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RELATION BETWEEN RANK AND MULTIPLICATIVE COMPLEXITY OF A BILINEAR FORM OVER A COMMUTATIVE NOETHERIAN RING

The concept of multiplicative complexity of a bilinear form is introduced for a commutative Noetherian ring.

Rings are described for which the multiplieative complexity coincides with the rank for all forms.

It is shown that for regular rings of dimension ~ 3 the multiplicative complexity can exceed the rank by an arbitrarily large number.

In this article we study a notation which arises in the theory of algebraic complexity of computation (the main concepts and problems of this theory are presented very completely in [i]). One of the problems in algebraic complexity of computation is to estimate the complexity of computing a family of bilinear forms. The tasks of estimating the complexity of computing a product of polynomials or matrices lead to this problem [I]. The complexity of computing a family of bilinear forms is usually estimated over a field (see, e.g., [i, 2])+ In this paper we attempt to study the analogous problem for bilinear forms over a commutative ring (a computational interpretation of this problem is discussed below). The problem of complexity of a family of bilinear forms over a ring causes difficulties even in the case of a single form, and we restrict ourselves to this case.

It is shown in [START_REF] Strassen | Vermeidung von Divisionen[END_REF] that the smallest number of nonlinear operations required to compute a family of bi!inear forms is equal to the multiplicative complexity of the family, as defined below (under certain conditions this assertation can also be proved for bilinear forms If F is algebraically closed and we have a pair of matrices, an explicit formula is given in [START_REF] Yu | Multiplicative complexity of a pair of bilinear forms and of the polynomial multiplication[END_REF] (a closely related result is obtained in [START_REF] Suprunenko | Optimal evaluation of pairs of bilinear forms[END_REF]) for the multiplicative complexity in terms of the parameters of the canonical Weierstrass--Kronecker form of the pair of matrices.

In this article, we consider matrices over a ring K which is assumed to be commutative 3) every projective module over ~ is free i{{6i~R} (in the ease of an integral domain K, this formulation was suggested by A. A. Suslin).

COROLLARY i.i. Let I be a principal ideal domain. Then (In Sec. 2 we will use the fact that F[~] is an h'-ring~ where F is a field.)

Part 2) of Theorem 1 in this case follows from the Syzygy theorem [START_REF] Serre | Local algebra and theory of multiplicities[END_REF]; part 3) for case (b) follows from a theorem of Seshadri [START_REF] Yu | Lectures on Algebraic Geometry[END_REF].

We turn to the proof of Theorem i, which will be broken up into two s~eps~ viz. Theorem 1 follows from Lemmas 1 and 2. We make a few remarks.

COROLLARY 1.2. Let ~ be a commutative Noetherian local ring and assume ~~ .

Then ~ is an % -ring.

The fact that ~ is an integral domain follows from [5, Chap. IV, Theorem 5 and its Corollary 4]. For theproof that every projective module over a local ring is free, cf. [START_REF] Yu | Lectures on Algebraic Geometry[END_REF].

In connection with Theorem i, the question arises whether it is possible to estimate R~A~ in terms of ~ A and, perhaps, certain other characteristics of the ring It turns out that this is easy to do if ~~. This shows that the condition ~~ is very important in Lemma 2 and Theorem i. We use a result due to Swan [START_REF] Swan | The number of generators of a module[END_REF]. Writing ~(~) for the smallest number of generating elements of the module ~I , the main result in [START_REF] Swan | The number of generators of a module[END_REF] and the Syzygy theorem [START_REF] Serre | Local algebra and theory of multiplicities[END_REF] keep in mind in developing our arguments). We also impose a not very burdensome constraint of a geometric character on the ring ~ , i.e., the ring ~ embeds in residue field ~=~/nl modulo its a maximal ideal ~I~ of height ~ (in this section we consider only rings satisfying this restriction). We denote by ~i~.-.,El elements of the ideal ~ which project in the ~ -vector space ~/~%a to form a basis (the existence of such elements follows from results in [7, Chap. ii, Sec. 3]). The above restriction is satisfied, e.g., when the ring is the coordinate ring of a variety of dimension greater than two.

In this section we limit ourselves to considering matrices of the following form and characterize %~ for them. A matrix over the ring ~ is said to be square-free if its where O~L E F(i~;p ~ and all the elements of the matrix Since GiA=(GiSG~)t~C ) and 6A' is square-free, 

  Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematieheskogo Instituta im. V. A. Steklova, Vol. 86, pp. 66-81, 1979. 0090-4104/81/1704-1987507.50 9 1981 Plenum Publishing Corporation 1987 over a ring). The multiplicative complexity hF(A4~ ~A~h of a family of bilinear forms ~{~ ...~ A~ over a field F is defined [2] as the smallest N such that there exist bilinear forms ~ ~{~N) each of rank 1 which contain ~{~...~ A~ in their S -linear span. We note that the computation of a bilinear form of rank 1 requires a single multiplication of linear forms. It is obvious that ~qF ~ is equal to the ordinary rank of the bilinear form A (in what follows we consider the matrices of coefficients instead of the bilinear forms).

  (a) I is an ~ -ring; (b) ][~I is an ~-ring.

  ~ reducing the general case to the case of integral domains and then proving the result for integral domains. where every ~ is LEMHA I. A ring K is an -ring if and only if ~=~ ~'"~ an integral domain and an ~ -ring ([_~[mp~] (such a decomposition is unique). The uniqueness of the decomposition (assuming it exists) follows from general arguments. If ~i~'"~S ~ ""'~'i where the Kc(i&~S],~(i_Li_~i]. are integral domains and co>,i then we choose nonzero ~{e~i~"'~ ~S ~g.' expand ~ =~{~rt~(i~{~$~(~.m ' ~]' , and consider the sets of indices ~t=[i:t~01 . Then the sets ][[{~[L$) are pariwise disjoint~ so S=~ and the I% all consist of a single element: ~{=[~[t]l ~][ a permutation of the { 1 -' set {,...,~ ). In this case~ ~t--~%~<~. In one direction, i.e., the fact that the ~% [{~ are ~-rings implies that ~=~i~'"e~ is an ~ -ring, the lemma is proved as follows. Let A be a matrix over K. Then ~=~...~ where A t is a matrix over ~t[[&[~ and ~C=~=~U~At ~ A[. Since the ~are ~-rings, there ~ exist columns ~{i ~[ and rows ~s 6(~7)~([&{A~{m~&<} such that ~=~Tt~ ({~-[~t~ . Then A=~(~_~ I~i~ , and therefore We turn to the proof of the converse, i.e., that every" ~-ring is a direct sum of integral domains. The fact that each of the summands is also an ~-ring is already obvious. Let ~ be an ~ -ring and denote by ~$ its complete ring of fractions, i.e., the localization of ~ relative to the multicatively closed set ~ of all nondivisors of zero in ~ 9 We verify that K 5 is an ~ -ring (this holds for any 6 not containing zero divisors). Let A--~(i~/~-be a matrix over K and'~there exist ~ and ~eI~) ~(i~z-~-~ such that 9 ' i~t ~L'" Consequently, ~[~ A ='r.. = '~ Pk

  [<~L~-----(~ ~e $~t, i.e., ~-i~-~ ~-i~ (i-~{~[)~. Since the decomposition (<)~ ---p~ is minimal, each of the prime ideals ~ p~ is minimal. Hence by & the Chinese remainder theorem, ~--~t~[~$/Sp~. Lemma i.i is proved. LEMMA 1.2. Let ~ ~5 be an embedding of the -ring ~ in ~S , which by Lemma i.i is isomorphic to m direct sum of fields ~(9 ..-@~ and let FI-~...~F~-~L be the natural projections ~i_~t~-N~ Then ~(~I~[}!~] ({~-{~I~. We identify ~ with its image ~(~] and let i=~L~...+~ be an expansion of the identity (0~6~, i~-ta~). It suffices to verify that ~(i~=fLL6~ [i~-t~-~ for all representatives 0~ having the form of a fraction ~/C [~e~ ~s , in which the ideal (~c~ is chosen to be maximal among the principal ideals corresponding to all possible denominators. Considering the matrix ~---I g 0 (-~-~I ' we then have ~=~[~-~)=O since ~/~e~ (s

~

  [C[~I=~[d~{~IL~, where I-is an ideal in ~=i*~/~[d~ where ~ is an ideal in ~] . That is, for some ideal Lc~ we have ~ 5 ~ . Let ~ be generated by t elements &i ..... ~t eK-Let ~ be the epimorphism ~-~L , where ~t=W~Kq)...,Wt K and q(~f6~=~ I~[&~ . Then the sequence O----~t~__~O is exact,and since d~L~ , the module ~L q is not projective. On the other hand, ]-(~t/~)--]-(~=O, so th~t ~ is free. projective and therefore free. Lemma 2 is proved.

COROLLARY 1. 3 .

 3 Let the integral d~main ~ be a commutative Noetherian local ring and ~l~i, and an exact the proof of Lemma 2, we construct a monomorphism ~z , sequence 0--~ ~n--~'~/~z'-~O. Since ~~ , ~i is projective.

  imply that ~(~'~ ~ ~.~(~#p~, where {~i~-is the localization of ~i' by the prime ideal pc~ The module (~i~p is free since it is projective over the local ring ~p Moreover, ~(~i) ~ =~ , and therefore ~t~((~p~=~ Finally, ~(~+~ . Corollary 1.3 is proved. As in the case of matrices over a field, the function % can be extended to families of matrices over a ring ~ (here we assume that ~ is an integral domain) and the question posed in Theorem 1 can be considered, viz., what are the conditions on ~ in order for ~...~A~=NF{A,...~A ~ to hold for every ~i and all matrices A~...~ ~n over ~ , where is the field of quotient of ~ ? It can be shown by carrying the proof of the main result in [9] (for the case of an exterior product) over to the case of tensor products that the above equality holds only if ~=F. 2. In this second section we consider rings of dimension greater than two. As follows from Theorem i, %~ for certain matrices A over suchrings.~_ ----We willstrengthen this inequality below and show in particular that the difference ~-%~ is unbounded from above for an extremely large class of rings of dimension greater than two (it is of interest to compare this result with Corollary 1.3), Let ~ be a commutative Noetherian regular ring and an integral domain and assume ~=~d~ (in our problem, the important example is the case ~=F[~{ .... ,~&], which we

  identity matrix with side ~_ (. = SS~ )t " ' Conditions 2) and 4) are verified directly using the induction assumption. Conditions i) and 3)follow from the identity {~+~i-i~+ I$_+~-~I-,i~ i . For the sake of definiteness, we assume that Let ~i,~C=O ~ where ~,~ are F-matrices~ and let p'=~,%=~ we ~L ~Q~ the i-th column (j-th row) of the matrix ~(~ For each ~ i i~-~ let ~ {~..., t ~ ~5~,~ .... ,~,~ be the indices of the rows (columns) in which the ~?-=~-~ appears. Then by condition 3) we have Assume the ~L~...~%p are linearly independent and let the C~...,C~ also be linearly independent. We write pm for the cardinality of the set {L{~ .,{pl ~[[ the cardinality of l~,...,i~IniS~,~ , .... '~,'I" Then by condition 4)~ D = (~+i~p~_~s~(~ § ~ On the other hand, the inequality (n) implies that p~+~ ~h: Therefore, {L+%bt~{o~N -L{i,sbp#Ei~[~(s, bi~ , i.e., (p~c~ s~i --~s~LL. i" Hence by Lemma 2.1, ~ A% §247 Condition 6) is verified, Finally, we put AOA~,. The theorem is proved. Remark 2.5. The above construction of the matrices A 5~ is similar to the construction of the mapping cone for complexes [4, Chap. 2]. That is~ let p=F[]c~,~..~] be the polynomial ring in infinitely many variables. Consider the following sequence of finite complexes consisting of free finitely generated P -modules: Co: c~: .c z: C: ... 0 --~ PL-O ,.. ... o_p ..... o--.p 0 .. 9 ...o--p-~p ... Pff"~..: PtA-~ P t~ ~o"-

where all the elements of the p x ~ submatrix ~t belong to I't'L. We then move some element of this submatrix containing ~ (if it exists) into the upper left corner and arrange that no other element in the first row or column contains agz ~ etc.

After ~ such steps ~#O~ the elements of the remaining (tl-i~-t#~(Z-~f~ submatrix do not contain ~z ; we carry out the procedure analogously with D~ , etc.

As a result of the F-elementary transformations, the matrix A is reduced to the form q'" L~... When the ring ~ is not commutative, I know a reasonable definition of ~ only in the case when ~ is a division ring (using the Dieudonne determinant [ii]). In this case the equality %~=~A is satisfied for every matrix A over the division ring K.