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The present article is a survey of selected methods for obtaining lower bounds in algebraic complexity. We present the contents.
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INTRODUCTION

The problem of lower bounds is one of the most difficult ones in computational complexity theory, and it can be said without exaggeration that their obtaining constitutes the naturally fundamental topic of complexity theory, since the establishment of lower bounds, i.e., the construction of sufficiently fast algorithms, is, rather, the prerogative of the other mathematical sciences from which the concrete computational problems originate. In spite of the fact that the problem of obtaining nontrivial lower bounds (i.e., of proving the impossibility of sufficiently fast algorithms for given computational problems, and, by the same token, the penetration of the secrets of fast algorithms) is far from completely solved, in it there are certain interesting advances, particularly in that part of complexity theory which relates to the problems traceable to algebra, called algebraic complexity (see Bel'tyukov's survey in the present issue on lower bounds in some other sections of complexity theory).

Algebraic complexity is one of the oldest branches of complexity theory (but it is one that is being most intensively worked on at the present time); it has been around for nearly [START_REF] Baur | The complexity of partial derivatives[END_REF] years, but a sufficiently complete survey devoted to it has not yet appeared in Russian.

Among the foreign publications we should note, in the first place, the book [START_REF] Borodin | The Computational Complexity of Algebraic and Numeric Problems[END_REF], as well as [I, 13], but lower bounds are in fact absent in the latter, while [START_REF] Borodin | The Computational Complexity of Algebraic and Numeric Problems[END_REF] does not go into the achievements of recent years.

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 118, pp. 1982. To no extent does the author pretend at completeness of the exposition of all the resuits in the area of obtaining lower bounds in algebraic computational complexity; rather, the present text is a survey of selected methods and achievements, whose aim is to fill in the gaps existing in the Russian literature.

The methods that have already been widely propagated, as well as those that do not as yet have sufficiently strong applications, are presented in lesser detail.

The number of proofs given in the present survey is comparatively small; a sufficiently complete list of references permits us to refer to appropriate literature when necessary.

The author tried to pay most attention to those methods of establishing lower bounds which are connected with nontrivial algebraic methods.

The profound connections with classical algebra, as also the problem statements, being atypical of traditional algebra, are, in general, a characteristic feature of algebraic complexity, which can make it attractive for algebraists.

A survey of methods in algebraic complexity leaves a somewhat mosaiclike impression.

This is due, it seems, to the fact this branch of mathematics is still quite young and as yet no unified ideas have been formulated in it, the problems are difficult and have to be approached individually. Therefore, the different chapters are formally little connected with each other (except Sec. I which gives the definitions needed for understanding what follows).

Essentially, each section contains a description of an individual method; at the same time, the ordering of the material is not random and has definite historical and methodical reasons (if the ontogeny and phylogeny of algebraic complexity is desired). We note that the contents of Secs. 6, ii, 16, and a part of Sec. 15 are being published for the first time.

The numbering of the sections and of the formulas is consecutive; the theorems, lemmas, and corollaries are two-numbered, the first of which is the number of the corresponding section.

i. Basic Concepts

The basic computing model used in algebraic complexity is the straight-line program (see [i, 27], for example) which we now describe. Let there be given:

i) a collection of input variables ~4,...,~

2) a ring K (usually this is a field which will be denoted by P ) which is subsequently called the ground ring;

3) a set ~ of base operations (usually ~-[+,X,/} U ~X~e K , where +,X,/ are binary arithmetic operations, x~ is a unary operation, viz., multiplication by ~ ).

The variables ~...~ can be assumed or not to be pairwise commuting; often this is clear from the substance of the problem being analyzed. The complexity of a SLP (we denote it C~)-----6@(~) ) is the sum of all ~(~) over the instruction of this SLP.

Finally, the complexity of a collection of terms (or functions) ~,"" ~K is the smallest of the SLP's computing this family (we denote it ~(~,...~K)=CG(@4,..., ~K) )" complexity Sometimes instead of the word "complexity" we shall use the terminology complexity measure.

We cite one example of complexity. Let ~(~)= { for every ~E~ 9 Then the corresponding complexity % "counts" the number of all operations of the SLP and is called the total complexity.

Below we shall refer to the notation adopted in the present section, each time making concrete the ~ (or ~ ), ~A-=~O.

CHAPTER I. ALGEBRAIC-GEOMETRIC APPROACH TO OBTAINING LOWER BOUNDS OF COMPUTATIONAL COMPLEXITY OF POLYNOMIALS 2. Evaluating a Polynomial with "General" Coefficients One of the first problems examined in algebraic complexity was the evaluation of a polynomial with "general" coefficients at one point (see [START_REF] Ya | On methods for computing the values of polynomials[END_REF] and the'references given there to the earlier literature).

In other words: ~ is an algebraically closed field, P=~+,X,/}U independent over ~ ; therefore, the coefficients are called "general" (in this case the SLP being examined were called, in [START_REF] Ya | On methods for computing the values of polynomials[END_REF], schemes without preliminary processing of the coefficients).

THEOREM 2.1 [START_REF] Ya | On methods for computing the values of polynomials[END_REF]. ~+(a0+...+~)=~/(~o+...+~5=~ It is easy to see that in both cases the upper bounds are achieved with the aid of Horner's scheme.

Informally speaking, the idea for obtaining the lower bound is the following. The value of every working variable of the SLP, viz., a scheme without preliminary coefficient processing, is some rational function ~(~,~,...,G~) which can in some way be written as a func- We note that from what has been proved there immediately follows the validity of Theorem 2.1 for the case of an arbitrary infinite field.

Another class of SLP that can be considered, called schemes with preliminary coefficient processing in [START_REF] Ya | On methods for computing the values of polynomials[END_REF], is defined, in the terminology of Sec. The words within the quotation marks require a more precise definition, but a reasonable problem statement (for example, the words "good" coefficients can signify coefficients from the set {0~

) will be clear from the subsequent context.

Deviating somewhat, we remark that a similar situation, somewhat unusual for classical mathematics, when it is difficult to "indicate explicitly" even one simply constructed concrete element from a sufficiently natural everywhere-dense set (in the case at hand, the set of polynomials difficult to evaluate, i.e., polynomials satisfying inequalities (i) or even weaker inequalities), is very prevalent in algebraic complexity and is of great interest (see the next section as well). This not very precisely posed problem of the "explicit indication" of difficultly computable functions (polynomials or polynomial families in Chapter I) will be somewhat imprecisely called the problem of obtaining lower bounds.

We now go on to present certain advances in this problem, made recently. A number of papers (for example, [START_REF] Strassen | Polynomials with rational coefficients that are hard to compute[END_REF][START_REF] Schnorr | On the additive complexity of polynomials and some new lower bounds[END_REF][START_REF] Schnorr | On the additive complexity of polynomials[END_REF]), the first ones on this topic, explicitly constructed polynomials which satisfy somewhat weakened inequalities (I) or some portion of them or their disjunction. The methods in these papers are very similar in their ideas, differing in a number of technical details, and they are weaker than the one elegant method of Heintz and Sieveking [START_REF] Heintz | Lower bounds for polynomials with algebraic coefficients[END_REF], which we present somewhat later in this section. Therefore, for completeness of the picture we briefly sketch the idea of these methods, following the first paper [START_REF] Strassen | Polynomials with rational coefficients that are hard to compute[END_REF] each constant from ~ , newly introduced into ~ , is reckoned a parameter). Although it is not possible to "explicitly write out" these rational functions, by induction on ~ it is not difficult to estimate explicitly in terms of ~ (or in the final analysis, in terms of U, ~,~ ) the degree and the weight of these rational functions. Hence it follows (here we make implicit use of the theorem on the avoidance of division in SLP evaluating polynomials [START_REF] Strassen | Vermeidung von Divisionen[END_REF]; in a weakened form we shall be dealing with it in Sec. 7) that the coefficient vector of polynomial ~ is the value of some vector of polynomials (~o,--',~$) with integer coefficients and with degrees and weights a priori bounded from above (in terms of ~;~ ).

Then the Dirichlet--Siegel lemma (see [START_REF] Strassen | Polynomials with rational coefficients that are hard to compute[END_REF], for example) yields an upper bound on the degree of the nontrivial form ~ of weight three with integer coefficients, such that ~(~ ..., ~)gm 0 (direct computation yields the bound for ~ indicated in the theorem).

As a corollary of Theorem 3.1 we get that if the coefficients of a polynomial ~ of degree ~ do not satisfy the equating to zero of any form of degree ~ with integer coefficients and weight no greater than three, then the polynomial ~ cannot be evaluated by a SLP with parameters ~,9~,9r . We present some applications of the indicated arguments and of arguments close to them:

Cx1( I (compare with Theorems 2.2 and 2.4).

As already mentioned, the most powerful method for establishing lower complexity bounds on polynomial evaluation was proposed in [START_REF] Heintz | Lower bounds for polynomials with algebraic coefficients[END_REF], and we pass on to its exposition right away.

As a preliminary we present a certain digest of facts from algebraic geometry (all of which can be found, say, in [START_REF] Yu | Lectures on Algebraic Geometry. Part I: Affine Schemes[END_REF]) needed for this section and the text.

If X is an irreducible algebraic variety (over some algebraically closed field ~ ), 

Xc]D -~ ,
The idea of the proof is similar to that of the proof of Theorem 3.1.

Following [START_REF] Heintz | Lower bounds for polynomials with algebraic coefficients[END_REF], we consider a morphism ~ of affine spaces Proof. We use Theorem 3.2 and the notation adopted in it. We assume that in equalities Let us mention some applications of the theorem which cannot be obtained on the basis of Theorem 3.1 and of the method of [START_REF] Schnorr | On the additive complexity of polynomials and some new lower bounds[END_REF][START_REF] Schnorr | On the additive complexity of polynomials[END_REF]; in the corollary below ~=~, H---'~.

COROLLARY 3.5 [START_REF] Heintz | Lower bounds for polynomials with algebraic coefficients[END_REF]. "]"(q,~'~&f'~(~/~J)~J)@~06LCI'V~'""K~)/'~#'(~" tltO~ {~,...,g~}) ,

where K~' are positive integers (~(~)

, LCM is the least common multiple.

In the hypotheses of Theorem 3.4 we assume ~ to be the variety of common zeros of the polynomials {~2-~=0,...,~.4---0J , by the same token ~=~4~ZlK~,...,~} 9 For example ~(4~~/~)~0~/~-- [START_REF] Heintz | Lower bounds for polynomials with algebraic coefficients[END_REF] and ~4~&~00p(~,~t/~)~)~ [START_REF] Heintz | Lower bounds for polynomials with algebraic coefficients[END_REF], where p~ is the -th prime.

Using their own method, Heintz and Sieveking [START_REF] Heintz | Lower bounds for polynomials with algebraic coefficients[END_REF] proposed a method of estimating from This partially answers the question posed at the beginning of this section.

We recall as well that we have proved (ineffectively) the existence of difficultly computable polynomials with coefficients from set {~} (see [START_REF] Schnorr | On the additive complexity of polynomials and some new lower bounds[END_REF], for example). More precisely, we have proved the existence of ~ -degree polynomials with coefficients from set {~ with a) a total complexity (see Sec. 

Degree Method and Its Generalization (Case of an Infinite Ground Field)

On the basis of the methods set forth in the preceding section, it has not been successful to prove lower bounds for the complexity of natural polynomials or of families of polynomials, since the basic instrument in the arguments is the establishment of some upper bound on the degree of extension (over a primitive field) of the field generated by the coefficients of the polynomial being evaluated, in terms of its complexity. In explicit form this exists in Strassen's method (Theorem 3.1) and, in a more veiled form (estimate of the degree of set ), in the Heintz--Sieveking method (Lemma 3.3 and Theorem 3.4).

In the present section we shall expound on methods based on the use of the concept and properties of the degree of a variety (see Sec. 3 above or [START_REF] Yu | Lectures on Algebraic Geometry. Part I: Affine Schemes[END_REF]), yielding nonlinear (relative to the number of variables) lower bounds on the multiplicative complexity for certain natural families of polynomials of several variables (see the already-classic old paper [START_REF] Strassen | Die Berechnungskomplexit~t von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten[END_REF]) and for individual polynomials (see [START_REF] Baur | The complexity of partial derivatives[END_REF][START_REF] Schnorr | On the additive complexity of polynomials and some new lower bounds[END_REF]). This theorem is rather widely known and, therefore, with regard to its proof we merely remark that it is carried out by induction on 0,~(~...,~) and uses the B~zout inequality [START_REF] Bernshtein | The number of roots of a system of equations[END_REF].

We Some applications of the theorem [START_REF] Schnorr | On the additive complexity of polynomials and some new lower bounds[END_REF]:

We remark that in the applications mentioned, as above in an analogous situation, when we discuss corollaries of Theorem 4.1 we can take it that ~ is an arbitrary infinite field.

A more elegant method, permitting in addition the obtaining of nonlinear lower bounds for the complexity of individual polynomials, was suggested by Baur and Strassen [START_REF] Baur | The complexity of partial derivatives[END_REF] and was based on the following estimate for the complexity of evaluation of the rational function ~E~(~..., ~) and all its first partial derivatives (here ~ is any field).

~, ,~ ,,,,o .

Then the lemma's hypothesis is equivale.t to the equality ~=Y(A~+E) , .here E is the unit matrix. Having multiplied this equality from the left by the matrix ~-~ , and from the right by ~-~y, we obtain ~=(~A+E~Y , whence the lemma follows.

We return to the theorem's proof. We set ~=~%+~ ;

. We note (see [START_REF] Strassen | The computational complexity of continued fractions[END_REF]) that the multiplicative complexity of the evaluation of the product of ~ polynomials in one variable (the same one for all) of degrees %,...,W~ , respectively, over an infinite ground field ~ is of the order of W~(~,...,~) 9 The proof of item 2)

of Theorem 4.6 and of the lower bound in the last remark relies on Theorem 4.1.

Degree Method (Case of a Finite Ground Field)

The methods presented in the preceding section work only in the case of an infinite ground field, since essentially we use the fact that if some SLP ~ evaluates a polynomial (or a family of polynomials) over an infinite field, then ~ evaluates this same polynomial (or family) also over any extension of it, in particular, over its algebraic closure, for which we now apply an algebraic-geometric technique connected with the polynomial's degree.

For the case of a finite ground field ~ , Strassen [START_REF] Strassen | Computational complexity over finite fields[END_REF] suggested another method which nevertheless also uses Theorem 4.1 (see Sec. 4). The present section is devoted to its presentation.

Thus We say (see [START_REF] Strassen | Computational complexity over finite fields[END_REF]) that a finite subset ~i~ N is a ~ -set (~ is some positive integer) if for all 0~ N and for every irreducible closed subset WIC~N there is ful-

filled ~ Wf ~I~oWfl/~ ~W~.
The next lemma is of independent interest, it seems, also for specialists in algebraic geometry. As an application of Theorem 5.2 (see [START_REF] Strassen | Computational complexity over finite fields[END_REF]) we get that (~=~0).

For the problem of interpolating an ~ -th degree polynomial from values at (~ § points (the problem makes sense if ~J>~ ), its multiplicative complexity also equals ~ in order (we recall that we would have the same bound for these two problems in the case of an infinite field --see the applications of Theorem 4.1). The matter is different for elementary symmetric functions: in [START_REF] Mikhailyuk | On the computational complexity of elementary symmetric functions in finite fields[END_REF] it is shown that even the total complexity %(~,...,~) is linear in ~ over a finite field ~ (cf. Sec. 4).

It is interesting to note that the reverse situation occurs in certain natural cases, i.e., the complexity of evaluation of a family of polynomials over a finite field can be greater than the complexity of evaluation of this family over an infinite field. For example, the multiplicative complexity of the multiplication of two ~ -th degree polynomials over an infinite field ~ equals ~I (see [START_REF] Fiduccia | Algebras having linear multiplicative complexity[END_REF], for instance); in the case of a field ~ of two elements a lower bound of 8,~W was proved in [START_REF] Brown | An improved lower bound on polynomial multiplication[END_REF] for the multiplicative complexity in this problem (the best known upper bound for it to-date is W.~(W), where ~ is some function growing more slowly than any fixed iteration of the logarithm; see [START_REF] Yu | Rank of a pair of matrices and convolutions[END_REF][START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF][START_REF] Yu | Some new bounds on tensor rank[END_REF][START_REF] Yu | Multiplicative complexity of a pair of bilinear forms and of the polynomial multiplication[END_REF]).

Additive Complexity and Real Roots

In the preceding two sections we established lower bounds for the multiplicative com- Proof of the Corollary. Let ~I,.. 9 be the simple roots mentioned of the system ~ .... =~*-----0 (the roots from (~)~ will be called nontrivlal). To derive the corollary from the theoremwe make use of the well-known canonic form for the SLP (see [START_REF] Borodin | On the number of additions to compute specific polynomials[END_REF], for example) containing no more than Ir----~,(~l,...p~) multiplications: ).

The modified system contains K=(~K+~) monomials. Having substituted this value of K into Theorem 6.1 and noted that ~W+~ <~K(K,I)/$ in our case, we complete the corollary's proof 9

As an application we consider the polynomial ~'~4~.. 1403 Kushnirenko has conjectured (see [START_REF] Khovanskii | On a class of systems of transcendental equations[END_REF]) that under the hypotheses of Theorem 6.1 a stronger upper bound is true for the number of nontrivial roots: to be precise, ~-{)...CK~-~) .

where K~ is the number of monomials in ~ .

The conjecture remains unproved as yet for To complete the picture we remark that the analog of Corollary 6.2 for the evaluations over the complex ground field ~-~-~ is not true. In [START_REF] Van De Wiele | Complexit~ additive et z~ros des polynomes ~ coefficients r~els et complexes[END_REF], for every 14, there was constructed an example of a polynomial ~[~] having 14, distinct real zeros, for which C~r .

In this same paper [START_REF] Van De Wiele | Complexit~ additive et z~ros des polynomes ~ coefficients r~els et complexes[END_REF] it was noted that the additive (over ~ ) complexity of the Chebyshev polynomial of degree ~K with ~K distinct real zeros does not exceed K By the same token, the bound in Corollary 6.2 is exact to within the extraction of a square root, while from the validity of the above-mentioned Kushnirenko conjecture there would ensue an exact bound in order.

In concluding this section the author would like to point out that many results of Arnol'd and his pupils (see [START_REF] Bernshtein | The number of roots of a system of equations[END_REF][START_REF] Khovanskii | On a class of systems of transcendental equations[END_REF], for instance), touching on estimates of certain other topological characteristics of real algebraic varieties (besides the bounds we have used for the number of zero-dimensional components), for example, Betti numbers, the Euler characteristic, etc., in terms of the number K of monomials occurring in the polynomials defining a given variety, can it seems yield other interesting applications to the estimates of additive complexity, which is closely related to K , as was seen in the proof of Corollary 6.2. More profound estimates of additive complexity apparently exist in terms of the Newton polyhedron of the (real) polynomials being evaluated. Arnol'd hypothecated that all "reasonable" invariants of polynomials are expressed in terms of their Newton polyhedra; see [START_REF] Bernshtein | The number of roots of a system of equations[END_REF], for example, where it has been proved that the number of roots of the general system coincides with Minkowski's mixed volume of the Newton polyhedra of the polynomials of this system. It remains to ascertain whether complexity (say, additive) is a "reasonable" invariant.

In concluding Chap. I we remark that in it we have presented methods for obtaining nonlinear lower complexity bounds for polynomials (and families of polynomials) of relatively high degree (in comparison with the number of variables). One of the unsolved and most interesting problems in this area is the obtaining of nonlinear lower bounds for polynomials of Proof. At first let K~ be a field. We eliminate division with the aid of the method in [START_REF] Strassen | Vermeidung von Divisionen[END_REF] (it is described briefly in [START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF] as well). A similar method was already applied in the proofs of Theorems 4.2 and 6. In ending this introductory section we limit ourselves to some general remarks and to the of rank. Obviously,

In contrast to the of I properties one matrix, %(A~,...,Ap) is not an upper-semicontinuous function of A4,-..,Ap when p'1 (see [START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF], for example). If ~ is algebraically closed, then it is easy to see that R~(AI,... (the author does not know more exact bounds). Further, it was shown in [START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF] that for certain ~x~ -matrices ~4,'"~ with coefficients from the set ~!} the order of growth of ~p (~4~..., ~m) differs from W$ by no more than a multiplicative constant (in contrast to the situation of polynomials --see the end of Sec. 3 --with coefficients from the set {0,1} , the order of growth of whose complexity is less than maximum at least in the multiplicative logarithm). In the plan of the general study of rank we note that the group of linear transformations preserving the tensor's rank has been computed as well in [START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF].

Rank of a Pair of Bilinear Forms

In this section we sun~narize the results due to the author on the estimates of ~A~) ,

where ~ is a field, following [START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF][START_REF] Yu | Some new bounds on tensor rank[END_REF][START_REF] Yu | Multiplicative complexity of a pair of bilinear forms and of the polynomial multiplication[END_REF]. We take it below that all matrices have been de- 

4)

An example of a matrix family is constructed as follows.

~[Ai,} on which the sequence

We consider the Koszul complex (see [START_REF] Maclane | Homology[END_REF][START_REF] Yu | Lectures on Algebraic Geometry. Part I: Affine Schemes[END_REF]) of the ring ~-K~ relative to the element system {W~,...,Z~ :

A ~ ~A

(@ K'--'-O.

It can be shown [i0] that

As the sequence ~A~} we can take the middle terms of the Koszul complexes, i.e., A&=A~,b -

In concluding this section we mention that additivity is not fulfilled,^for ---~K(A) for ) is defined as the rank of its structure tensor in some base of this algebra, and is independent of the choice of the base (see [START_REF] Strassen | Vermeidung von Divisionen[END_REF]). The rank LEMMA i0.3 [START_REF] Alder | On the algorithmic complexity of associative algebras[END_REF]. If ~ is a simple algebra, then ~O~)~Id~--~ § (we recall that an algebra is called simple if its only ideal is the zero ideal).

K A|

Since ~ is a simple algebra, we obtain COROLLARY 10.4 [START_REF] Alder | On the algorithmic complexity of associative algebras[END_REF]. ~ (~)~.~-4.

We note that Theorem i0.i (as also the three assertions following it) has been proved in [START_REF] Alder | On the algorithmic complexity of associative algebras[END_REF] actually in a stronger form, viz., for the multiplicative complexity ~fff~ of multiplication in the algebra under the assumption of commutation of the input variables ~#~ =~S# of bilinear forms (see the beginning of Sec. 7). It is easily seen (see [START_REF] Winograd | On the number of multiplications necessary to compute certain functions[END_REF], for that C7,~=C,~ for families of bilinear forms. instance)

We mention two further useful inequalities for the rank of tensors:

(5) 1409, [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF] Inequality [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF] is applied in the follo~ing form for obtaining upper bounds for ]~(~)

(see [START_REF] Sch~nhage | Partial and total matrix multiplication[END_REF][START_REF] Strassen | Vermeidung von Divisionen[END_REF] The proof of this estimate relies on the following concept, interesting in its own right, of the bounda/-y rank ~(gj (see [START_REF] Coppersmith | On the asymptotic complexity of matrix multiplication[END_REF][START_REF] Sch~nhage | Partial and total matrix multiplication[END_REF], for example). To be precise, we define of examples of such kind of bounds for suitable weaN0 have been constructed in [START_REF] Coppersmith | On the asymptotic complexity of matrix multiplication[END_REF][START_REF] Sch~nhage | Partial and total matrix multiplication[END_REF].

Strassen [START_REF] Strassen | Vermeidung von Divisionen[END_REF] has conjectured that ~,(~O%)=~p(~)+ ~(%) (cf. inequality ( 5)).

It is false for the boundary rank (see [START_REF] Sch~nhage | Partial and total matrix multiplication[END_REF]).

By AK==~ }&~K_ @ we denote a bilinear form expressing the coefficient (in terms of the coefficients of the cofactor) of the K -th power in the product of two ~ -th-degree polynomials, i.e., rcA0, ,A,,) is the multiplicative complexity of the multiplication of two polynomials. The results mentioned at the end of Sec. 5 can be reformulated in the language adopted in the present section as follows: 2) [START_REF] Yu | Rank of a pair of matrices and convolutions[END_REF][START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF][START_REF] Yu | Some new bounds on tensor rank[END_REF][START_REF] Yu | Multiplicative complexity of a pair of bilinear forms and of the polynomial multiplication[END_REF] ~p(&,...,AS~)(~(~) for a finite field ~ and for some function growing more slowly than any fixed iteration of the logarithm.

3) [START_REF] Brown | An improved lower bound on polynomial multiplication[END_REF] the code distance of this code is not less than ~ (for the required concepts from coding theory see [START_REF] Peterson | Error-Correcting Codes[END_REF], for example). Therefore, to bound p from below we can apply the Varshamov-Gilbert bounds (see [START_REF] Peterson | Error-Correcting Codes[END_REF]Chap. 4]), which leads to the inequality p~(~,~)W for a suitable choice of

The strengthening of the bounds for items 2) and 3) of the theorem is apparently a subtle number-theoretic problem.

ii. Linearized Multiplicative Complexity

In the preceding sections of Chap. II we examined the rank of the elements of a tensor product of vector spaces (more precisely, of a product of three spaces, but, in principle, of a larger number; see the remark in Sec. 7). In the present section we consider the analog of rank for the elements of a syrmnetric product (more precisely, of a symmetric ; the method yields nonlinear bounds when ~i~# Below we take it that the degree 4-~-~ is even; this assumption has been made for convenience of notation (without a great loss of generality on account of the nature of the bounds being proposed in this section).

We we have managed to obtain complexity lower bounds and even to compute then explicitly for certain cases. This was done for various problems in a large series of papers. Here we present Schnorr's theorem [START_REF] Schnorr | A lower bound on the number of additions in monotone computations[END_REF] which generalizes the arguments contained in many of these papers.

Thus, a monotone SLP is the name given to a SLP (using the notation from Sec. In spite of the fact that many different lower bounds were obtained for ~ , the question of how large can the gap be between ~(~) and ~(~) for a polynomial @ remained open for some time. In [START_REF] Valiant | Negation can be exponentially powerful[END_REF] it was shown that this gap can be exponential. To be pre- On the other hand, according to one result of Kasteleyn (see [START_REF] Valiant | Negation can be exponentially powerful[END_REF], for example) we can effectively construct (the construction suits every plane graph) for every ~ a skew-symmetric matrix ~ such that ~=~G~(~)=~-~ , which proves that %(~) can be bounded from above by a polynomial of ~ (see [START_REF] Aho | The Design and Analysis of Computer Algorithms[END_REF]Chap. 6]). In combination with Valiant's Theorem 13.2 this answers the question posed above on the gap between total and monotone complexities.

For completeness we remark that in the Boolean case, i.e., when field ~ consists of two elements, monotone computations have been very intensively studied (for example, see [START_REF] Yu | On a lower bound of the computation complexity of a family of disjunctives in a monotone basis[END_REF] and the literature cited therein).

Lower Bounds for Time--Space Tradeoff

In this section we deviate somewhat from the concept of SLP adopted in Sec. The following theorem, due to the author, serves as a partial answer to Valiant's question 2); the method for proving this theorem is contained in Sec. i of [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF] (it was proved there for the case ~ ~ ,~XW$~ and was stated in a less general form). 
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We remark that for and there is fulfilled The method for proving the theorem was used as well in [START_REF] Yu | On a lower bound of the computation complexity of a family of disjunctives in a monotone basis[END_REF] to obtain lower bounds (now without constraints of type ( 7)) for the monotone complexity of a family of disjunctives (cfl Sec. 13).

In Sec. 1 of [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF] we proposed applying the theorem to estimating the additive complexity of computing a family of linear forms over ~ (as before, under assumption ( 7)), where ]~'='t't'lUtX~ll~it ; ~ll--~l; is the total complexity (see Sec. i). Let the family of vectors ~1,...,a,$G~ ~ be such that where ~)n~ denotes the convex hull, ~, is the metric corresponding to the norm ~(~I, ""' ~)=~ i~ i,..~ (in Sec. 1 of [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF] such a family of vectors was called an (~,G) -system). On the basis of Radon's theorem (see [START_REF] Danzer | Helly's Theorem and Its Relatives[END_REF]) it was shown in Sec. i of [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF] that the family ~I~"'~ 9 ,+ (having the stated property) satisfies an (,$/$ , ~/~ )-separability condition in the situation being examined. Hence, by Theorem 15.1 we get that ~Ii(~1,...,a,~)~ ~ , where is taken from the theorem for the parameters @=~/~ ,~----~/~ It would be interesting to try a condition analogous to the one stated, to be used in situations where there are no theorems of the type of Helly's theorem ( [START_REF] Danzer | Helly's Theorem and Its Relatives[END_REF]) and there is not even a direct analog of convexity (in the case being considered Radon's theorem was actually used to answer Valiant's question i posed above).

A SLP over ~ (or ~ ) with the same ~ as in the preceding paragraph (here and below we can forget about condition (7)) was examined in [START_REF] Morgenstern | Note on a lower bound of the linear complexity of the fast Fourier transform[END_REF] where it was noted that in case ~=~ In this last section we introduce two classes of SLP (triangular and directed), computing families of linear forms (see [START_REF] Yu | Additive complexity in directed computations[END_REF]). For triangular SLP a method for establishing nonlinear complexity lower bounds is proposed below. For directed computations, besides lower bounds, we propose, furthermore, an explicit formula for the complexity on the basis of the technique developed by the author in the theory of Chevalley groups (the information needed here is presented in such a way that no preliminary information on Chevalley groups is assumed).

Thus, we examine the following somewhat modified SLP. In the notation of Sac. 
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4 )

 4 a straight-line program (SLP) proper is a sequence of rows (instructions) the ~ -th of which has the following form: 9 ~= ~{7.~,...,Z~,~I,,...,~), where ~<~,..., $~ < ~ and ~e~. By induction on ~ there is naturally determined the term in the variables ~,...,~ corresponding to the working variable ~ and called the value of ~ . We say that a certain family of terms (or of functions) of ~,...~ WW is computed by a given SLP if the terms of the family being examined are encountered among the values of the working variables ~ of this SLP. We fix as well the integer-valued function ~=~| : ~ 9 N U {0} , and the number ~(~ for ~ is called the complexity of operation S 9
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 9 We denote ~( § ~+(x~)=0 (the corresponding complexity C+ is sometimes called additive); ~x/~)=0, ~xl{X)=~Xl(~-----AXl(X~)=~. It is required to estimate ~Q(~ § ~) where O=+ or | ; in the given case {~,%, .... ~} is a collection of pairwise-commuting input variables, where ~,O~,...,~ are algebraically

  tion 9=(~o+...+~p~/(~-+~4), where 6~,G~(a0,...,~) . Then by induction on K it can be shown that if ~(~)~ K , then the degree of transcendence of field ~(~0,...~p, Go,..., ~) over ~ does not exceed K+~ for a suitable choice of writing ~ as a fraction; whence the theorem now follows ( G can stand for either + or X/ ).

  i, thus: ~=~(ao,... , ~W') is the field of algebraic functions of variables algebraically independent over ~ ; ~ and ~O are the same as above. It is required to estimate CO(~o § +~m) ; moreover, here the set of input variables is {~} . The interpretation is the following: if it is necessary to evaluate one and the same polynomial many times at different points, then it makes sense to compute certain auxiliary functions of the coefficients beforehand, i.e., a multiple evaluation of the values of the polynomial at different points compensates for the outlay on evaluating these algebraic functions. We denote 9=~~ +~W~" THEOREM 2.2 [18, 41]. i) C+(9)= ~ 2) CXl(~)= ~ § for even ~; 3) ~x/(~).=(W~l)/~ for odd I~} 4) ~x/(~)-----(I~.3)/~ for odd ~. The proofs of the lower bounds are similar to those of the lower bounds in Theorem 2.1. The upper bounds in cases 2), 3), 4) (which have been proved only for algebraically closed fields ~ of characteristic zero and for real-closed fields) call for nontrivial constructions. Estimates of the joint behavior of Ca()) and CXI(~) for an SLP ~ computing have been presented as well in [41]. Theorem 2.2 can be generalized to the case of several polynomials of one variable common to them all. To be precise, let ~-~-~)e ~)~+...+~.~ ~ (~K) and let {aI~3 } be algebraically independent over ~ . We set ~ %~-" N ; then we have THEOREM 2.3 [18]. I) C+(~I,"., #~} = N ; 2) ~x/(~,...,~.K) : N/~ + 4 for even N ; 3) (N-I)I~+I~Cx/(@~,...,~)~(N-I)I~+ ~ for odd N. In [18] SLP have been constructed for which ~+ and Cxl are simultaneously close to the lower bounds from Theorems 2.2 and 2.3. The last type of SLP we shall consider in this section is defined as follows: ~---~(Go,..,,~) ; ~: {+,X,/}U{x~}~s~; ~(*)=~,~(x~):0, ~m(X):~(/)----~; ~} is the set of input variables. The complexity ~11~ thereby definable will be called multiplicative complexity (i.e., O,~ "counts" the number of nonlinear operations). Below, X and ~ denote, respectively, equality and inequality to within a multiplicative constant. THEOREM 2.4 [42]. C~(~) x~-~ . The upper bound can be obtained on the basis of the following equality (without loss of generality we take it that ~ ~-K ~ ): ~=(6~o+~+..,+~ k +(6~K+4~+ ...+ ~+,.+ ~K_k~0~+-..~) ~'" The proof of the lower bound is analogous to that of the lower bounds in the preceding theorems. 3. Computational Complexity of Individual Polynomials In the preceding section we examined SLP for the evaluation of the polynomial ~----(~e+ ~+...~ whose coefficients ~'o~"" (1'~ are algebraically independent over ~ 9 Of considerable interest is the case when the coefficients ~,..., ~ "have been constructed simply," for instance, they are integers or algebraic numbers. In other words, let ~; ~-{+,X,l}~{x~}~,;~,~x/,~ ~ have the same sense as above; {~} is the set of input variables. The problem is to estimate C,(~) for various 9,~[~]. The proofs of Theorems 2.2 and 2.4 enable us to prove at the same time the following statement: the dimension of the variety (lying in ~+I ) of the coefficient vectors (a0,..., ~) of polynomials ~ for which either or or does not exceed K+~ In particular, almost all (in the sense of algebraic geometry, i.e., those whose coefficient vectors belong to an everywhere-dense set in the Zariski topology) polynomials ~ satisfy the inequalities In spite of this circumstance we have not succeeded in solving satisfactorily even the following weakened variant of the above-stated problem on estimating C~(~) (although in recent years there has been significant progress in it, with which we deal below in the present section): "indicate explicitly" a polynomial ~ with "good" coefficients, satisfying inequalities (i) or at least one of them. This would shed light on the secrets of complexity.

  in this cycle of papers. Thus, let the polynomial ~=~0+.-.+~&~ be evaluated with the aid of a SLP ~ for which the inequalities C § Cx(~)~,~)~ ~ have been fulfilled (here, naturally, ~x~)=~x(/)-----0, ~x(X~=~s ~l(/)--~ ). We set ~%~-m%~1&,~(~+~)} . The maximum of the moduli of the polynomial's coefficients is called its weight. (~.~+%)s THEOREM 3.1 [55]. Given a positive integer ~>~--~ . Then there exists a nontrivial form ~[~o,""~], ~~ , with weight no greater than three, having the property that ~(~,...,~)= 0. Sketch of the Proof. The coefficients of a rational function, being the value of the working variable Z~ of the SLP ~ (see the notation in Sec. i), can be represented as rational functions of the parameters which are introduced in ~ as constants from ~ (i.e.,
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 33 36]. ~~-~,W~. Proof. Let ~1,"., ~W be hyperplanes such that JI~n~1~...~W~--~ (from the definition of degree). Then ~'I(~)--4 and ~#~-I(~.~)~'I'~ (the latter from Theorem 3.2). Let ~ be the number of components in the variety ~.,~-1(~)fl... ~'I{~W): Then by the B~zout inequality (2) we obtain ~~~{~)~ (~d4rl.~,) I(~t~W . Since ~r(~-Wl]~L.fl~d~sW , we have ~ and~ finally, ~ 4~ (3~+~)~.W This completes the lemma's proof since ~fl~ , and we can take it that We denote the combined complexity ~w~,CH,C~ } . Let ~----~ ~K~ ~~.~. We consider the point ~:----(~41,...,~i,~,...,~,~)~ P~ and we let ~ be the closure of this point over field ~ in ~ (i.e., B is the smallest closed variety, defined over ~ , containing ~ : if ~ is algebraic over ~ , then ~ consists of a finite number of points). Let ~ be a variety defined as the set of general coefficients of certain polynomials p~,...,~ , where ~ (@~&~) for some { , and let ]~ ~ (the latter relation signifies that all components of variety ~ are as well components of variety ~ ). THEOREM 3.4 [36]. ~(~i,...,~)~ ~ ~(~)

( 3 ) 9

 39 we can set ~-----0 (if we cannot, then we take an arbitrary admissible value ~----~o and we reduce everything to the case being examined by making the change of variable ~----~-~0 ). Then ~I,r = W , and since W is closed and bounded over H , we have ~= ~ , hence ~0~. We can find a nontrivial linear combination ~(1)~D.(~e~) such that the variety r ~.~ r~of its zeros (we denote it [pm--0} ) does not contain (and by the same token, properly intersects (see[START_REF] Yu | Lectures on Algebraic Geometry. Part I: Affine Schemes[END_REF]) any component of variety W which is not contained in ~ .Using the last inequality and Lemma 3.3, we obtain tlt,(4/e)'~O~i~,B/'~.(l~) , whence follows the theorem.

  below the complexity OH(L~4~..~. ----~J~4~) for a ~x~ -family of linear forms. Analogously to the above, let ~ be the closure over field H of the point ~=(~, and let ~ be as above. Then we have Statement 3.6 [36]. P f%-~ ) WH(14~ ~)~_.,+ Sketch of the Proof. Using [54, 64] we can take it (by increasing the complexity OH by no more than twice) that the values of all the working variables of the SLY evaluating the family of linear forms are linear functions. Hence we conclude (arguing as in the proof of Theorem 3.i) that we can find polynomials ~fzf,... , ~4~H[~I,...,~]; ~~9 (~, j~) , such that ~,$~, where ~={~i,i;...;~): Pr ~ ~ d'l'" 9 Let W-Im~ then, arguing analogously to the proof of Lemma 3.3, we obtain ~W~(~)%~ From then on we follow the proof of Theorem 3.4. Thus, we have constructed polynomials with coefficients from ~ , relatively "simple" in structure, whose combined complexity ~ is close to the maximum possible (0(~))

  i) of the order of ~/~ (this estimate is exact, as follows from the method in [46]); b) a multiplicative complexity not less than ~/~' with respect to order (this estimate is close to exact, as -follows from Theorem additive complexity not less than ~/~ with respect to order. The problem 2.4); C) an of obtaining more exact bounds for the additive complexity of ~ -degree polynomials with rational coefficients remains unsolved. For it we know only a lower bound (i.e., examples with the lower bound indicated have been constructed) and an upper bound, respectively ~ and ~ with respect to order.

  Thus, in the terminology of Sec. i, ~ is an algebraically closed field; ~={~,X~/} U{~}~I~; A= ~ 9 It is required to estimate the multiplicative complexity C~(~,.--,~K) of a family of rational functions of pairwise-commuting input variables ~,...,~. The functions ~,"',~K prescribe a rational mapping ~&'(g"""(~)CZ we denote its projective closure. We note that ~(&) is an open subset in the irreducible closed variety W ; therefore, ~W--THEOREM 4.1 [23]. ~(~,...,~K)~~.

  mention certain applications of Strassen's theorem for every ~ -degree polynomial (i.e., ~= 0 ) over ~ (the evaluation of a concrete polynomial of precisely degree ~ at ~ points, i.e., here the set of input variables (see Sec. I) is {~,...,~}) . Let ~=~ ~$i...~6 be an elementary ~ -degree symmetric function; then C~(~,...,e~)M ~ . Further, the interplation problem for a ~degree polynomial, i.e., the recovery of its coefficients from the values at (~*~) distinct points, also has a multiplicative complexity ~ with respect to order. We remark that all bounds from the applications mentioned are true as well for an arbitrary infinite ground field ~ , since the SLP evaluating a family of polynomials over an infinite field evaluates this family over any extension of it. Unfortunately, Theorem 4.1 does not yield a nontrivial estimate for the multiplicative complexity of an individual polynomial, since ~W~K~ ~& , where ~(~/~-~ {~~I} 9 This deficiency was first removed by Schnorr [50]; we proceed to present his method (as before we take field ~ to be algebraically closed). Let p=~(~4,...,~)+~(~,...,~)~+...+~(~,...,~)~dG ~[~,..., ~] and ~(p)-~ 9 We consider a SLP "~ evaluating ~ , such that C~(~)==~ -Informally speaking, we would want to transform the aLP ~ into some SLP ~ evaluating the coefficients of polynomial , i.e., the polynomials ~0,...,&~--~[~,,...,~]. But if there is division in ~ , then this would make it difficult since the natural path to such a transformation is to evaluate all coefficients of powers (not exceeding ~ ) of the variable ~ for all values (which can be treated as power series in ~ ) of the working variables Z 6 of the SLP ~ (see Sac. i), which is impossible if it is required, for example, to decompose into series in ~ with a zero free term. In principle this defect can be eliminated by examining power series in the new variable (~-~) (instead of ~ ) for some ~eP (even for almost all ~,~ ). Therefore, we can introduce ~ into the SLP as a new input variable; i.e., the rational function ~@e~(~2~,...,~) , being the value of some working variable Z~6 of the SLP ~ (by ~ we have denoted the number of the instruction in ~ at which the ~ -binary multiplication or division is implemented; see item 4 of the definition in Sac. i), is written as ~ ~0%~(~,%...~)(~-~)~, where ~,~ are rational functions. Using no more than ~ operations X and / . we compute all ~},,~,v by induction on ~ , i.e., the free terms in the power series in the variable (~-~) , correspond -~ ing to the functions ~. Next, by induction on ~" we can show that every coefficient ~&,~ can be represented as some polynomial ~ of degree no higher than ~ (cf. Theorem 3.2) of the parameters ~,~,...~ ~ and {~0,~}I~ . We point out that actually we do not evaluate the coefficients ~ (to counterbalance the informal exposition of the idea of Schnorr's method; see above), since this is rather labor-consuming, but we construct a certain representation suitable for them. Let ~-~o(~,~4,:..,~)+~(~,~,...,X~)(~-~)+...+ ~(~,~,...,~)(~-~)~ . we consider the rational mapping ~" § A-~-(~o,...,~)~__ ~4 which can be decomposed into two ~ational mappings. According to Theorem 4.1 and what we have proved above, ~~(~)~V. Further, since ~=-~,{%},[~0,,}) ' where ~A~r is some linear (~e~) combination of the above-mentioned polynomials, we have ~~9~ . whence ~~(~)~(~)~ It is easy to verify that ~~.~~(~.~(~], consequently, ~~(~)~v(~)~ On the other hand, ~{%,...,~$)-~-~s W+~+~ , where ~ is the hyperplane with equation ~=0 ; therefore, according to the B~zout inequality (2), ~~ (~...,~)~~~,...,$~)~(~)~ . Thus, we have THEOREM 4.2 [50]. Let ~=~0(~...,~)+~(~,...,~M)~+ ...+~i(~,,..,~w)~ ~ 9 Then ~(~)~9 for ~ such that ~l)~(~,...,ll~)~g~(~I~) ~.
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 43 ~25~ ~) c~(~,~7 ' .--~-~;) ~(~; 2) ~,~',~,'"~-,(~v~(.~-).(See Sec. i.)We prove only the item I). We consider a SLP ~ evaluating ~ with complexity r %. Let ~,...,~ be the values of the working variables in the SLP ~ , in the instructions containing binary multiplications or divisions (see item 4 of the definition in Sec. i). Then for every ~ ~-~-~&~ ~;~ ((~ ~ or (~/) and where e&@,~@),~,~.~ ~{~p~,4~,~} <i LEMMA 4.4 [25]. Let 0=/=~@~(~(~); ~&~ (~{~); Wr are variables. We define the ~{(~(;~,,) by induction on $: ~,=V,W,,...,~{=~ (~.@~+ W~), .... of the Lemma, We denote matrices~=~ d,~r w~We consider the lower-triangular . ,t,,I v',.. .
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 99 FJ'~. ~ ".,--s,f r~,..t,--s,t f ~'~ ~. O, o~h~ ; ~-4,~-----~, O, o,h~,w~-~ ; @~.~$~.9~ , then we set ~|=~,~--%,~--{. then ~--~,~_,---%/~,~-=~/~. Finally, we set ~-I,~ = ~ ' However, if ~=~/~ Then by induction on $ it is easily verified that if ~f~..~ 4.4 for the indicated parameters ~,~, then ~=~{~%~,...,%9). Lemma ke " ' .. for all ~,~ . By Lemma 4.4 the family [~.,~ is evaluated (if ~,..., ~ been evaluated) with the use of (~-I) binary multiplications by Since among the {~,..,~-a} ficient to use no more than have been defined as in Hence we obtain since ~ p have already $~,...~ in succession. at least ~ equal unity, to evaluate J#-,...~ ~ ~ ~ it is suf-(5-~)-~= ~ binary multiplications and divisions, which proves the theorem. We mention some applications of Theorem 4.3. COROLLARY 4.4 [25]. i) "~-~PI~|~( ' 1~ ~~1~t~; where ~,...~ are elementary symmetric functions of ~ variables (cf. the applications of Theorem 4.1);The proof of the lower bounds in items 1)-4) is carried out by applying Theorem 4.1 to the collection of partial derivatives of the functions being computed. The proof of item 5)relies on the representation ~K--AK,0/~(&~ ) , where AM. is the C~) -minor.On the other hand, by Cramer's rule, ~,~AK ~ 9 Thus from item 5) and previously known results we obtain the coincidence (to within a multiplicative constant) of the complexities of matrix multiplication, matrix inversion, and determinant evaluation (also see Solodovnikov's survey in this issue).We heed the fact that Theorem 4.3 cannot be generalized directly to the computation of the second partial derivatives (and by the same token, to families of several variables --{~...,~} --in contrast to one function {~} ). As a counterexample we consider the polynomials , = =1''" ", 9 Then ~'~ # for ~m&~ and C,( {~.}))~ z In concluding the present section we cite one application, due to Strassen, of the degree method for computing the Euclidean representation (or the continuous fraction) of a rational function by a computing model somwhat different from a SLP [57]. If A4,A~e~[~], ~, A~=~A~=~ O, then we apply the Euclid algorithm to ~/A~ and obtain here the sequence of equalities The vector of polynomials (~,0~,...,~f,A~) is called a Euclidean representation of the fraction ~4/A~. The vector of degrees (~,...,~)=(~,..,,~f,~j) is called the format of the fraction ~/A~ (or of the pair (~I,~)). Obviously, t~_ ~ K~, ~ ~. By ~(~,...,~#) we denote the set of pairs (~4, A~) having the format (~,...,~}. It is clear that a SLP is an unsuitable model for computing a Euclidean representation since different fractions can have different formats even for one and the same values of and ~ , i.e., a different form of response. Therefore, the following computing model was introduced in [57], adequate for the given problem and called the branched tree program (BTP).* The BTP contains a tree T directed from the root to the leaves. Any vertex of tree T has one or two sons. At every vertex having two sons (it is called a branching vertex) there stands an arbitrary polynomial; at every vertex having one son (it is called an evaluating vertex) there stands some base operation (from ~ ; see Sec. i). The arguments of both the polynomial mentioned and the base operation are the results of some evaluating vertices located on a single branch from the root to the vertex being examined. A response consisting of the results of the evaluating vertices located above a leaf is delivered at the leaf. The functioning of a BTP is unique. An input is fed in at the root of tree T and the computation takes place along some uniquely determined branch: an appropriate base operation is computed at every evaluating vertex; after the branching vertex at which a polynomial e stands, the evaluation proceeds along one of the branches depending on whether or not the value of polynomial ~ equals zero. If a BTP with tree r computes a Euclidean representation, then every two inputs on which the computation takes place along one and the same branch of tree T have a like format, and by the same token, every branch (or an appropriate leaf) can have a format ascribed to it. If some weight ~O has been specified on the base operations (see Sec. i), then the weight of a branch is the sum of the weights of the base operations at the vertices along this branch. We define the complexity of the BTP as a function of the format: C~(~,...,H~) is set equal to the largest of the weights of thebracheswith format (~,...,~#) The normalized entropy [3] is defined as -~~-~)=~(~i,...,~). THEOREM 4.6 [57]. i) (Knuth and SchUnhage) A BTP can be constructed to compute the Euclidean representation with the bound *Translator's Note: The literal phase used in Russian for a straight-line program is "unbranched program." At the time of writing I did not have access to Strassen's paper [57] and therefore I do not know what name he has given to this new program. I have made here a literal translation of the Russian phase. I would appreciate it greatly if someone who knows what Strassen used lets me know. 1400 2) Every BTP, computing a Euclidean representation over an algebraically closed ground field ~ , has the multiplicative complexity C~(~,...~)~(H(~I,...,w~)-~) , i.e., for every (~, .... ~) there exists a set '~ , open in ~(~,...,W~) , on each element of which the BTP has a multiplicative complexity of not less than the magnitude indicated.

  , let ~ be a finite field, ~={+,x,/}U[X~}~P; ~-~ . The problem consists in estimating ~=~(~,...,~K) for ~,...,~E~[~,...,~], where [~,...,~,} are pairwise-commuting input variables (see Sec. i). Suppose that a SLP ~ evaluates ~91,.'.,~K} and that ~(~) =~-We denote ~=~(~~~9c~ ~'+K We shall treat the SLP ~ as a SLP ~ over the algebraic closure ~ The SLP ~ then evaluates certain polynomials ~j...,~K~ ~[~,...,,~] , such that the restriction ~l~n=~ (~k) . and ~ possibly does not coincide with ~ on the whole ~w (this feature distinguishes the case of a finite ground field from that of an infinite one). Obviously, 0~(~I~...,~K)(V. We now consider the irreducible mapping W ~s ~ ~=(~,...~K)~ ~) c ~W~K. The inclusion ~ W is fulfilled (we take it that ~ § ~" § is a natural embedding). The idea of Strassen's method consists in finding effective sufficient conditions on a finite set ~ of points, under whose fulfillment every irreducible mapping W~ ~ would have a sufficiently large degree (for a fixed dimension ~W4 ), and then applying Theorem 4.1.
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 5 1 [56]. Let ~C~ N , ~ be a positive integer, ~...,% be linear forms on ~N such that: a) for every ~ and any ~'",~4~4"~ the linear form ~ takes no more than values on set b) if ~s for some ~,we~1 and for all I~ , then i Then ~I is a ~ -set. The lemma can be proved by induction on ~ . THEOREM 5.2 [56]. Let ~ 4~ -----~""~6~[~'""~ and let the set ~I--~=~{~I,...,~K)=~ ~K ~ E C~'~ satisfy the hypotheses of Lemma 5.i. Then ~,T(~,...,~K)~(I~I/~) .To prove the theorem it is enough to note that an irreducible closed W -dimensional mapping W~-~-~) contains a ~-set ~ ; therefore, ~I~/

  plexity C~(~1,:..,~ of a family of polynomials in terms of a power of the graph W=~ (~_~,...%~x)= ~). Since ~ ~ is not less than the number ~ of discrete roots of the system ~ .... =~K=0 over field ~ , we have Cm(~,..,,~)~N~ (cf. Theorem 4.1).In the present section, on the basis of Khovanskii's work in[START_REF] Khovanskii | On a class of systems of transcendental equations[END_REF], we shall find a lower bound for the additive complexity ~ § in terms of the number of roots of the system .... J~'= 0 9 In this section, in the notation of Sec. i, ~=~; ~+,X,/}U{X~}~m ~ ; A~-A+ (see the beginning of Sec. 2); ~)..., ~W~[~,...,~] . Below, unless otherwise stipulated, all the polynomials are assumed real. The existence of the bound mentioned was assumed a long time ago and this assumption was based on the Descartes principle: the number of nonnegative roots of a polynomial in one variable does not exceed the number of its monomials. For one polynomial ~ in one variable a bound weaker than the one established below was obtained in [26] (it appears that the method of proof of the main theorem in this paper is of independent interest). By ~ we denote the set of nonzero real roots. THEOREM 6.1 [21]. The system of equations ~1--...--~--0{~r.,~e~[~...,~) has no more than ~(t4,+~,)K~ K(K+'I)/~' discrete roots in ('~)Hi, , where K is the total number of monomials in all the polynomials ~,;..,g~ . COROLLARY 6.2 9 If the system 9' ..... ~-0 has N simple (i.e., of multiplicity one) discrete roots in IZ*)", then C~(~, ,~)~-~[-~"

  r~t) _;.~,o c~,~) c~.o :($+4) ;(c~o ~ w(p) -'1 .... ~" ~1 "'' where the ~,},~,W,p,~ with subscripts are integers; T~ is the SLP's working variabZe (see Sec. i) in the instruction in which the ~ -th multiplication operation, by count, takes place; the value of the working variable ~; equals ~(~<~; ~;1~). Let us show that we can so modify system (4) by replacing ~o"', ~ by nonzero real numbers ~,..., ~ sufficiently small is modulus, respectively, that the modified system of (~r, 1~) equations in (If+1~) unknowns ~I,...,~,TI,...,T~ would have no fewer than N nontrivial roots 9 Since ~I,"',~N are simple roots, by the implicit function theorem the mapping ~ ;'~ ..... ~)>~ is bijective for each ~H in some neighborhood Y~--~ , namely, having narrowed down the neighborhood Y~ . we can take it that the neighborhoods of zero &(~)=O coincide and yA=(~) ~ for all ~-<N . We consider the mapping ~~ ~" (here we identify the working variable ~+~ with its value). It is not identically zero (otherwise, the (~+~)-st instruction of the SLP is superfluous and can be ~"~ ) M deleted) ; therefore, the preimage of zero (T~) (0--~,~ic~ is a real algebraic variety of dimension less than l& . We consider M~z~(M{,~,I) , viz., a subvariety of dimension less than ~ (since &/~ is a bijective morphism) of a neighborhood ~ of zero in ~ . Now as (~,..., ~) we take an arbitrary point in ~ outside M and the coordinate hyperplanes 9 By virtue of the choice of (~,...,Z~) the modified system has not less than :~ nontrivial roots (in neighborhoods {~N of the points [~,

  ~) and the family of polynomials {~(~),...;~(~)} in the variables ~, .... ~ for ~ )-~ ; then ~(~(~i),..., ~(~m))~-~t$~ " (under the restrictions mentioned this bound is nonlinear in 9 ).

  the conjecture would yield the bound ~(~,...,~)~, which would be an elegant analog of Strassen's Theorem 4.1. By modifying the proof of Theorem 4.2 we can obtain a lower bound for the additive complexity for individual polynomials. Let ~~ ,where ~...~[~4,..',~] . THEOREM 6.3. Let N be the number of simple nontrivial roots of the system of equations ~ ..... ~=0. Then ~ § 9 Let a SLP ~ be such that 9"=--~(~)=~+(~) and ~ evaluates ~ . We assume that the values of all working variables ~ of the SLP ~ , which are rational functions from ~(~, ..., ~,, ~) , have been determined at a point ~f=~'~ . Then we make the change of variable ~=~-~ 9 Each value of a working variable Z~r , where ~ is the number of an instruction in the SLP ~ (see Sec. i and the proof of Corollary 3.2), containing the ~ -th by count addition operation, will be treated as a power series in ~i , ~_~ ~(~.~ i.e., i~----~O~ ~ ~4 (see (4)); in addition, we set T0=~=~,+~ 9 We restructure the SLP ~ into a SLP ~ , computing by recursion on ~ the collection {s (in this the present proof differs from that of Theorem 4.2 wherein the collection of coefficients of the powers of ~ were not actually computed). At first, as in the proof of Theorem 4.2, we construct a SLP containing ~ additions and evaluating {~)}~ Let (see (4) T~ § , where T~ef,~.~J~..'l~f~;~,...~,~ , and .~,, ~;~ (,,~) are nonnegative integers. We denote ~,,,#----+~0 ~')~ " Then , where is some positive integer. The number of summands in the last sum does not exceed ~[{ §247 ]",~ Ir J " The evaluation of ~r in terms of v~,~(~+O and {(~r (~$~ requires no more than ~L additions in succession. At the end of the SLP ~ we return to the evaluation of ~,...,~r , having the computed ~0,'",~ such that .~ ~(~-~ ~a~ .~ ~, which requires no more than z additions in succession. ,~<(~+(~,...,~,)>.. ~2~, whence the theorem follows. We mention here that the analog of Strassen's Theorem 4.3 is not true for ~+ . For example, let ~-~54."00m+~405~.--05 ~ ~ ~,• C#(~).=~. It can be proved that C+~-~i ~ .... ~ ~)=~, since if ~J, then GCD (~)=(~..'-~)/(~5~), and to continue the proof we should make use of representation (4).

  small (for example, constant, i.e., independent of the number of variables) degrees. Apparently, the solution of this problem calls for the development of a principally new technique. CHAPTER II. LOWER BOUNDS ON MULTIPLICATIVE COMPLEXITY FOR PROBLEMS OF LINEAR ALGEBRA 7 Multiplicative Complexity and Rank Throughout the whole chapter (excepting Sec. ii) we shall be dealing with th~ following situation (in the notation of Sec. i): ~-~t,X~U~X~}~ or ~-----{+,X,/~U~X~}~e ~ , if K= P is a field (in Sets. 8 and i0, K~-P ); ~=~ is the multiplicative complexity; the input variables ~4,...,~m}U{~,...,~} are not assumed commuting. The problem to be examined in this chapter is the estimation of ~(~,.,.,~p) matrix of coefficients (a4#~)i~,4~ ~ 9 The following concept of the rank of a family of bilinear forms (matrices) proved to be fruitful (one of the first papers in which it appeared explicitly was [64]): K, wh= = ~R) for certain ~x~ -columns 1&f~..~ N and ~x~ -rows ~,...,'lf N over K~ 9 Let the tensor ~K~I'@~'~O~P , we define its rank: For matrices AI,...,A P we set up the ~x~xp -tensor ,1~=(~,@) , then it is not difficult to verify that ~K(Z)=~K(AI,...,Ap). Analogously we can determine ~K(~) for any ~,| M~OI-..~K~ ~ . where M~ is a ~ -module (~6) , but we do not here need so general a definition. The role of the concept introduced of the rank becomes apparent in the following theorem which algebrizes the multiplicative complexity in the situation being examined. tHEOREM 7.l [54].

3 .

 3 Suppose that a SLP ~ evaluates AI~...,Ap By means of a change of variables of the type ~-~X{-~% = ~% we can achieve that the free terms in the values of all working variables Z~ in the SLP ~ are nonzero. The value of every variable ~ can be represented as a series ~>,0~,~ , where ~,6 is a form of degree (in the noncommuting variables %,...,X~,~,...,T,r ) We restructure ~ into the SLP ~ evaluating by recursion on ~ the forms ~0,~,~,~, ~,r (in the general case when ~ evaluates a family of polynomials ~l,"',~PI of arbitrary degrees, the SLP ~ must evaluate ~i,~ for all ~ W~{~@~7..., ~} ). It is not difficult to see that the restructuring mentioned does not increase the multiplicative complexity in the case being examined, i.e., Let us now consider (see [64], for instance) a division-free SLP ~ (the case of an arbitrary ring ~ is covered by the same token) evaluating A4,... , Ap . The value of each working variable %~ of the SLP ~ can be represented as ~o ~v}-u~--~-~ +-~ -~ where, for example, -x~.. is a sum of monomials (with coefficients from [ ) of the form ~ etc. ~(~) is a sum of monomials of degrees no less than three. We restructure the SLP ~ into a SLP ~I evaluating .~&(()~((), ~,~)~ ~(~)~x~ by recursion on ~ for all ~ If, for example, the ~ -th instruction (see Sec. i) of the SLP ~ had the form ~$'=~Z$ (where This shows that C,~(~(~), moreover, ~ contains only the nonlinear multiplication operations x of the form (~&~&)x(~) , namely, one such multiplication corresponds to the product of a column by a row in matrix terminology. Hence follows the inequality C,~(A(~ ...,Ap)~K(A~,...,Ap) . This completes the theorem's proof since the reverse inequality is obvious.Thus, the study of the multiplicative complexity of a family of bilinear forms is reduced to the estimation of the rank of a family of matrices.If K= ~ is a field, then ~(A) is the usual rank of matrix A, and it is independent of the choice of ~ , which is false for p~ (i.e., ~(A,,...,Ap)~(A~,...,A~) under the extension of field ~ H , and the inequality can be strict; see[START_REF] Yu | Algebraic computational complexity of a family of bilinear forms[END_REF], for instance). The investigation of rank when p>~ proved to be a very difficult problem (the results of studying it when p=~ ,ohtained by the author, are stated in Sec. 8). In the present chapter we present equal ~4,"" ~ ~ ~ "kernel" ~A~+~B, of sheaf ~A § ~B have, for each ~~ , divisors of the form (~ + ~)~ , where ~/~= ~ We set ~=W~ certain bounds in this direction which have been obtained. The paper [30] (in Dutch) contains a more complete survey on rank.

  Ap) equals "almost everywhere" (in the sense of the Zariski topology) a certain number $~(~) depending only on ~,~,~ (and is not changed under any permutation of them) and on the characteristic ~ of field ~ Certain estimates on ~(W%~) have been presented in [9], viz., ~/(W~+~-~)~ ~{w%~jp)~F~l~{~,~} for ~ (the upper bound follows from Corollary 8.3 below). When ~w~ the order of growth of %~(W,%~) is between ~/~ and ~/~
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 2992 to the end of the section, let ~ be algebraically closed. We derive an explicit formula for w(A,B) in terms of the canonic form of the pair ~,B) relative to the transformations (~{~ where ~,~ are nonsingular, which is called the Weierstrass--Kronecker canonic form of the matrix sheaf ~A +~ (for example, see[START_REF] Gantmakher | The Theory of Matrices[END_REF]; from this same book we have borrowed the terminology needed in the next theorem). THEOREM 8.2 [8, 9, 32, 33]. In the sheaf +~B let the nonzero minimal indices , for the columns and ~...,~ for the rows. Further, let the regular elementary Then The theorem's proof relies on Theorem 8.1. tained independently in [38]. Further, W$~W A result close to Theorem 8.2 has been obin the formulations. 7); COROLLARY 8.3 [9]. For fl~Xl~ -matrices: i) 4~(A,~) almost everywhere equals ~#~W~}--~(~,~,~) From this corollary we see, in particular, that ~(A,~) ous function of A,~ (in the notation of Sec. is not an upper-semicontinu-9. Multiplicative Complexity of a Bilinear Form Over a Commutative Ring If in the case when K~ is the ground field the difficulties were due to the estimation of the rank R~(A,B) of a pair of matrices (see set.8), then over an arbitrary commu, tative ring ~ the difficulties are due now to the estimation of ~K(A} (by Theorem 7.1 the latter quantity coincides with the multiplicative complexity of a bilinear form A over ). Thus, let ~ be a conmlutative Noether ring with unity and A be an ~$x~ -matrix over . In this section we present the author's results on the bounds for ~KCA) (see [i0, 34]). By ~ we denote the usual rank of matrix ~ , equal to the size of the largest nonzero minor in it. Obviously, ~~K(A) Let us explicitly describe those rings (we call them ~ -rings) for which the equality ~K(~)~-~ is fulfilled for any over K . The concepts from homological algebra used below can be found in [14]. By ~k(~) we denote the global homological dimension of ring THEOREM 9.1 [i0, 34]. Ring K is an 4-ring if and only if K-K~Q,..~K~ for some uniquely defined integer rings KI~...= K~ such that: 1every projective ~ -module is free (~) 10]. ~[%,,~] is an ~-ring. How does ~KLAi behave for the polynomial ring ~=K~----p[~1,...,z~] when ~ ? This question has been resolved practically completely 'in the case of matrices of the form A=z~AI+...+~A ~ . where ~~) is a matrix over field ~ (such matrices are called square-free and, up to the end of the present section, excepting the last paragraph in it, we retain for them the notation ~ with or without indices). We denote ~(~)%A~=_~(A) and ~ (~) = ~ ~ (~) THEOREM 9.3 [i0, 34]. 1) l~,(~ § 3)

  conjecture of the additivity of rank, mentioned in the next section). For example, let ~-~-~] and A= 1 ~-~ ~+II Then ~K.(A)----~ but ~K(A" -. ,A)~p+ I where p is the number of summands in the direct sum mentioned. At the same time, the additivity of ~ K(A) holds over a polynomial ring and for square-free matrices [i0]. The author permits h~mself to make two conjectures: a) the additivity of a rank is fulfilled over the polynomial ring for any matrices; b) for every regular ring K (i.e., ~K~ ~O ) we can find a number 0 K such that ~(A)~cK~A for an arbitrary matrix A over 10. Bounds on the Rank of Algebras Various complexity problems of linear algebra, for example, the multiplication of matrices or polynomials, lead to estimating the rank of certain algebras. The rank of an algebra over a field ~ (we denote it ~p(~)

~

  (~) can be interpreted as the multiplicative complexity of the multiplication of two elements of algebra ~ , i.e., to find, from the expansion of the factors with respect to the base, the expansion of their products. Let ~%~ be the algebra of Wx ~ -matrices. Then ~ (~) equals the multiplicative complexity of the multiplication of Wx ~ -matrices, i.e., C~(~i~}4~K,~ The next theorem is due to Alder and Streamer. i0.i [24]. --__~(~)~ff~P(~)-K , where K equals the number of maximal THEOREM ideals in ~ . The proof is broken up into the following two lemmas. LEMMA 10.2 [24]. ~(~)~(r ~ ~ is the radical of algebra ~ ).

  , for example): if ~K(~),N. for some ~,~o , then ~K(~) 0(~No) (inequality (6) is used here in the form ~(~~(~)~(~. , taking it that ~%'-~0~ ). Here it is appropriate to mention an estimate, asymptotically the best one known up to the moment of writing the present survey, for the complexity of matrix multiplication: THEOREM 10.5 [291. ~(~)---0C~,4|J8~").

  that the inequality W(~)~ p signifies that tensors of rank not exceeding ~exist"arbitrarily close"(in the Zariski topology sence) to tensor 9 . The main instrument in the use of ~ is the boundary analog of inequality (6) [52]: if ~(~%)~N, for some No , then ~(~)=~w~ ~) A number

  THEOREM 10.6. i) [31] ~(~[~]/(~))= ~--K , where ~ is an infinite field, J~,~=~ and ~=~IP~...~W M~W ; moreover, ~--~[,] is irreducible over ~(~'~(K) and the {~} are pairwise relatively prime.

  ~p(A~ for a field ~ of two elements. Obviously, ~F{~[Z~)) ~ ~ ( ~..., A|~ )~(~]/(~) ,where ~=~ The estimate ~,~ ~A0,...,~)--~(~)for any field ~ followed from[START_REF] Sch~nhage | Schne]le Multiplikation GroBer Zahlen[END_REF]. The upper bound in item i) follows from inequality[START_REF] Gantmakher | The Theory of Matrices[END_REF] and the isomorphism ~[Z]/~)~ ~[~]/(~); the lower bound follows from Theorem i0.i.We now sketch the proof of item 3). We fix a certain 0~Obviously, ~A0,...,ByTheorem 7.1, ~=~ equals the smallest number ~,..., C~ of bilinear forms of rank i, whose linear hull, linear over ~ , contains the linear hull ~'= ~(A~rI,..., A~_~+I ) of the bilinear forms being examined. On the other hand, for any bilinear form 0~A~ the inequality ~A~ is fulfilled; therefore, ~ can be treat-ed as a linear code in the linear hull ~(~,...,~) (with base ~ ~,...,Cpl ); moreover,
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 99 shall examine auxiliary matrices ~ of dimension ~x n $ Their rows and columns are numbered by all possible vectors I=(~, .... ~) , where ~,...,~ ; in this notation By ~ we denote the $ -th-degree monomial ~i...~ and by IIJ we denote the number KI!...K~[ , where K~ is the number of occurrences of the number ~ in vector I On the space of ~ x~ ~ -matrices we define a linear operator ~ (we call it the commutation operator), having set ~(~)=~ , where ~Q=( ~ ~ ^ K ~'3) J~l , i.e., , ~T. ~ ~=~=~'=L.=~ ~G=~K and the summation is over all pairs of vectors ~,~ such that ~I~_____~K Every matrix ~ can be associated with a form ~AI,~3 ~3~I ~3 of degree ~ , where the summation is over all pairs of vectors I~ ~ Conversely, every form ~ can be associated with a matrix ~ such that ~A= ~ , but now nonuniquely; namely, we have LEMMA ii.i. The.equality ~A= ~ of forms is equivalent to ~(~)=~(B) where the form ~= ~ ~$ and I=(~,...,~),~={~,...,$~) Obviously, the form ~A~,..,~& -~-~"'~9~$ is a product of linear forms. We clarify the action of the commutation operator on the matrix ~,...~. constructed. LEMMA 11.2. ~(A~t...,f,,~)--~.]~\A~.l l ),...,~r(~,(~), "'a~~ where the summation is over all permutations of 13. Monotone Programs Monotone computations are a rather narrow but sufficiently natural class of SLP for which

  i) in which the role of the ground ring ~ is played by a certain semiring ~c~\[0} for some field (the semiring forms a monoid with respect to addition and a monoid with respect to multiplication); .[)={+,x}U[ § ; ~-----~+ (see Sec. 2), i.e., ~)-----~=~,~X)=~0~ [~1,..v~} is some set of input variables; the corresponding (monotone) complexity measure is denoted CH~)~ For example, if ~-----~ , then as ~ we can take all positive numbers. For every polynomial ~ , by Mo~(~) we denote the set of monomials occurring in ~ with nonzero coefficients. A subset of monomials BC~(~) is called separating if for every ~,~'B and %,~(~) , if there is fulfilled ~ (the vertical bar signifies the divisibility relation), then either ~=6 or ~-~ Schnorr showed that C~(~)~)~J -~ (here and below we assume ~(~)~=~ if it has not been defined). Furthermore, for the purposes of [49] the following strengthening of this result was proved. Let ~ be some mapping from the set of variables to the set of monomials; then for every monomial ~ we denote by q~ the result of replacing in ~ every variable ~ by the monomial ~(~) THEOREM 13.1 [49]. For every polynomial ~ ~(~) ~I~-~ for any separating set B of polynomial ~ As applications it was shown in [49] that Cltf'~ ~ O~O~6`'~)---("+~-,.t,= --is full s -- filled for the computation of the product of W -th degree polynomials and C~[t4~L' 6-~K~" ~} ) == ~'-~ for the multiplication of ~xn -matrices (compare with Sec. i0). Further, we consider the polynomial of degree C~) in the (~) variables [X~,~}4,~ W From Theorem 13.1 it follows that C~(~L~K)~ )-I On the other hand, the question on the presence of a polynomial upper bound for the total complexity %(~K) (see Sec.l) is closely connected with the ~ problem, since the polynomial ~K corresponds to the NP -universal problem on the existence of a K -clique in an ~ -vertex graph (for example, see [I, Chap. i0]).

  cise, we construct a family of plane graphs I~} by induction on W : triangle with side ~ , decomposed into a parquet of regular triangles with side i.Every set of edges of graph ~m , not having pairwise-common vertices and covering in aggregate all vertices (in particular, the number (~+~)(W+~)/~ of vertices must be even), is called a perfect matching of the graph. To each edge of graph ~ we assume its own variable, and for each set ~ of edges we denote by ~ the monomial equal to the product of the variables assigned to the edges of I.We define the polynomial ~ as the sum ~ over all perfect matchings I of graph ~ .THEOREM 13.2[START_REF] Valiant | Negation can be exponentially powerful[END_REF]. For some constant ~ , ~mo~(~) ~ ~ is fulfilled for all ~ .

  i, in order to introduce the concept of a SLP with storage ~ (see [6, Sec. 2]). Let ~ be the ground field, ~-----~+,X,/IU[X~}~ } {3~}44~, ~ be a collection of input variables. Every instruction of a SLP ~ with storage ~ (where ~ is some positive integer) has the form Z~o= ~(z~ .... ,z~, | where ~G~, ~o,~,...,~ (it is important to note that the indices ~,...,~ can be greater than 6o , in contrast to the SLP defined in Sec. i). Let a SLP ~ with storage ~ (further in this section we shall sometimes omit these lat~ ter words) consist of ~ instructions and let the instruction written out be the ~o -th in order in the program for some ~e~T the case being examined ~Z ~B~ ~(Z~?.. Z ~*-~) ~0)= Z~.-O for all 6~ k ~o , , and we say that the functions ~,...,@~6T(| are computed by the given ~ if for every ~K we can find 4~6~ and ~T such that Z~ )---~ It is natural to interpret the number ~ as space and ~ as time. i) to construct (explicitly-compare with the beginning of Sec. 3) an example of a family of functions I~I' .... ~,~I satisfying the C~,~) -separability condition for "nontrivial" values of ~ and ~ (for example, ~XN$~Xm~ ) ; 2) to show that the complexity r is nonlinear in W~.~I~ } for certain ~ and (we take it that ~ computes a family of functions satisfying the (~,~) -separability condition).
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 151 If the family I~I""'~,~I is ~,~) -separable, then for every SLP ~ computing this family and whose graph ~ satisfies constraint (7), there is fulfilled ~#) m.. where ~ is the unique positive solution of the equation (4+

r.

  The bound from the preceding paragraph is the complexity weaker, in the interesting cases, than Morgenstern's bound, but possibly the realization made of the path suggested in Valiant's questions I) and 2) is of independent interest (recall Theorem 15.1). In [61] Valiant ga'e another partial answer to the question 2) posed above. The largest length-of a directed path in an ordered graph ~ is called the depth ~(~) of graph THEOREM 15.2 [61]. For some ~ 0 let some (O,~) -separable family, where ~ ~I+$ , be computed by a SLP ~ for which the depth ~(~)'--0(~) Then 16. Additive Complexity in Triangular and Directed Computations and Bruhat Decomposition

  i, ~ is the ground field, ~,...,X~ are the input variables, ~-~-'~+~}~G~ U[X~Gp In matrix terminology, elementary operations correspond naturally to these instructions. There are also N variables ~f'""~N (which can be treated as storage) from which we can pick out ~ variables Z~I, .... Z~ (I~i~...~ ~ ~ N ) , which are called basic (the rest are called auxiliary). The SLP @ itself is a sequence of rows, and for every ~T and ~$~N there is naturally determined by induction on ~ (analogously to Sac. 14) a linear form Z~ ~ in the variables ~t,"" ~ with coefficients from ~ At the initial instant _~--~ (~") for the basic variables and Z~0 (5~;...,@w) for the auxiliary ones. By definition we take it that ~ computes the family of ~ linear forms ~ ~(~) This restriction, i.e., reckoning at the end of the computation of Z ..., -~ the outputs at the place where there were inputs at the initial instant, which is not essential for SLP of general form, is very important in our case. At first we turn to triangular computations. By definition, every instruction of a tri ~ angular SLP ~ has the form ~----~+ ~Z~ , where ~-~ or Z}=~ (~e~) These instructions (in matrix language) correspond to upper-triangular elementary transformations. We set the function ~=AA (see Sac. i) equal to one on instructions of the first type and to zero on instructions of the second type. The complexity measure CK resulting here (see Sac. i) is called triangular. If A is an ~x~ -matrix of the coefficients of the family of linear forms ~I'"" a~ , then we denote ~A(~)=%(~,...,~) We remark that in justification of its name the triangular complexity OA(A) has been defined only for upper-triangular matrices A (i.e., matrices with zeros below the diagonal). THEOREM 16.1 [35]. Let an upper-triangular matrix A be represented in the form A = (~I ~I , where At, A ~ are upper-triangular. Then As an application of the theorem we consider a family of upper-triangular matrices A,} , where A,= o ,...; here E is the unit matrix (i.e. has the dimension ~'~ ). Then we have COROLLARY 16.2 [35]. OA(A$)= ~.~-( In other words, the growth of the triangular complexity CA(A~ ) is nonlinear in the dimension of the matrices. The second class of SLP which we consider here is that of directed SLP. Every instruction of a directed SLP ~ has the form We set the function ~--h~ equal to unity on instructions of the first type and to zero on instructions of the second type. The complexity measure G~ resulting here (see Sec. 1) is called directed. In contrast to triangular complexity, the directed complexity ~(A) (we use the notation introduced above) is defined for any quadratic (~x ~) matrix ~ . For ~g(~) it is not difficult to obtain nonlinear (in ~ ) lower bounds, but we have succeeded in doing considerably more: to obtain an explicit formula for G~(A) To state this result we need certain preliminary information, which we now present. Let ~ be a symmetric group (i.e., the group of all permutations of an ~-element set) which we shall simultaneously treat as a subgroup of the group ~ of nonsingular matrices (all matrices encountered here and later are of dimension ~x~ ). By ~ we denote the manifold of upper-triangular matrices and by ~=~n~ the subgroup of all nonsingular uppertriangular matrices. A Bruhat decomposition (see Sec. 3 of [20]) consists in that for every matrix Every decomposition of W into a product of transpositions of form ~ with the smallest number of factors equal to ~'={(~9 is called reduced. It is easy to see that ~(W) coincides with the number of inversions in W , i.e., the number of pairs % < ~ for which W(~>W(}) We denote , we define the function ~ on ~ (on nonsingular matrices). On group ~W we introduce (see Sec. 8 of [20]) the relation ~ of partial ordering: W~W$ (Wf,Wle~) if W I equals some subproduct (with preservation of order of factors) of some reduced decomposition of element W$ It can he shown (see Sec. 8 of [20]) that the determination of the order is independent of the choice of the reduced decomposition of W~ . The worth in the following theorem (see Sec. 8 of [20]): ~W~W~Wd~ order shows its where the bar signifies closure in the Zariski topology (here it is assumed that field ~ is infinite). As follows from the Bruhat decomposition, under the union sign there stand pairwise-nonintersecting sets. It is easy to see that ~(A)~(A) for nonsingular matrices A In order to establish the reverse inequality, the author had to extend the function { from ~h~ to ~ ( ~ denotes the manifold of all ~, ~ -matrices), to prove an analog of the Bruhat decompositioh (see Theorem 16.3 below) and an analog of the Chevalley theorem (see Corollary 16.4 below) for ~ , then to establish a certain monotonicity property of the resultant function (see Lemma 16.5 below), and, finally, to prove the equality now for all A'~W.

~-~-~X...x~'=~ ~

  

	(~#~...+~),	defined by the vector of polynomials {~4A,...,~...:~I,...,~6,~6)..	from
	Theorem 3.2. We denote W Z ~	to be the closure of the image of ~ (in the Zarlskl
	topology). The variety I~	, and by the same token also ~ , are defined over field
	([15]). Below ~	denotes the binary logarithm, ~M~ is the carminality of set M.

Translator's Note: The Russian word for rank is "rang" and hence the abbreviation "Rg" used here.Since this appears quite often in what follows, I have chosen to retain it rather than to change it everywhere to "Rk."

For completeness we remark here that in [START_REF] Hyafil | The power of commutativity[END_REF] it has been shown that the multiplicative complexity ~(~) of a form ~ (here two cases can be examined: with commuting and noncom- A method was proposed in [START_REF] Hyafil | The power of commutativity[END_REF] for estimating this quantity from below (and, by the same token, the multiplicative complexity) in the case when it is not assumed that the input variables are commuting. As yet it is not clear how to obtain lower bounds for this quantity in the case of commuting variables.

In concluding Chap. II we say a few words on the fact that the rank of a f~m~ly of bilinear forms harbors in the meanwhile many mysteries. One of the most interesting unsolved problems is the obtaining of nonlinear (in the number of variables and the number of forms) lower bounds for the rank of some natural families of forms (here we can refer to practically everything we said at the beginning of Sec. 3 on the computational complexity of polynomials), 9 Translator's note: This might be a misprint; I feel it ought to be {J}.
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for example, for problems, arousing great interest, of the multiplication of polynomials (over a finite field) or of the multiplication of matrices (see Sec. i0). The author cherishes the hope that for rank a breakthrough in obtaining nonlinear lower bounds occurs faster than in the other directions of algebraic complexity, which apparently requires a further algebraization of the concept of the rank of a family of bilinear forms.

CHAPTER III. COMPLEXITY FOR STRAIGHT-LINE PROGRAMS OF NONSTANDARD TYPES

In the last chapter the sections are less interrelated than in the preceding two chapters.

What connects them is perhaps the fact that in them we examine SLP and complexity measures of nonstandard types, satisfying (excepting Sec. 12) some restrictions (different ones in different sections) in comparison with SLP of a sufficiently general form studied in Chapters I and II. The adoption of precisely these restrictions sometimes has practical grounds and is explainable by the possibility of obtaining lower bounds which we have been unable to obtain as yet for SLP of general form. Frequently for nonstandard (restricted) computing models we have succeeded in revealing the connection of the complexity with objects classical for mathematics (it is precisely on this basis that the author chose the material for the present chapter).

In addition, the restrictions sometimes permit us to trace the influence of individual factors on the total complexity (see Sec. i), which is useful for penetration into the secrets of complexity lower bounds.

Irrational Computational Complexity of Algebraic Functions

In this section we examine SLP of the following type (in the terminology of Sec. technique (not carried out to the end in [START_REF] Shamos | Lower bounds from complex function theory[END_REF]), and we restrict ourselves here to the more elementary method, convenient for applications, suggested in [START_REF] Pippenger | Computational complexity in algebraic function fields (preliminary version)[END_REF]. where H is the conditional entropy in uniform measure on the cube ~ , and the symbol V is the atomization of partitionings (see [START_REF] Billingsle~ | Ergodic Theory and Information[END_REF]). In many of the results in the present section we encounter a lower bound on the product ~ which can be looked upon as a certain analog of the uncertainty principle, called a time-space tradeoff for the storage (space) and time.

Let

As an application of the theorem we get (see [START_REF] Margulis | Explicit construction of concentrators[END_REF]) that ~ ~/~ for the problem of multiplying iS -th-degree polynomials (cf. Theorem 10.6) and ~/8 for the matrix multiplication problem (cf. Corollary 10.4 and Theorem 10.5).

In a number of subsequent papers the method of proof of Theorem 14.1 was generalized to arbitrary fields ~ . To state the generalization we restrict ourselves to the case of SLP with space ~ computing a family of linear forms, i.e., ~-----~+}~tX~}~ and we denote the function ~-=A~ corresponding to the complexity measure (time or number of instructions) by ~ (the subscript is the abbreviation of the word "additive"). The problem consists of estimating , where ~}~-4~ ~#~~ is a linear form (~}(W) We denote the ~x W -matrix of coefficients of these forms by A=(~r THEOREM 14.2 [START_REF] Tompa | Time--space tradeoffs for computing functions, using connectivity properties of their circuits[END_REF]. Let all minors (see [START_REF] Gantmakher | The Theory of Matrices[END_REF]) of matrix ~ be nonzero. Then for every SLP with space .~, computing the family {Ai,'", A~ , there is fulfilled ~~$

The idea of the proof goes back to [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF][START_REF] Savage | Space--time tradeoffs on the FFT algorithm[END_REF][START_REF] Savage | Space--time tradeoffs for oblivious sorting and integer multiplication[END_REF][START_REF] Valiant | On nonlinear lower bounds in computational complexity[END_REF]] and relies on the concept of a superconcentrator (see [START_REF] Pippenger | Superconcentrators[END_REF][START_REF] Valiant | On nonlinear lower bounds in computational complexity[END_REF], for example), which is a certain strengthening of the concept of a concentrator introduced independently in [START_REF] Margulis | Explicit construction of concentrators[END_REF][START_REF] Pinsker | On the complexity of a concentrator[END_REF]. Superconcentrators played a significant role in the establishment of lower complexity bounds; therefore, we consider them here in somewhat greater detail.

Let G be a directed graph without directed loops (graphs of this type are precisely those which have a partial ordering at vertices, and we shall call them ordered graphs). Verti- Here and in the next section an extended construction which associates with every SLP (of the usual type, as defined in See. i) some ordered graph ~ will be useful (for example, see [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF][START_REF] Tompa | Time--space tradeoffs for computing functions, using connectivity properties of their circuits[END_REF][START_REF] Valiant | On nonlinear lower bounds in computational complexity[END_REF]). Graph ~ has ~ input vertices, one for each input variable ~4,"', ~ by SLP we shall understand as well SLP with space, which can be looked upon as a special case of the usual SLP (forgetting about the restriction on the space).

LEMMA 14.3 [START_REF] Valiant | On nonlinear lower bounds in computational complexity[END_REF]. If a SLP ~ computes a family of linear forms with an ~ ~ coefficient matrix ~ all of whose minors are nonzero, then ~ is an ~-superconcentrator.

We remark, as was shown in [START_REF] Margulis | Explicit construction of concentrators[END_REF][START_REF] Pinsker | On the complexity of a concentrator[END_REF][START_REF] Pippenger | Superconcentrators[END_REF][START_REF] Valiant | On nonlinear lower bounds in computational complexity[END_REF], that there exists a family of ~ -superconcentrators with a number, linear in ~ , of edges (an upper bound of ~ on the number of edges is given in [START_REF] Pippenger | Superconcentrators[END_REF]); therefore, by itself Lemma 14.3 does not lead directly to nonlinear lower bounds on the complexity. LEMMA 14.4 [START_REF] Tompa | Time--space tradeoffs for computing functions, using connectivity properties of their circuits[END_REF]. If ~ is a SLP with space ~ and ~ is an ~ -superconcentrator, then ~T~ ~ Theorem 14.2 now follows easily from these two lemmas.

As an application of the theorem (besides it, still other additional arguments are brought in to prove the results listed below) we cite the following examples: COROLLARY 14.5. i) [START_REF] Tompa | Time--space tradeoffs for computing functions, using connectivity properties of their circuits[END_REF] for the problem of multiplication on ~ -th-degree polynomials (over any field), ~ ;

2) [START_REF] Savage | Space--time tradeoffs on the FFT algorithm[END_REF][START_REF] Tompa | Time--space tradeoffs for computing functions, using connectivity properties of their circuits[END_REF] for the computation of the discrete Fourier transform, i.e., of a family of linear forms with an ~x ~ coefficient matrix (~(~K))I~,~ ~ , there is fulfilled ~ ~ (to eliminate possible ambiguities we remark that here ~--~) ;

3) [START_REF] Tompa | Time--space tradeoffs for computing functions, using connectivity properties of their circuits[END_REF][START_REF] Ja | Time--space tradeoffs for some algebraic problems[END_REF] for the multiplication of ~ -matrices, ~ ~ , and for the inversion of ~ -matrices, ~ ~ ;

4) [START_REF] Savage | Space--time tradeoffs for oblivious sorting and integer multiplication[END_REF] for the multiplication of integers not exceeding ~ (i.e., for finding the binary digits of the product of ~-digit numbers) there is fulfilled ~T~

Graph-Theoretic Methods in Algebraic Complexity

The applications of graph theory in algebraic complexity are based on the construction of the ordered graph ~ described in the preceding section. One such application (to the establishment of the "uncertainty principle") was considered above (see Sec. 14). In the pres~ ent section we set forth fewer applications of graph theory than in Sec. 14, but, in the author's opinion, the methods and the problem statements themselves are of interest.

We shall not begin (as we usually did above) by fixing the class of SLP ~ (i.e., the parameters from the definition in Sec. i), since the main object of consideration will be the graph ~ We shall merely assume that the complexity measure C~ is defined in terms of a function ~ equal to unity (compare with total complexity; see Sec. it is required to address many inputs for computing the output ~ ). The concept formulated was already essentially contained in Sec. 1 of [START_REF] Yu | Application of separability and independence notions for proving lower bounds of circuit complexlty[END_REF] and is very close to the concept Of the (~))-~ proposed independently in [START_REF] Valiant | Some conjectures relating to superlinear complexity bounds[END_REF].

The separability condition (just as the concept of ~) has been described in the language, constructed with respect to computable functions, of a sufficiently wide class of SLP, which, undoubtedly, complicates the verification of its fulfillment. In [START_REF] Valiant | Some conjectures relating to superlinear complexity bounds[END_REF] there was cited arable. Two open questions were posed in [START_REF] Valiant | Some conjectures relating to superlinear complexity bounds[END_REF], whose essence reduces to the following (togeth~ er they can be looked upon as some scheme along the way to obtaining lower bounds):

THEOREM 16.3 [ii, 35].

WAe ~ such that:

1) Ac,Fw^ ,9" Finally, having proved a number of assertions for function ~ (see [ii, 35]) and relying on 16.3, 16.4, 16.5, we obtain as a result the promised explicit formula for ~(A) THEOREM 16.6 [START_REF] Yu | Additive complexity in directed computations[END_REF].

We remark that Theorems 16. LITERATURE CITED