.e. T pzq “
řn
j“0 cjz

j , for which the integrals in Eq. (3) may be obtained
analytically, i.e.

Σpzq “
QαE

p1´ νq

n
ÿ

j“2

"

6jcjD
j´1z

pj ` 1qpj ` 2q
´ cjz

j (14)

´
2pj ´ 1qcjD

j

pj ` 1qpj ` 2q

*

.

For a quadratic temperature field, i.e. T pzq “ c0`c1z`c2z
2,

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Time evolution of (a)-(b) macroscopic thermal stress, (c)-(d)
temperature, and (e)-(f) time-rate-of-change of temperature at various
depths for a 10 cm boulder on an S-type asteroid rotating with a period
of P “ 0.6 hours (Θ “ 30) and P “ 103 hours (Θ “ 2.4).

the stress field further simplifies, i.e.

Σpzq “ Σs

ˆ

1´ 6
z

D
` 6

z2

D2

˙

, (15)

where Σs “ ´QαED2c2{6p1´ νq. The spatial function in
the parenthesis in Eq. (15) is symmetric for the domain 0 ď
z ď D, and has a maximum value of 1 at z “ 0 and z “ D,
a minimum value of ´1{2 at z “ D{2, and a zero-value at
z „ D{5 and z „ 4D{5 (i.e. the bending neutral axes), which
is in fairly good agreement with the spatial dependence of
the macroscopic stress shown in Fig. 7(b). In general, an
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n-th order spatial dependence of the temperature field will
lead to an n-th order spatial dependence of the macroscopic
stress field (with n bending neutral axes).

It is interesting to note that c0 and c1 are exactly can-
celed out when analytically carrying out the integration in
Eq. (14). Physically, c0 represents the uniform component
of the temperature field and c1 is the linearly varying com-
ponent of the temperature field, neither of which apparently
affect macroscopic thermal stresses. Alternatively, one can
express these coefficients as the surface temperature and the
n-th order spatial derivatives of the surface temperature, i.e.
c0 “ Ts and cn “ ∇nTs. Using this expression of the coef-
ficients, the macroscopic thermal stresses at the surface of
the boulder may be expressed as

Σs “ ´
QαE

p1´ νq

ˆ

D2

6
∇2Ts `

D3

5
∇3Ts ` ... (16)

`
2pn´ 1qDn

pn` 1qpn` 2q
∇nTs

˙

.

Thus, the macroscopic thermal stresses (of an unconfined
body) are independent of both the surface temperature and
its first spatial derivative. Moreover, it is clear from Eq. (16)
that negative (positive) thermal gradients are associated
with tensile (compressive) surface stresses.

Clearly the relationship between macroscopic thermal
stresses and the spatial gradients of the temperature field
is rather complex. Deeper insights will provided in section
5.3 for a few simpler, yet illustrative, special cases.

5.3. Simple scaling relations for macroscopic stresses

Given that second-order and higher-order spatial deriva-
tives of surface temperature will govern the macroscopic
thermal stresses, it is convenient to obtain an approxi-
mate scaling relation for the higher-order spatial gradients.
A rough approximation of the higher-order spatial gradi-
ents of surface temperature may be obtained by consider-
ing the simplest case in which the diurnal surface temper-
ature cycle follows simple harmonic oscillation, i.e. Tsptq “
T̄s `

1
2∆T̂s cospωtq, where T̄s is the mean surface tempera-

ture. This simple temporal variation of the surface temper-
ature gives rise to a spatiotemporal temperature field below
the surface that can be obtained analytically from Eq. (7),
c.f. (Anderson, 1998), i.e.

T pz, tq “ T̄s `
1

2
∆T̂se

´ zδ cos
´

ωt´
z

δ

¯

. (17)

Following Eq. (17) the maximum magnitude of the second-
order and higher-order thermal gradients are approximated
as

ˇ

ˇ

ˇ
∇nT̂s

ˇ

ˇ

ˇ
“
?

2n´2
∆T̂s
δn

. (18)

Through inspection of Eq. (16) and Eq. (18), it is evi-
dent that each term in Eq. (16) corresponding with an n-
th degree temperature gradient will roughly scale with the

product of diurnal surface temperature variation and the
n-th power of the ratio of rock diameter to thermal skin
depth, i.e. pD{δqn∆T̂s. As such, second order derivatives
of the temperature field will tend to govern the magnitude
of macroscopic thermal stresses on rocks that are small in
relation to the thermal skin depth, i.e.

Σ̂s „
1

18

αED2

p1´ νq

ˇ

ˇ

ˇ
∇2T̂s

ˇ

ˇ

ˇ
„

1

18

αED2

p1´ νq

ρcp
κ

ˇ

ˇ

ˇ

ˇ

ˇ

dT̂s
dt

ˇ

ˇ

ˇ

ˇ

ˇ

for D À δ

(19)

with
ˇ

ˇ

ˇ
∇2T̂s

ˇ

ˇ

ˇ
“ pρcp{κq

ˇ

ˇ

ˇ
dT̂s{dt

ˇ

ˇ

ˇ
“ ∆T̂s{δ

2 denoting the max-

imum magnitude of the second-order spatial gradient of the
surface temperature. The importance of second order ther-
mal gradients (and the insignificance of first order thermal
gradients) is emphasized in Eq. (19). The effect of mate-
rial properties on macroscopic surface stresses is evident.
For example, consider two similar sized (small) rocks that
are undergoing the same time-rate-of-change in surface tem-
peratures dT {dt on a slow rotating body. In this case, the
macroscopic thermal stresses at the surface will vary linearly
with thermal expansion coefficient α and effective stiffness
E{p1´ νq, while varying inverse linearly with thermal diffu-
sivity κ{ρcp. On the other hand, if one considers two small
rocks of different composition on a sufficiently slow rotating
body (such that ∆T̂s Ñ Teq) then the macroscopic thermal

stresses at the surface will scale roughly with 4
a

p1´Aq{ε (in
addition to the previously mentioned scalings). These scal-
ing dependencies are fairly consistent with the rock lithology
sensitivity study (with D “ 1 m and δ „ 0.8 m) reported in
Molaro et al. (2017).

Molaro et al. (2017) carried out fully three-dimensional
finite element calculations of macroscopic thermal stress de-
velopment in various sized rocks on the Moon (δ „ 0.8
m), and reported values of the maximum surface principal
stresses of „2 MPa, „5 MPa, and „9 MPa for D “ 0.3 m,
D “ 0.5 m, D “ 0.7 m. Remarkably, these stress values are
fairly consistent with predictions (respectively „1.5 MPa,
„4 MPa, and „8 MPa for the same set of material prop-
erties) of Eq. (19) despite its simplicity and lack of fitting
parameters. These stress values are generally smaller than
fracture toughness of typical rocks (Gui et al., 2016; Eppes
and Keanini, 2017; Asadi et al., 2019; El Mir et al., 2019)
and would lead to slow steady fatigue process.

The slight under-prediction of Eq. (19) in comparison with
the finite element calculations of Molaro et al. (2017) is likely
due to (i) the fact that Eq. (17) under-predicts the time-
rate-of-change in surface temperature near sunrise and sun-
set; (ii) the three-dimensional nature of the finite element
calculations; and (iii) that Molaro et al. (2017) reports the
maximum principal stresses whereas we report the in-plane
normal stress components. The maximum principal stress
and the maximum in-plane normal stress reported here are
equivalent in the absence of shear stresses; however, the max-
imum principal stress will be larger if shear stresses are non-
negligible.
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Fig. 8: Comparing 3D finite element calculations of Molaro et al. (2017)
for a boulder on the Moon surface with analytical approaches provided
here via Eq. A.3 and Eq. (21) for the maximum stress at the surface,

Σ̂s, and Eq. (22) for half rock diameter, Σ̂D{2, with material properties
adopted from Molaro et al. (2017). Although stress magnitudes are
different (most likely because of the difference between 1D and 3D
conditions), trend of the plots are in fairly good agreement.

In addition, Molaro et al. (2017) carried out three-
dimensional finite element calculations on larger rocks, and
observed that the magnitude of surface stresses increases
sublinearly with rock size for D ą 10 m as shown in Fig. 8.
Since D ą δ “ 0.8 m for these finite element calculations,
Eq. (19) is not applicable in this regime. Further insights
into size effects in this regime may be gleaned by consider-
ing temperature fields for which the phase lag in Eq. (17) is
neglected, i.e. T̂ pzq “ T̄s`

1
2∆T̂s exp´z{δ. The macroscopic

stress field corresponding to this temperature field may be
obtained analytically through integration of Eq. (3), i.e.

Σ̂pzq “
QαE∆T̂s
6p1´ νq

ˇ

ˇ

ˇ

ˇ

e´
z
δ ´

δ

D

´

1´ e´
D
δ

¯

(20)

`3
δ

D

´

2
z

D
´ 1

¯

"

2´

ˆ

2
δ

D
` 1

˙

´

1´ e´
D
δ

¯

*
ˇ

ˇ

ˇ

ˇ

.

The significance of the ratio of rock diameter to thermal
skin depth is again apparent in Eq. (20). Additionally, the
spatial variation of the maximum macroscopic thermal stress
has both an exponential decay term, i.e. exp´z{δ, as well as
a linearly varying term p2z{D´1q, which reverses sign at the
center of the rock and whose magnitude is greatest near the
top (z “ 0) and bottom (z “ D) of said rock. It is worth
noting that such a temperature field will induce an expo-
nential decay in ∆T̂ pzq and hence the microscopic thermal

stresses as well, i.e. σ̂TM pzq9 exp´z{δ via Eq. (7). Simi-
larly, due to the exponential decay term, one can anticipate
the magnitude of macroscopic thermal stresses to be great-
est near the top of the rock as shown by the solid blue lines
in Fig. 7. However, the linearly varying term in Eq. (20)
can cause the magnitude of macroscopic thermal stresses to
increase with increasing depth as shown by the z “ 3 cm
and z “ 5 cm cases in Fig. 7 for D “ 10 cm and P “ 103
hours. Furthermore, since the linearly varying term reverses
sign with depth, this causes part of the rock to be in tension
and part to be in compression (as shown in Fig. 7), which
may be thought of as being analogous to bending-induced
normal stresses in beams (Jalali et al., 2018).

Following Eq. (20) the maximum macroscopic thermal
stresses at the surface pz “ 0qmay be conveniently expressed
as

Σ̂s “ Σ̂8s
Q

Q8

"

1´ 6
δ

D
`

δ

D

ˆ

6
δ

D
` 2

˙

´

1´ e´
D
δ

¯

*

.

(21)
with Q8 “ 3{4 being the geometric factor for D " δ and
the macroscopic surface stress for D " δ denoted as Σ̂8s ”
βαE∆T̂s{16p1´ νq with β being a non-dimensional fitting
constant artificially introduced here to bring Σ̂s into closer
agreement with higher fidelity calculations (see Appendix
A). In the absence of β, Σ̂8s „ 9.6 MPa for a boulder on the
Moon (∆T̂ „ 235 K), whereas Molaro et al. (2017) reported
a value of „42 MPa, which is a slightly more severe under-
prediction than our simple model for the special case of D ă
δ, i.e. Eq. (19). The need for β is associated with the fact
that the phase lag term, i.e. cospωt´z{δq in Eq. (17), induces
larger thermal gradients (and larger time-rate-of-changes in
surface temperatures, c.f. Eq. (12)). For example, the n´th
degree gradients in surface temperature are a factor of

?
2n

(see Eq. (18)) larger with the phase lag term than without
it. β “ 5 brings our simple approximation of macroscopic
thermal stresses into better agreement with that of Molaro
et al. (2017) for D " δ. That said, a value of β “ 24
will bring the second-order Maclaurin series (with D{δ Ñ 0)
of Eq. (21) into agreement with Eq. (19). As such, here
we choose a simple exponential decay function to transition
between these two limits, i.e. β “ 24´ 19 expp´δ{Dq.

While this simple analysis fails to fully predict the pre-
cise value of Σ̂8s , it is rather remarkable that the general
size dependence of Σ̂s is captured quite well by Eq. (21), as
demonstrated by the good agreement with the finite element
calculations of Molaro et al. (2017) shown in Fig. 8. Further-
more, Fig. 8 includes a higher-fidelity analytic approxima-
tion, i.e. Eq. A.3 that directly accounts for the phase lag in
Eq. (17), of the size-dependence of Σ̂s.

As oppose to increasing stress on the surface, Σ̂s, with
respect to the rock diameter, interior thermal stress is not
always increasing. Initially, the interior stress is observed
to increase with rock size for D{δ À 7, followed by a sub-
sequent decrease in interior stress with increasing rock size
for D{δ Á 7. Molaro et al. (2017) observed similar behav-
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ior for the interior maximum stress. Substituting z “ D{2
in the Eq. (20) results in Eq. (22). Stress at the half rock
size is shown in Fig. 8 (black line) which captures this non-
monotonic size dependence well.

Σ̂pz “ D
2 q “

QβαE∆T̂s
6p1´ νq

ˇ

ˇ

ˇ

ˇ

"

e´
D
2δ ´

δ

D

´

1´ e´
D
δ

¯

*
ˇ

ˇ

ˇ

ˇ

. (22)

A comparison between different approximate solutions
provided here, Fourier series approximate solutions provided
in Appendix A, and results derived from the numerical ap-
proach for the surface stress in a 10 cm rock on an S-type
asteroid is shown in Fig. 9 as a function of rotation period.
Eq. (19) agrees well with the numerical calculations, and
(by construction) with Eq. (20) for δ Á D. As expected, the
2nd order Fourier series agrees best with the numerical cal-
culations and captures the non-monotonic dependence on
rotation period that will be discussed further in the next
subsection.

Fig. 9: Comparison of numerical calculations of the maximum macro-
scopic surface stress Σ̂s for a 10 cm rock on an S-type asteroid at 1 AU
with four analytic approximations: a 1st order Fourier series approxi-
mation, i.e. Eq. A.3 with n “ 1, a 2nd order Fourier series approxima-
tion, i.e. Eq. A.3 with n “ 2, a 1st order Fourier series approximation
with the phase lag neglected, i.e. Eq. (20), and a special solution for
sufficiently slow rotators such that δ Á D, i.e. Eq. (19)

.

Despite their simplicity, the approximate solutions ob-
tained here for macroscopic thermal stresses at a rock’s sur-
face, e.g. Eq. (19) (for D ă δ) and Eq. (20), are remark-
ably accurate and provide some important general insights.
For example, Eq. (19) demonstrates that macroscopic ther-
mal stresses are primarily governed by second-order spatial

derivatives of the surface temperature when D À δ. On the
other hand, when D " δ, the macroscopic thermal stresses
are largely governed by the ratio of thermal skin depth to
rock diameter, i.e. δ{D. The former condition holds for suf-
ficiently small rocks on sufficiently slow rotating bodies and
the latter condition holds for sufficiently large rocks on suffi-
ciently fast rotating bodies. This holds for both interior and
exterior stresses.

Although dependency of thermal stress on the rock size in
Fig. 8 may be perceived as a size-effect, from our analysis
here, it is clear that this is not a true size-effect in the tradi-
tional sense, c.f. size effects in nano-indentation, nanowires,
or nanoporous materials, for example. Instead, it is evi-
dent here that the ratio δ{D governs the fraction of rock
that undergoes a significant diurnal temperature variation,
with the remaining (deeper) part of the rock remaining in a
nearly isothermal condition. The nearly isothermal portion
of the rock (z Á δ) does not experience thermal expansion,
while the remaining portion (z À δ) experiences thermal ex-
pansion and contraction at sunrise and sunset, respectively.
The thermal strain incompatibility between these two re-
gions induces a macroscopic thermal stress that is somewhat
analogous to the mechanics underlying microscopic thermal
stresses. In the analogy, δ{D is somewhat similar to the
volume fraction of chondrules vi in Eq. (13). Moreover, the
functional form of our model for σ̂TMs , i.e. Eq. (13), is re-
markably similar to the functional form of Σ̂8s with both in-
volving the product of a similar set of thermoelastic material
properties, the diurnal surface temperature variation ∆T̂s,
and a factor related to the fraction of distinct partitioned
regions, i.e. δ{D and vi. In the next section, we will utilize
these scaling relations to better understand how macroscopic
thermal stresses vary throughout the solar system.

5.4. Non-monotonic dependence on rotation period

In section 5.1, the microscopic thermal stresses were
shown to increase monotonically with increasing rotation pe-
riod. On the other hand, Ravaji et al. (2018) demonstrated
that macroscopic thermal stresses exhibit a non-monotonic
dependence on rotation rate. For a D “ 10 cm boulder on
an S-type asteroid at 1 AU, macroscopic thermal stresses at
the surface, i.e. Σ̂s, were shown to increase with increasing
rotation period for P À 6 hr and to decrease with increasing
period for P Á 6 hr, as shown here by the black markers in
Fig. 10. This observation is somewhat peculiar considering
that both diurnal surface temperature variations, i.e. ∆T̂s,
as well as spatiotemporal gradients in surface temperatures,
i.e. dT̂s{dt and ∇2T̂s, all vary monotonically with spin rate,
as shown in Fig. 2. Here we aim to provide fundamental
insights into this non-monotonic dependence of rotation pe-
riod on macroscopic stresses.

The markers in Fig. 10 show numerical calculations of
the non-monotonic dependence of Σ̂s on rotation period P
for three rock sizes: D “ 2 cm (blue diamonds), D “ 10
cm (black squares), and D “ 30 cm (red circles). In each
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case, Fig. 10 first increases with increasing rotation period,
followed by a subsequent decrease with further increasing
rotation period. For each rock size, there is a critical in-
termediate rotation period Pcr for which the macroscopic
thermal stresses at the surface are greatest. According to
our numerical calculations in Fig. 10, Pcr „25 hours, „4
hours, and „0.1 hours for D “ 30 cm, 10 cm, 2 cm, respec-
tively. Assuming thermal stress weathering is dominated
by macroscopic thermal stresses, one would expect thermal
stress weathering to be fastest for rotation periods near these
size-dependent critical spin rates.

The question that naturally arises is what factors gov-
ern this critical spin rate? Following our discussion at the
end of section 5.3, one could postulate that as the rock
size becomes larger, macroscopic thermal stresses tend to be
greatest when the thermal wave penetrates roughly halfway
through the rock, i.e. δcr „ D{2. In this case, the bottom
half of the rock experiencing a near isothermal condition
would provide a resistance to the desired thermal expan-
sion/contraction of the other half of the rock. Since the
two regions are partitioned equally, each region would have
roughly the same compliance. As such, neither region would
be able to dominate the equilibrium configuration, thus ne-
cessitating the maximum possible stresses to overcome the
incompatibility of the similarly compliant regions. For the
S-type asteroids considered here, the critical thermal skin
depths corresponding to the calculated critical spin rates
are δcr « 33 cm, 28 cm, 22 cm, 18 cm, 14 cm, 7 cm, 3.5 cm,
and 1 cm for D “ 60 cm, 50 cm, 40 cm, 30 cm, 20 cm, 10
cm, 5 cm, and 2 cm, respectively, which are in remarkable
agreement with our δcr „ D{2 postulation.

Since the thermal skin depth increases with the square
root of the rotation period, i.e. δ9

?
P , the thermal skin

depth will be larger than the rock diameter, i.e. δ ą D,
for spin rates that are a factor of 4 slower than the crit-
ical spin rate, i.e. P Á 4 ˆ Pcr. Recall that Eq. (19), i.e.
Σ̂s „ αED2|∇2T̂s|{18p1 ´ νq, is an applicable scaling rela-
tion for δ ą D. As such, the numerical calculations of Σ̂s
on slow rotators with periods of P Á 4 ˆ Pcr (all markers
in Fig. 10 that are a bit to the right of the peak stress for
said rock size) should roughly scale with Eq. (19). In this
regime, we should anticipate macroscopic thermal surface
stresses to scale with the square of rock size, i.e. Σ̂s9D

2,
which the size-dependence of numerical calculations shown
in Fig. 10 seem to cooperate. Moreover, the macroscopic
thermal stresses in this regime are anticipated to roughly
scale with |∇2T̂s|, which itself was shown in Fig. 2 to scale
roughly with P´1{2 for sufficiently fast rotators and 1{P for
sufficiently slow rotators (such that ∆T̂s Ñ Teqq. The scal-

ing of |∇2T̂s| with rotation period alone governs the spin
rate dependence of surface thermal stresses for sufficiently
slow rotators with P Á 4ˆ Pcr.

For sufficiently fast rotators, the thermal skin depth can
be exceedingly small. For the special case of δ ! D, the
macroscopic stresses are anticipated to asymptotically ap-

Fig. 10: The non-monotonic dependence of maximum macroscopic sur-
face stress on the rotation period is shown for three different rock sizes
on an S-type asteroid at 1 AU. For each rock size, the particular ro-
tation period that results in the highest macroscopic surface stress is
termed the critical rotation period, Pcr, which is associated with a cor-
responding critical thermal skin depth δcr. From these calculations, it
is apparent that δcr „ D{2.

proach Σ̂8s ” βαE∆T̂s{16p1´ νq as implied by Eq. (20).
In this regime, the macroscopic thermal stresses are antic-
ipated to be size independent. Interestingly, the numerical
calculations for Σ̂s shown in Fig. 10 for various rock sizes
seem to be converging, i.e. becoming size independent, for
extremely fast rotators (P À 10´1 ´ 100 hours). The larger
the rock sizes, the easier it is to realistically achieve the
condition δ ! D. As such, we anticipate the peak thermal
stresses in rocks that are 10s of meters in size and larger will
tend to be nearly size-independent for planetary bodies with
rotation periods faster than about an Earth day. On the
Moon, the thermal stresses are anticipated to become size-
independent for rocks larger than about 100 meters. Lastly,
since thermal stresses in this size-independent regime scales
only with thermoelastic material properties and the diur-
nal surface temperature variation, i.e. Σ̂8s 9∆T̂s, the scaling
of diurnal surface temperature variation with spin rate will
fully govern the spin rate dependence of Σ̂s, which itself was
shown in Fig. 2 to scale roughly with

?
P for sufficiently fast

rotators and independent of rotation period for sufficiently
slow rotators (such that ∆T̂s Ñ Teqq.

The scaling relations derived in section 5.3 have proven
invaluable in providing fundamental insights into the non-
monontonic dependence of macroscopic thermal stresses first
reported in Ravaji et al. (2018) and interpretation of Fig. 10.
For example, it is now clear that there is a critical spin
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rate for each rock size for which macroscopic thermal sur-
face stresses will be maximum. For spin rates faster than
this critical spin rate, the macroscopic thermal stresses are
governed primarily by thermoelastic properties, ∆T̂ , and
δ{D with this size-dependence vanishing for sufficiently large
rocks and/or sufficiently fast rotators. For spin rates slower
than the critical spin rate, the macroscopic thermal stresses
are governed primarily by thermoelastic properties, |∇2T̂s|,
and the square of the rock size, i.e. D2. Beyond these funda-
mental insights, the scaling relations are useful approxima-
tions that are remarkably accurate when compared to full
numerical calculations as well as three dimensional finite el-
ement calculations. For example, the dotted lines in Fig. 10
are predictions of the scaling relation expressed in Eq. (20),
which exhibits remarkable agreement with the numerical cal-
culations (markers in Fig. 10). For completeness and com-
parison, the dashed and solid lines in Fig. 10 make use of
higher-fidelity analytic approximations, i.e. first-order and
second-order Fourier series approximations derived in Ap-
pendix A. The first-order and second-order Fourier series
exhibit better agreement with the numerical calculations,
but are a bit more cumbersome than Eq. (20). The sharp
transitions in the second-order Fourier series are associated
with a transition in the time of day when peak macroscopic
thermal surface stresses are achieved.

The combined effect of spin rate and orbital distance on
the maximum microscopic thermal stresses are shown as a
contour map in Fig. 11 for a 10 cm boulder on an S-type
asteroid. The contour map is generated via combination of
Eq. (20) and Eq. (11). As anticipated Σ̂s is greatest for
asteroids that pass close to the sun and decays monotoni-
cally with increasing orbital distance in a manner similar to
that of ∆T̂s, i.e. as r´2 for fast rotators and r´1{2 for slow
rotators according to Eqs. (9)–(11). Molaro et al. (2017)
reported similar scaling dependencies of r´3{2 and r´1.2 on
Σ̂s for rotation periods of 1 and 5 Earth days, respectively,
and slightly stronger dependencies for faster rotating bod-
ies. Molaro et al. (2017) provided a map of finite element
calculations of Σ̂s similar to Fig. 11, but did not observe the
non-monotonic dependence of Σ̂s on spin rate. The reason
for that is that Molaro et al. (2017) calculations are for a
much larger boulder size, D “ 1 m (compared to D “ 10
cm in Fig. 11). Our results and the calculations of Molaro
et al. (2017) agree for equivalent parameters. As discussed
earlier, the critical spin rate where the spin rate dependence
of Σ̂s reverses corresponds to spin rate required to produce
a thermal wave that penetrates halfway through the rock.
For the 10 cm rock modeled in Fig. 11, this condition is
met for a rotation period of about 0.1 Earth days. However,
for the 1 m rock modeled in Molaro et al. (2017) a rota-
tion period of about 12 Earth days is required to meet the
condition, and the map shown in Molaro et al. (2017) does
not extend to such slow spin rates. Lastly, it is interesting
to note that there are no known asteroids in the regions of
Fig. 11 with Σ̂s Á 4 MPa, i.e. r À 0.75 AU and 10´2 Earth

days À P À 0.5 Earth days. It is possible that thermal stress
weathering on centimeter- and meter-sized is highly effective
on bodies with such rotation periods and orbital distances.

Fig. 11: Contour plot demonstrating the combined effect of rotation
rate and orbital distance (assuming zero eccentricity and inclination)

on the maximum macroscopic thermal stress, i.e. Σ̂s, within a 10 cm
rock on an S-type asteroid. For reference, the rotation rate and av-
erage orbital distances of various planetary bodies (Hergenrother and
Whiteley, 2011) is shown.

6. Summary and conclusions

The efficacy of thermal stress weathering is driven by both
macroscopic (rock-scale) and microscopic (grain-scale) ther-
mal stresses. Here we carried out extensive numerical calcu-
lations and analytic analysis of the (Delbo et al., 2014) ther-
mal stress weathering model. Microscopic thermal stresses
were found to be governed primarily by thermoelastic ma-
terial properties, the volume fraction of heterogeneities, the
contrast between thermal expansion coefficients of hetero-
geneities, and the maximum diurnal surface temperature
variation as was also stated by Molaro et al. (2015) and
Eppes and Keanini (2017). Macroscopic thermal stresses
are more complex and were found to be governed primarily
by thermoelastic material properties, the ratio of thermal
skin depth to rock diameter, the maximum diurnal surface
temperature variation, and the second-order spatial deriva-
tives of the temperature field, with many of these factors also
being articulated in Molaro et al. (2017). Beyond these fun-
damental insights, here we have derived a number of scaling
relations that are practical approximations of the magnitude
of both microscopic and macroscopic thermal stresses. These
scaling relations are remarkably accurate when compared to
both the numerical calculations as well as full finite element
calculations (Molaro et al., 2015, 2017). In addition, these
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scaling relations accurately capture the effect of both ther-
moelastic and thermophysical properties on microscopic and
macroscopic thermal stresses.

The peak microscopic (grain-scale) thermal stresses are
reported to be roughly 2–4 MPa on many near-Earth aster-
oids and about 36 MPa on the Moon, which is in good agree-
ment with two-dimensional mesoscale finite element calcula-
tions of (Molaro et al., 2015) (after necessary modifications
are invoked to account for the different boundary condi-
tions utilized). Likewise, the magnitude of peak macroscopic
thermal stresses on the Moon is reported here to respec-
tively be about 5 MPa and 8 MPa on a D “ 0.5 m and a
D “ 0.7 m rock, which is in remarkably good agreement
with three-dimensional finite element calculation of (Mo-
laro et al., 2017). Stress magnitudes reported in this paper
through Fig. 6 to Fig. 11 are generally subcritical compared
to the tensile strength of rocks (Eppes and Keanini, 2017;
Ravaji et al., 2017), but large enough to trigger fatigue pro-
cess. That said, thermal fatigue lifetime calculations were
beyond the scope of the current work.

One important contribution of this paper has been the
classification of a body’s spin rate based on the thermal pa-
rameter, Θ, where different fundamental physics and scalings
dominate, i.e.

• Thermally fast rotators exhibit Θ " 1

• Thermally slow rotators exhibit Θ ! 1

• Intermediate rotators exhibit Θ „ 1.

For sufficiently fast rotators with Θ Á 10, e.g. P À 6
hr at 1 AU from the Sun, the diurnal surface temperature
variation, and thus, the peak microscopic thermal stresses
are inversely proportional to the thermal parameter Θ, and
roughly constant for constant values of Θ. As such, micro-
scopic thermal stresses will increase roughly with the square
root of the rotation period

?
P and decay with orbital dis-

tance as r´2. For sufficiently slow rotators with Θ ! 1, the
peak microscopic thermal stresses are roughly independent
of spin rate and are expected to decay with orbital distance
as r´1{2. In addition, the two regimes exhibit different de-
pendencies on thermophysical parameters, e.g. the diurnal
surface temperature variation and peak microscopic thermal
stresses are inversely proportional to thermal inertia Γ and
independent of emissivity ε on thermally fast rotators, but
are independent of thermal inertia Γ and dependent on em-
misivity ε on thermally slow rotators. These dependencies
on thermophysical properties and orbital parameters can be
seen clearly via combination of the scaling laws shown in
Eq. (11) and Eq. (13), which provides an attempt to gener-
alize observations of Molaro et al. (2015), i.e.

• On thermally slow rotators with Θ ! 1:

∆T̂s „
2

3
Teq „

2

3
4

c

1´A

εσB

S@

r2

σ̂TMs „
2

3
K˚fpviq∆α

4

c

1´A

εσB

S@

r2

• On thermally fast rotators with Θ " 1:

∆T̂s „
1.12ˆ Teq

Θ
„ 1.12

p1´AqS@

Γ
?
ωr2

σ̂TMs „ 1.12ˆK˚fpviq∆α
p1´AqS@

Γ
?
ωr2

.

An additional classification introduced here regards the
relationship between a structural length scale, the rock di-
ameter D, and a thermal length scale, the thermal skin
depth δ. Here, large rocks in a thermal stress context are
those whose structural length scale is larger than the thermal
length scale, i.e. D ą δ, and conversely small rocks are those
with D ă δ. For sufficiently small rocks, i.e. D ă δ, the peak
macroscopic (rock-scale) thermal stresses are approximately
proportional to the magnitude of the second-order gradi-
ent in surface temperature, i.e. ∇2T̂s, as shown in Eq. (19),
which scales roughly with the inverse square root of the ro-
tation period (1{

?
P ) on fast rotators (Θ ą 1) and as the

inverse of rotation period on (1{P ) on slow rotators (Θ ă 1),
as discussed in subsection 4.3. This difference in the depen-
dence on ∇2T̂s instead of ∆T̂s is the most crucial difference
between macroscopic thermal stresses on small rocks and
microscopic thermal stresses, and leads to opposite depen-
dencies on spin rate. The macroscopic thermal stresses on
small rocks are strongly dependent on rock size, and scale
with the square of the rock size as shown in their scaling
relations resulting from Eq. (19) combined with Eq. (11-12):

• Small rocks, i.e. D À δ, on slow rotators, i.e. Θ ! 1:

Σ̂s „
1

27

αE

1´ ν

ˆ

D

δ

˙2
4

c

1´A

εσB

S@

r2

• Small rocks, i.e. D À δ, on fast rotators, i.e. Θ " 1:

Σ̂s „ 1.12ˆ
1
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αE

1´ ν

ˆ

D

δ

˙2
p1´AqS@

Γ
?
ωr2

.

On the other hand, for sufficiently large rocks, i.e. D " δ,
the peak macroscopic (rock-scale) thermal stresses are ob-
served to follow fairly similar trends as those discussed for
peak microscopic (grain-scale) thermal stresses, since both
are primarily drive by the diurnal surface temperature vari-
ation ∆T̂s, with the scaling laws for both exhibiting simi-
lar functional forms on both fast and slow rotators as seen
by combination of the scaling laws shown in Eq. (11) and
Eq. (21), which provides an attempt to generalize observa-
tions of Molaro et al. (2017), i.e.

• Large rocks, i.e. D Á δ, on slow rotators, i.e. Θ ! 1:

Σ̂s „
αE

1´ ν
f

ˆ

δ

D

˙

4

c

1´A

εσB

S@

r2

• Large rocks, i.e. D Á δ, on fast rotators, i.e. Θ " 1:

Σ̂s „ 1.12ˆ
3

2
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1´ ν
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ˆ

δ

D

˙
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?
ωr2

.
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The primary difference between the peak macroscopic (rock-
scale) and microscopic (grain-scale) thermal stresses in large
rocks (D Á δ) is that the macroscopic thermal stresses de-
pend on δ{D, which itself depends on both the spin rate ω
and the thermal diffusivity. For extremely large rocks D " δ
the macroscopic thermal stress becomes insensitive to δ{D,
i.e. f

`

δ
D

˘

Ñ 1, and the dependence of peak macroscopic
and microscopic thermal stresses on spin rate and thermo-
physical properties become essentially identical. It is also
worth noting that the dependence of both microscopic ther-
mal stresses and macroscopic thermal stresses on orbital dis-
tance is essentially identical. For all cases, we report that the
thermal stresses should decay as r´2 on very fast rotators
and as r´1{2 on very slow rotators. Intermediate rotators
will have scaling dependencies that fall between these two
limiting cases. This is consistent with calculations of (Mo-
laro et al., 2017) who reported an orbital distance scaling
dependence with an exponent that weakened with increas-
ing rotation period, i.e. r´1.65, r´1.5, and r´1.2 for a 1 m
boulder on a body with a period of 0.1, 1, and 5 Earth days,
respectively.

An additional important contribution of this paper is the
physical rationalization of a non-monotonic dependence of
macroscopic thermal stresses on spin rate, first reported
by (Ravaji et al., 2018). Here we postulate and confirm
that there is a critical spin rate where macroscopic thermal
stresses will be greatest for a given rock size. This critical
spin rate corresponds to the spin rate necessary to induce a
thermal wave that penetrates halfway through the rock, i.e.
δcr „ D{2. Spin rates either faster or slower than the criti-
cal rate will result in smaller macroscopic thermal stresses.
In the above derived scaling law, this non-monotonic depen-
dence arises through the competition of 1{

?
ω and f

`

δ
D

˘

.
As the spin rate slows, the thermal skin depth δ increases,
which results in a monotonic decrease of f

`

δ
D

˘

, whereas
1{
?
ω monotonically increases as the spin rate slows. The

product of these two monotonic, but opposite trending func-
tions captures the non-monotonic dependence on spin rate.
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Appendix A. Fourier series analysis

One convenient, general harmonic solution of Eq. (7) for
the one-dimensional spatiotemporal temperature field is

T pz, tq “ T̄s `
1

2
∆T̂s

n
ÿ

j“1

e´
?
j zδ

!

bj cos
´

jωt´
a

j
z

δ

¯

`cj sin
´

jωt´
a

j
z

δ

¯)

, A.1

where T̄s “ P´1
şP {2

´P {2
Tsptqdt denotes the mean surface tem-

perature through a diurnal cycle. In general, the Fourier
series coefficients utilized in Eq. A.1 are computed as

bj “
2

P

P {2
ż

´P {2

Tsptq cospωjtqdt

cj “
2

P

P {2
ż

´P {2

Tsptq sinpωjtqdt.

A.2

Using Eq. A.1 in Eq. (3) leads to an ana-
lytic equation for the temporal variation of the
macroscopic thermal stress on the surface, i.e.

Σsptq “
QEα∆T̂s
2p1´ νq
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where
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