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It is shown that isomorphism of semisimple algebras over an algebraically closed field is recognized in polynomial time. The polynomial equivalence of isomorphism of graphs and isomorphism of algebras (over an algebraically closed field) with zero square of the radical and commutative quotient modulo the radical is proved. A series of problems about the complexity of matrix problems and isomorphism of algebras are posed.

In the present article, we pose a series of complexity problems of algebraic origin and indicate their interrelations with the complexity of recognition of isomorphism of graphs. In addition, we elucidate the complexity of recognition of isomorphism for two classes of algebras (see the proposition and the theorem).

I. It has been shown by the efforts of many Soviet mathematicians that, in the first place, many problems about the classification of modules (over a given algebra) are reduced to the so-called matrix problems, and these, in their turn, are classified into three types of problems: finite, tame, and wild, such that all the problems of one type are equivalent to each other in a definite sense (one of the first articles on this theme was [I]; further~ see the series of articles in [2] and the recent articles of L. A. Nazarova, A. V. Roiter, Yu. A. Drozd, A. V. Yakovlev, and others). We can take the following problems as the model Let us turn to the algorithmic formulations of the matrix problems.

In this connection, we consider matrices with rational elements, although we can take the elements from other "well-defined" fields.

The algorithmic formulation of the model finite problem lies in P, since it is sufficient to compute the rank to determine the equivalence of matrices in this case, which can be done in polynomial time, using, e.g., [START_REF] Borosh | Exact solutions of linear equations with rational coefficients by congruence techniques[END_REF] or [START_REF] Mcclellan | The exact solution of system of linear equations with polynomial coefficients[END_REF]. Let us at once observe that the reductions of matrix problems to the above-mentioned models, known to the author, for all the three types are, in particular, P-equivalences.

The algorithmic formulation of the tame problem also lies in P, since coincidence of the Jordan forms of two matrices can be verified in polynomial time (see [START_REF] Mcclellan | The exact solution of system of linear equations with polynomial coefficients[END_REF], [START_REF] Hu | Integer Programming and Network Flows[END_REF], AppendixA] and also [START_REF] Yu | Some new bounds on tensor rank[END_REF], in which it has actually been sho~ that another tame problem --a problem about a matrix bundle, is solvable in polynomial time).

The above-formulated wild problem about the classification of pairs of matrices is regarded as a standard of difficulty in linear algebra.

It is interesting to elucidate whether it is complex in the algorithmic sense.

The algorithmic formulation of the standard wild problem is as follows: to elucidate whether two pairs of matrices (A, B) and (C, D) are equivalent, i.e., does there exist an invertible matrix X such that AX = XC and BX = XD? The last two equations can be considered as a linear system in the coefficients {xij} of the matrix X, its solution in the matrix form is found, and then we arrive at the following algorithmic problem: Does there exist a nonsingular matrix in the given linear variety of matrices?

It is clear that this problem lies in NP, since the last problem is equivalent to the problem of nonidentity of the determinant of the parametric matrix.

Does this problem lie in P?

2. Side by side with the problem about isomorphism of modules over a given algebra, which, as observed above, reduces to a matrix problem, there also arises the problem of isomorphism of associative algebras.

We assume the algebras to be given by their integral structure tensors.

For simplicity, we consider finite-dimensional algebras with identity over an algebraically closed field F (in order not to be occupied by the problems of representation of elements and of carrying out the operations in the field, we set F = ~ in the proofs).

In this case, the quotient A/R of an algebra A modulo its Jacobson radial R is a direct sum~iFki of the algebras of the k i • ki-matrices over F by the Wedderburn theorem (see [START_REF] Jacobson | Theory of Rings[END_REF][START_REF] Herstein | Noncommutative Rings[END_REF]).

If R = 0, then the algebra A is said to be semisimple. Proposition I. Isomorphism of semisimple algebras (over an algebraically closed field) is recognized in polynomial time.

Proof.

It is sufficient to find a set {K i} in polynomial time such that the semisimple algebra A =~iFki"

We carry out the proof by induction on dim F A.

At first, we find the center C(A) of the algebra A by solving the system of the linear equations, each of which means commutation with an element of the basis of A over F. Let dim C(A) > I and ~.I ~ a s C(A) for any ~ ~ F. Let us consider a as a linear operator (by means of left multiplication) on A and find a root I of the characteristic (integral) polynomial X~ = det (a --I-I).

The coefficients of the characteristic polynomial are computed in polynomial time on the basis of [START_REF] Mcclellan | The exact solution of system of linear equations with polynomial coefficients[END_REF][START_REF] Horowitz | On computing the exact determinant of matrices with polynomial entries[END_REF].

The algebraic number X takes part in the computations as a symbol that satisfies the equation • = O. Getting a few steps ahead, let us observe that here, as in other situations where algebraic numbers occur in computations, it is convenient to use the following device.

We temporarily assume X~ to be irreducible (as a preliminary, having gotten rid of the multiple factors by means of the derivative).

If a certain number %1 --a root of the polynomial f --also occurs in the computations and if the greatest common divisor (Xa, f) is nontrivial, then we assume I to be a root of the (temporarily irreducible) polynomial • f) and start the procedure afresh.

It is obvious that the number of steps of the algorithm here remain polynomial, since the degrees of the considered polynomials are lowered.

But if deg • (~a, f), then, e.g., the set ~g~(~) where 0 ~ i < deg Xa and 0 ~ j < deg f, is a generating system of the field ~(~)=~[~]/~)~ (reasoning as above, we temporarily assume that this ring is a field) over ~ , and the computations can be carried out in this system.

In particular, if it is required to elucidate the problem of equality to zero of the element g(%1), where the polynomial g 6 (i) [x], then we find the common divisor (f, g), and if deg (f, g) = 0, then g(ll) x 0, but if deg (f, g) = deg f, then g(ll) '= 0, and in the contrary case we indicate arbitrarily whether 11 is a root of the polynomial (f, g) or a root of the polynomial f/(f, g), we memorize this for the future and, depending on this, we regard g(ll) as equal to or not equal to zero, respectively. We act analogously on the appearance of other algebraic numbers in computations.

We return to the element a --1.1 and consider the two-sided ideal I = (a --I.I)A o Let us set the two-sided ideal ={geA:g I=01 Then I @~=A (a direct sum of algebras) and I=@LesFK~ and ]=~TFk~ for certain nonempty index sets S and T. We define the decompositions of the algebras I and J by the induction hypothesis.

The proposition is proved.

The class of the algebras with the condition R 2 = 0 (the modules over these algebras have been studied in connection with matrix problems in Kruglyak's article in [2], pp. 60-68) is next to the class of semisimple algebras in difficulty.

But even for algebras of this class, the isomorphism problem is quite difficult from the complexity point of view, which is obvious from the following well-known reduction of isomorphism of graphs to isomorphism of algebras of this class (a similar structure is constructed in the theory of incidence algebras --see, e.g., [START_REF] Nachev | On incidence rings[END_REF]).

With respect to an oriented graph G on n vertices and with m edges, we construct an (n + m)-dimensional algebra A with a basis el,...,en, {eij} , where (i, j) is an edge of the graph G, and with the relations eiej = ~ijei, eiek j = ~ikekj, ekje i = ~ijekj, eijekl = O, where ~ij is the Kronecker symbol.

Then el + ... + en is the identity of the algebra A, {eij} is a basis of its radical R whose square is equal to zero, and A/R =~F is the direct sum of n copies of the field F. Isomorphism of oriented graphs is equivalent to isomorphism of the corresponding algebras.

The fact that isomorphism of graphs implies isomorphism of algebras is obvious; the converse will follow from the proof of Theorem I. This theorem asserts that the problem of isomorphism of graphs is equivalent to the problem of isomorphism of a Certain class of algebras.

See, e.g., [START_REF] Yu | Two reductions of isomorphism of graphs to problems about polynomials[END_REF] for other algebraic approaches to isomorphism of graphs. THEOREM I. Isomorphism of algebras with identity (over an algebraically closed field) with the condition R 2 = 0 and commutative quotient A/R modulo the radical R is P-equivalent to isomorphism of graphs.

Remark.

Actually, we will construct an epimorphic functor (i.e., a functor that is an onto mapping for objects as well as for morphisms) from the category of algebras, having the properties stated in Theorem I, where isomorphisms are taken as morphisms, onto the category of graphs with natural weights on the edges.

Moreover, we will show that this functor can be constructed in polynomial time.

Proof.

By the condition, A/R =~F (the direct sum of n copies of the field F); let fl,..-,fn be pairwise orthogonal idempotents (see [START_REF] Herstein | Noncommutative Rings[END_REF]) in A/R and el,...,e n be any of their preimages under the epimorphism A + A/R.

Let us construct an n-vertex oriented graph G = GA with weights on the edges by taking the weight on the edge (i, j) equal to dim F eiRej.

Since R 2 = 0, it follows that eiRe j does not depend on the choice of the preimages {ei}. LEMMA I. Isomorphism of the algebras A and B is equivalent to isomorphism of the corresponding graphs G A and GB.

Proof of the Lemma.

Let A ~------~-~ be a certain isomorphism of algebras (here and below in the proof of Theorem I we assume that the algebras are taken from the class under consideration). 
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~ -As in the proof of Proposition I, we find RI by induction on dim At. Remembering the remark about computation with algebraic numbers, we find a A~ such that det (a~ --~1"I) = 0

ej0 , for certain i0 and j0 such that I ~< i0, j0 ~< n, we get ei0ri0j0ej0 = 0 (since R 2 = 0), i.e., the sum ~ ~g~s is direct.

Let us decompose the identity: 4=~ /~gE+~ 4 , where ~F and ~ E ~ (it is easily ~b~tt seen by squaring both sides of the equation that actually t~ = ... = in = 1).

The relation $=~''~'4----L~_ /~L)~6~} holds for each ~E~ which proves the equality ~= ~).

. Further, we usea theorem of Wedderburn (see [START_REF] Jacobson | Theory of Rings[END_REF]) by which the algebra A has a subalgebra 

. . CA) ~A),.

(~)

. ~) ~A),

which completes the proof of the lemma.

In order to complete the proof of Theorem I, it should be shown that the graph G A can be constructed with respect to A in polynomial time (the converse, i.e., the construction of a certain algebra B with respect to a graph G such that GB = G had actually been carried out before the formulation of Theorem I). To this end, it is sufficient to fSnd R in polynomial time (pairwise orthogonal idempotents in the commutative semisimple algebra A/R can be found in polynomial time with the help of the procedure set forth earlier in the proof of Proposition I).

At first, let us construct the commutant Com (A), which is the F-linear hull of the elements {~iaj --aja i} for an arbitrary basis {ai} of the algebra A. It can be verified that and J={ A :ml=0J (the ideals IandJare constructed in polynomial time, starting from obvious linear systems). In this case, ~@ ]=A4 (a nontrivial direct sum of algebras), and we use the induction hypothesis. Now, let (~I --%1"I) 2 = 0. Then we find an i for which (a i --Ai.1) 2 ~ 0, where A i 6 F, such that det (a i --1i-I)2 = 0, and act as above (if such an i does not exist, then a i --Ii.I s Rl for each i and {a i --~i.I} is a basis of Rl; in this case, AI/RI = F).

Thus, RA and, by the same token, GA are constructed in polynomial time, which completes the proof of the theorem.

In conclusion, we pose a series of problems: What can be said about the complexity of re recognition of isomorphism for classes of algebras more general than the ones considered? It would also be interesting to study hierarchy of classes of algebras, whose k-th member consists of algebras for which R k = 0, from the point of view of complexity. Also, it is not known whether the radical of each algebra can be found in polynomial time.