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TWO REDUCTIONS OF GRAPH ISOMORPHISM TO PROBLEMS ON POLYNOMIALS

It is proved that for isomorphism of n-vertex graphs with weights on the edges there exists a complete system of n 2 + 1 polynomial invariants. It is also shown that isomorphism of graphs reduces in polynomial time to the factorization of a polynomial in one variable into factors irreducible over some field.

In the present note two reductions are given of the problem of isomorphism of graphs (in connection with the literature, cf. [1][2][3][4]). It is proved that for n-vertex graphs with weights on the edges, there exists a complete system of invariants, consisting of (n 2 + 1) polynomials, the degree of each of which does not exceed n 2. The second result consists of the reduction in polynomial time of the problem of isomorphism of graphs to the factorization of a polynomial into irreducible factors over some field. There appears to be great interest in estimating the complexity of the factorization of a polynomial into irreducible factors (especially over the field of rational numbers, cf., e.g., [5, 4.6.2]). In some sense both the reductions indicated are realizations of the Hfunctorial~ approach (the term is borrowed by the author from [4]).

To get the reductions indicated, one uses concepts and results, well known in the theory of invariants and Galois theory (references are given to the corresponding literature). We shall consider the problem, formally more general than the problem of isomorphism of graphs, of the isomorphism of hypergraphs with weights on the edges -for this problem there is a clearer connection evident with the algebraic concepts used. The last problem reduces in polynomial time to the problem of isomorphism of graphs with weights 0, 1 on the edgeswe shall call them simply graphs (the indicated reduction is in [2] and is based on considerations already known to Birkhoff).

In order to precisely formulate the problem of isomorphism of hypergraphs, we fix a field F of characteristic q. By a (k, n)-hypergraph we shall mean a k-dimensional tensor T = (Til" . .ik) , where 1 -< i~ .... , i k -< n, i.e., a k-dimensional cube with side n, in whose cells stand Til" . .ik, elements of the field F; the class of all (k, n)-hypergraphs we denote by Gk, n. We shall call a (k, n)-hypergraph T symmetric if Ti~...i k = TiTr(i ). . .i~(k) for any 7r, an element of the group S k of all permutations of a set of k elements. In the case when k = 2 and all elements Tij assume values 0, 1, we get the contiguity matrix of an ordinary graph (if T is symmetric, then the corresponding graph is unoriented). Two (k, n)-hypergraphs T and T' are called isomorphic (and we write t T ~ T'), if there exists a permutation ~-E Sn, such that T = rT', i.e., Ti~" . .ik = TT(il). 9 .T(ik) for all 1 -< is, . . ., i k -< n. If TT = T, then T is called an automorphism of the hypergraph T, and the group of all automorphisms we denote by nut T.

The algorithmic formulation of the isomorphism problem consists in estimating the complexity of the recognition problem: Are two given graphs isomorphic or not (cf., e.g., [I ] ? This problem is considered difficult (a fairly detailed bibliography on attempts to solve it is given in [3]) -it remains an ope n question whether it belongs to the class of problems recognizable in polynomial time or not.

For the first reduction of the isomorphism problem of (k, n)-hypergraphs one constructs a complete system of n k + 1 invariant polynomials, n k of them have simple form and their values can be calculated rapidly, while the remaining (nk + 1)-th polynomial takes a long time to calculate with the help of the known schemes of calculation (furthermore, there is no evident effective method of defining it). If one succeeded in giving a calculation of the values of this polynomial in polynomial time, then it would be established that the isomorphism of graphs belongs to the class of problems recognizable in polynomial time.

1. We denote by Fq the primitive field of characteristic q (q is a prime or zero). We call a polynomial P(<xil" . .ik >) in n k variables with coefficients in the field Fq an invariant q-polynomial, or simply an invariant A system (finite or infinite) of invariants { Pi} is called complete if for any T, T' ~ Gk,n, from the fact that Pj(( Til" . .ik}) = Pj(<T~ ik}) for all j, it follows that T ~ T'. We denote by R = R(q, k, n) the ring of invariant q-polynomials for Gk, n;'by F(q, k, n) its field of fractions.

We give examples of the simplest invariants. Let M ~ Gk, n and the elements of M be zero and one (we shall use this notation below also). We set where the product is taken over all xil" . .i k for which Mi~" . .i k = 1. Then p~ = ~____~ ~(~) is an invariant.

THEOREM

I. For any q, k, n, there exists a complete system of invariants for Gk,n, containing n k + I elements, each of which is an Fq-linear combination of invariants { PM}.

LEMMA 1. The ring R is finitely generated over Fq (its generating system is, e.g., the set of all {PM}).

The assertion about the finite generation of the ring R follows from the theorem of Hiibert-Nagata ([6, p. 368] -in the present case ~ = S n, A ~' = R). The proof of the fact that for any q, as generating system one can take { PM}, completely follows the proof of the fundamental theorem on symmetric polynomials [7, p. 124].

LEMMA 2. The ring R(q, k, n) is a complete system of invariants for Gk,n.

For each T ~ Gk, n we define in the following way a polynomial fT(F, (7i~...ik}) of n k + I variables:

~S~ ~/,~v.. ~
If T ~ T', then fT = fT' as polynomials, i.e., their corresponding coefficients coincide. Conversely, let fT = fT'. We consider fT and fT' as polynomials in one variable F with coefficients in the ring R = F[(?i~...ik)]-Since the roots of the polynomials fT and fT' coincide, for some T ~ S n in the ring R~ one has T I

n rl

By virtue of the factoriality of the ring R I [7, p. 115], Til...i k r(i~)...r(i k) for all I < ii, . . i k -n. Hence T ~ T' is equivalent with the fact that fT = fT', which means the coincidence of the corresponding coefficients of the polynomials fT and fT', all of which are elements of R(q, k, n).

LEMMA

3. The field F(q, k, n) is generated over Fqby(n k+l) by elements which can be chosen as Fqlinear combinations of the invariants { PM}.

This lemma is a special case of Theorem 6 of [8, p. 48], which follows from the primitive element theorem (cf. [7, p. 168]). In the present ease, the transcendence degree of the field F(q, k, n) over Fq is equal to nk and that the field F(q, k, n) is finitely generated over Fq follows from Lemma I.

The theorem follows from Lemmas 2 and 3.

Remark.

From what is mentioned on p. 417 of [START_REF] Literature | The complexity of theorem-proving procedure[END_REF] it follows that Lemma 3 can be improved: even the ring R(q, k, n) is generated over Fq by (nk + i) elements.

The isomorphism

problem for hypergraphs reduces to the isomorphism problem for symmetric hypergraphs, evengraphs -eL, e.g., [2] (here and later the reducibility means reducibility in polynomial time). In this section, without saying this each time specially, we consider symmetric hypergraphs.

Let T ~ Gk, n. We divide the set of numbers {I, . . ., n} into domains of transitivity with respect to T, putting i, j (1 <-i, j -< n) into one domain if and only if one can find a T ~ aut T such that ri = j.

It is well known that the problem of isomorphism of graphs reduces to the problem of partitioning into domains of transitivity with respect to a given hypergraph.

Namely, for T', T" E Gk, n we construct T E Gk,2n , s erring

, if Yt,'4"J~j).,.IbK~H, ~ -T H Tt~,.. t~ - ~,~-~--. tK-~
and otherwise setting Ti, i~ equal to an element of the field F, not occurring among the elements {Tjt" , .jk} and {Tit...Jk} (if the held F ,s f, mte and this cannot be done, then we pass temporarily to a larger field, and then with the help of the method already mentioned, recounted in [2], we pass to graphs). Hypergraphs T' and T" are isomorphic if and only if one can find natural numbers i, j satisfying 1 -< i -< n < j -< 2n, and lying in one domain of transitivity with respect to T. Now Iet T E Gk,n and let Yt ..... Yn be algebraically independent over F. Let, further, ~ = Yt + 9 9 9 + Yn ..... an = Yr. 9 .Yn be elementary symmetric polynomials in Yt, .... Yn" We consider the finite Galois extension of fields F(~ = F(a I .....

(~n) C F(yt, . . ., yn ) = Fy. The degree of this extension is equal to n! and its Galois group is S n (ef. [7, p. 222]). We denote by f E F( 7 The Galois group G c S n of the extension F T c Fy coincides (as permutation group) with the group of automorphisms autT. In fact, let g E G, then gO T = 0 T and gT = T (from the symmetry of T). Conversely, let g E autT, then g8 T = O T and g E G.

The elements of the group G act transitively on the roots of the polynonlials fj (1 _< j _< l), and a root of the polynomial fi cannot be translated into some root of a polynomial fj (j ;~ i). This assertion is well known in Galois theory, but below we give a short proof of it, based on the fundamental theorem of Galois theory (cf. [7, p. 202]). The second part of the assertion is proved thus. Let g E G and gYu = Yv, where fi(Yu) = 0 and fi(Yv) = 0 (i ~j). But gfi = fi, so fi(Yv) = 0 and the polynomials fi and fj have common roots -contradiction. Now we prove the first part. Let fj = hi 9 9 9 hm, where the group G now acts transitively on the roots of each of the polynomials hi, .... h m (we use the already proved second part of the assertion). Then G acts invariantly on all the polynomials hi .... , hm, hence according to the fundamental theorem of Galois theory the coefficients of the polynomials hi, .... h m lie in the field FT, but fj is irreducible over FT, i.e., m = 1, so G acts on the roots of each of the polynomials f] (1 _< j -l) transitively.

It follows from the two assertions proved above that Is, 9 . 9 Il is a partition into domains of transitivity with respect to T. The theorem is proved.

The author thanks B. S. Stechkin for helpful conversations on isomorphism of graphs.
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  [z ] the polynomial z n-alz n-1 +..problem of partition into domains of transitivity with respect to T reduces to the problem of factoring the polynomial f into irreducible factors over the field F T.Let f = ft 9 9 9 fl be the factorization of f into factors, irreducible over F T. Substituting successively Yt, .... Yn into ft, .... fD we clarify which are the roots of the polynomials ft .... , fl. By lj we denote the set of indices of roots of the polynomialfj (1 < j -<-l), i.e., i EIj <~---> fj(Yi) = 0.