FACTORIZATION OF POLYNOMIALS OVER A FINITE FIELD AND THE SOLUTION OF SYSTEMS OF ALGEBRAIC EQUATIONS

COROLLARY 2. If ~g~[m~ .... ,m~] and ~(~)>0 for any ~el ~ , then $(~0>41~. Proof. The function f achieves local minima and, in particular, a global minimum at its critical points. If Kc~ is the set of critical points of f, then the set V=(Kx ~(K)) ~*~ is an algebraic variety, defined by the system ~/~----,,,=~=0,~-~i The set of points defined by the system ~/a~ ..... ~/a~=0,~=m{~ ~(~) is an algebraic sub-~ variety of the variety V, and by Corollary i, contains a point ~r (~,..., ~i) such that ~+, 1~4/r 9 i 2 3.

INTRODUCTION

In the present paper we give algorithms for solving two problems of computational commutative algebra, the estimate of whose complexity is better in order of growth than those known previously, In Chapter I an algorithm is described for factoring polynomials in several variables into irreducible factors over a finite field, which works in polynomial time.
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In Chapter II an algorithm is constructed for solving systems of algebraic equations of arbitrary degree, working in subexponential time.

The problem of constructing an algorithm for factoring polynomials into factors goes back all the way to Gauss. Up to now it has attracted the attention of many mathematicians.

The Kronecker algorithm is widely known [i]. Unfortunately, Kronecker's algorithm, as well as all other algorithms known until most recently, required exponential time (in the length of the description of the original polynomial) in general. The first step was made by D. K.

Faddeev and independently A. I. Skopin at the end of the fifties for factoring polynomials in one variable over a finite field F=% ; in the literature this algorithm is known as Berlekamp's algorithm [START_REF] Knuth | The Art of Computer Programming[END_REF], which he published in the sixties. After this, in the course of nearly 20 years there was no essential progress. Only in 1982, Lenstra et ai. [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] constructed a polynomial algorithm for factoring polynomials in one variable over the field of rational numbers F-~ , which reduced the factoring to the search for a vector of sufficiently small norm in a given lattice over the ring of integers ~ , with subsequent application of Berlekamp's algorithm and Hensel's lemma. Independently, in [START_REF] Kaltofen | A polynomial reduction from multivariate to bivariate integral polynomial factorization[END_REF], the reduction of the factoring of polynomials in several variables over F =~ to the factoring of polynomials in two variables was obtained, which was polynomial for a fixed number of Variables, and, in addition, in [START_REF] Kaltofen | A polynomial-time reduction from bivariate to univariate integral polynomial factorization[END_REF] a polynomial reduction of the factoring of polynomials in two variables over F =~ to the factoring of polynomials in one variable was found. Finally, an algorithm of polynomial complexity for factoring polynomials in several variables over a finite field was first given by the author in [START_REF] Chistov | Polynomial-time factoring of the multivariable polynomials over a global field[END_REF], and an account of it constitutes Chapter I of the present paper (cf. Theorem 1.4 of Sec. 3). Afterwards, Chistov constructed an algorithm of polynomia! complexity for factoring polynomials in several variables over global fields [START_REF] Chistov | Polynomial-time factoring of the multivariable polynomials over a global field[END_REF] and extended this result to fields which are finitely generated over their prime subfields [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF].

In Chapter I we consider a polynomial ~6~ [~i~-.~].

Here we ass1~ne that le~x~Q{)<Z,{~. Then f can be represented by the vector of length r n of its coefficients from the finite field ~5~ . The bit length of the description of elements of the field ~ does not exceed ~ ~z~ . Hence, by the size of the polynomial f in Chapter I we mean the quantity ~ ~a ~ ," In Chapter I an algorithm is described for factoring f into factors which are irreducible over ~%~ in polynomial time in the size of f. Section 1 of Chapter I is preparatory for Sec. 2, although it has independent interest.

A polynomial algorithm is given for finding a minimal vector in a lattice over the ring In Sec. 2 a polynomial algorithm is constructed for factoring polynomials from [x,,x] .

In Sec. 3 the proof of the basic result of Chapter I is completed with the help of reduction to the case of two variables (n = 2).

The problem of solving systems of algebraic equations also has a long history. The fundamental possibility of solving systems over an algebraically closed field was already estab-lished in the 19th century on the basis of elimination theory (cf., e.g., [I]). Many papers were devoted to this problem, especially in the last two decades in connection with the development of programming and the theory of complexity of computations.

In a number of papers (cf., e.g., [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed field~[END_REF]) an upper bound for the working time was found in which the quantity ~a ~ appeared, where n is the number of variables, and (d -I) is the maximal degree of the equations. Despite the immense progress in algebraic geometry, up to now there has been no success in overcoming the considerable difficulties in the path toward lowering the estimate mentioned.

The first essentially better estimate was established by Lazard in [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF] in the case when the system has a finite number of solutions in projective space (i.e., the variety of all roots is zero-dimensional).

On the other hand, one can consider the algorithm from [START_REF] Chistov | Polynomial-time factoring of the multivariable polynomials over a global field[END_REF] as an algorithm for solving systems of algebraic equations in the case when the variety of roots of the system is a hypersurface, i.e., has codimension one. This algorithm is used repeatedly in the present paper. One can even consider the present paper as continuation of [START_REF] Chistov | Polynomial-time factoring of the multivariable polynomials over a global field[END_REF].

We note that the algorithm from [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF] is also based on the factoring of polynomials.

In Chapter II the author's algorithm for solving systems of algebraic equations with an estimate of complexity which is polynomial in ~ is described (Theorem 2.4; cf. also Secs. 2-4 of [9, i0]). Further, Chistov constructed an algorithm with an essentially better estimate which is polynomial in ~ (cf. Secs. 5-7 of [i0]; also [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF]).

Let the ground field F=HiTI,...,T~) [Z] , where either H=~ or H~F~, ~=dm~CH ) the elements ~...,T~ being algebraically independent over H; the element ~ is separable and algebraic over H~TI,..,T~) , and by @=~ (@?y~))Z~H~T~,...,T~ [Z] we denote its minimal poly- The projective variety {~o="'=~K~=0}C P~) of common roots of the system ~a ..... K_i=0 decomposes into components i~0 ..... ~K-~ =~ ~ C ~q~) [START_REF] Shafarevich | Fundamentals of Algebraic Geometry[END_REF]~ where a component is defined and irreducible over a maximal purely inseparable [START_REF] Lang | Algebra[END_REF] extension ~ %'~ of the field F [START_REF] Lang | Algebra[END_REF]. The algorithm given in Chapter II finds all the components W~. Any component W& will be representable in the following two ways: by means of its generic point [START_REF] Zariski | Co~nutative Algebra[END_REF], and, on the other hand~ by some system of algebraic equations such that the variety of its roots coincides with the component considered; in such a case we shall say that the system defines the variety.

Section 1 of Chapter II has an auxiliary character; its results are used later in $ecs.

3 and 4 for the construction of a transcendence basis in general for fields of rational functions over the ground field F for all components of the variety.

In Sec. 2 we recount a certain modification of Lazard's algorithm [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF] for finding all roots of a system of algebraic equations if there are finitely many of them in projective space (the original method of Lazard works in appropriate time only for a finite ground field F). The estimate of the working time (cf. Theorem 2.3) is polynomial in ~i ~ Mz , <~i~z) ~+[

In Sec. 3 we give a method for finding generic points of the components W~. Here we also introduce the construction of the tree of components which is important for our approach.

In Sec. 4 we describe the construction of a system of equations defining each of the components W~, which completes the proof of the basic result of Chapter II (Theorem 2.4).

Chapter I FACTORIZATION OF POLYNOMIALS OVER

A FINITE FIELD .i. Findin~ ' a Minimal Vector in a Lattice Over ~ [~]
We let ~---~(~), A==~[~]c~ , where t is algebraically independent over ~ . Considering A as a polynomial ring, we define the order }a I for ~ as follows: ~s i.e., the degree of the polynomial 9 with respect to the variable t~ The order of a vector (~ .... ~K)EA K is defined as follows: I(~,...~K)I: ~S~ l&~I.

In the present section we consider lattices over the ring A (i.e., finitely generated free A-modules). We assume that the lattice is defined by some system of generators (not necessarily free) and each generator is a k-dimensional vector in A k.

A minimal vector of a lattice is defined as a nonzero vector of minimal order in the lattice. We also assume that the elements of A can be described as polynomials over ~r and the elements of ~ as integers from 0 to q -I. Hence the length of description of a vector (and consequently of the lattice) is polynomial with respect to log q, the order of the vector, and k (respectively, the maximum of the orders of generators of the lattice and the number of all the coefficients).

THEOREM i.i. A minimal vector of a lattice can be found in polynomial time.

We note that the theorem is an analog for nonzero characteristic of thebasic result

(1.26) of Sec. i of [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] and, moreover, it is stronger since, in the case of characteristic zero, in general one constructs a nonminimal vector.

Proof.

We write the generators of the lattice as the rows of a matrix over ~3, which we denote by M.

LEMMA i.i. The matrix M can be reduced by a permutation of the columns followed by elementary row transformations to trapezoidal form in polynomial time:

&'~ = B

YM~ ----0 .~,,.

%7

where 0=4=~tY~[.~ ; the product [I ~=/=0 , S is some permutation matrix, i.e., is obtained from the identity by a permutation of the rows. Now, assuming that Lemma i.i is proved, we complete the proof of the theorem. We find a vector W:(~ I .... } over A Euch that uB is a minimal vector in the lattice corresponding to the matrix B. Then ~B~ -~ is a minimal vector of the original lattice.

We now proceed to find the vector u. We ;for which the system mentioned is solvable (such a ]~Y ).

Proof of Lemma i.i.

In what follows we shall use the fact that the rank of a matrix over * can be calculated in polynomial time (cf. also [START_REF] Yu | Some new bounds on tensor rank[END_REF][START_REF] Mcclellan | The exact solution of systems of linear equations with polynomial coefficients[END_REF]).

Since the order of an arbitrary minor of the matrix is no greater than the sum of the orders of the elements of this matrix (we denote this sum by s), substituting for t any s + i pairwise distinct ele- where %~A (~)

ments
The last system in its own right is equivalent with a system of linear equations over ~ , in which the unknowns are the coefficients of the polynomials o~,~, ~}, Thedeterminant det D and the elements of the matrix ~-~ can be calculated with the help of interpolation~ substituting for t an appropriate number of elements of some finite extension ~ (analogously to the construction of the calculation of the rank given above, cf. also [START_REF] Yu | Some new bounds on tensor rank[END_REF][START_REF] Mcclellan | The exact solution of systems of linear equations with polynomial coefficients[END_REF]).

From the linear system considered we find all C~m,i (~) , setting ]~,=0,4~... successively. Doing this for all ~ ~ ~ , we get a matrix ( ... \ 0

C~ ,

We show that Y' is the matrix required in Lemma i.i. First, the elements of Y' are polynomials (i.e., belong to A). Further, according to the condition on ~ formulated above, we have 0=I~YI=I~ ~ Ic~l-l~l>~ ~-I~l=l~fI~0~ . From this it follows that Y'is the matrix sought, which concludes the proof of Lem~a l.i and of Theorem i.i.

The following proposition is nowhere used in the present paper, but nevertheless it closely touches on the questions considered in this section and has some independent inter- We note that this inequality is sharp.

The proof of the proposition from [START_REF] Chistov | Polynomial-time factoring of the multivariable polynomials over a global field[END_REF] is effective and is based on the following lerama.

If the field K is infinite, then for some matrices Then either {{ = 0 for any i, j such that ~j , and in this case %(X~)~-( .~.~ ~J~)~}X%)~ , or if not, it is easy to show that 9~ (X ~) is irreducible over F. Finally, we get that either f is irreducible or we find some proper divisor of f and we continue to apply the procedure described to the factors of the polynomial f. If 0<4~x9.~.~.(s i~} , then we also get some proper divisor of f. Thus, in what follows, we consider only separable polynomials f.

Let (p) cA be a maximal ideal of the ring A, generated by some irreducible polynomial pea . The only requirement on the choice of p is that p be relatively prime with the discriminant K= ~x(~,~)eA in the ring A. Further, considering the polynomial mod (p), we write it, choosing in A[X] a representative for which the order of all coefficients is less th= 9

We show that p can be found in polynomial time. Such a polynomial p can be found, looking at all elements of A of order not greater than s and verifying whether it is true that P~ ~ and p is irreducfble (the latter can be verified with the help of Berlekamp's algorithm [START_REF] Knuth | The Art of Computer Programming[END_REF]; cf. also below). The upper bound on s shows that p can be found in polynomial time.

Below we need an algorithm (which is a slight modification of the Berlekamp algorithm just mentioned [START_REF] Knuth | The Art of Computer Programming[END_REF]) for factoring a polynomial ~F~] over ~=~ in time which is polynomial in q, m, s = deg g (direct application of Ber!ekampJs algorithm gives time which For what follows we fix some natural number k (it will be made more precise below in the description of the algorithm). Analogously to Proposition 2.5 of [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], there exists a unique (up to multiplication by an element from A* = F*, i.e., an invertible element of A) irreducible polynomial ~0~A[~ such that k01~ and (km~p)I(~om~p) For the proof one can consider the factorization of f in A[X], reduce it mod p, and choose the unique factor h0 from the factorization of f over A, which mod p is divisible by the irreducible polynomial h mod p. As in 2.5 of [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF],

if @I~ and ~A[X] , then the following three assertions are equivalent:

We reproduce here the proof of the implication (~)~> (~iJ (the cent is proved more easily).

Since the polynomial f(mod p) is separable, the polynomials (h mod p) and ((f/g) mod p) are relatively prime. Consequently, ~ +~4~/~(t~o~p )

for some suitable ~4,~4e~[X] In what follows in this section our goal is the construction of the polynomial h0. For the arguments we fix an integer ~< 4~ Analogously to [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], we introduce the following lattice L over the ring A:

We identify the polynomial V= ~ " v~ X%A[Xl with the vector (V 0 .... ,V~)~ A ~*~

The following theorem is the analog of Proposition 2.7 of [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. Proof. We shall follow the proof of 2.7 of [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. We let ~=~c.d,.(~,~),~.A,[A'(J. Then ~x(~).

We need only prove that (~ww~p)l(~w~) according to the equivalence proved above. Hence let us assume the contrary. Then there exist 14,~, ~A[X] such that Further, we show that from (I.i) one gets a contradiction.

We be calculated on the basis of [START_REF] Mcclellan | The exact solution of systems of linear equations with polynomial coefficients[END_REF] in time which is polynomial in the size of f), then on the basis of the construction from [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF] we single out the repeated factors in the factorization of f considered as a polynomial in one variable over the field F(~...~ ~p) We note that for this, in the construction of Sac. 1 of [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF], point c) for the field ~4>...)~) was not used to the full extent, but only for extracting roots of degree q in it, and in the field ~(~6...~) we have to extract q-th roots on the basis of the algorithm for extracting q-th roots in F. In no more than %0~m~6 ~4 steps, one of the two elements considered /~Us z , Now let char F = 2. One can assume that 51Cx~-a~-'l. If this is not so, then we imbed F in the field ~%Zg=~=~Zg-~ with the help of the polynomial ~z+Z+~ which is irreducible over F. Then we perform a construction, analogous to the construction above, "replacing 2 by 3," i.e., we assume that ~k>p~%,~>/ 5k-~ and we extract cube roots, as a result of which we get the field ~.~ .

One can now assume that ~ =S~.~ ~ or F= ~%z#.$~ , respectively; then the splitting field of the polynomial f(X, 0, .. , where p=g v" for q ~ 2 and p=5 K for q = 2; here @@IF\F ~ for q # 2 and 0~s F\F ~ for q = 2.

Proof. Let F be the algebraic closure of F. It follows from Hensel's lemma that

~,<~$ )<-XL(~4)...~))~=~X~ for some X~(~4,...~)~ [[[~4~...;L~m] ] [~4~% ~).
Let us assume that ~= (4~ ~) , where O<de~X~@(~)=~ < ~ , since s215163 X # = 4 and The contradiction obtained completes the proof of the theorem.

The theorem was found jointly with A. L. Chistov (Cfo [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF]).

We describe the algorithm for factoring f. We consider two cases. . We let ~lin ~ = ~i i and Yi=I\l~ .

We apply the process of Hensel's lemana (cf. above) to the factorization ~<)[,0,...,0)=@i ~ up to the construction of monomials for which the degree in each variable does not exceed r, and then we verify whether f is equal to the product of the two polynomials obtained. As a result we find a nontrivial factorization of f, if f is reducible, or we establish its irreducibility.

The procedure described requires no more than time which is polynomial in Z. 9 , q (.since G/~%0t][ <~ ), i.e., polynomial in q and in the size of t~[~) , since in the case considered g~L,~ .

II)

~>~ . We find a factorization of using Sec. 3, in time which is polynomial in is irreducible over Fl. Hence, for any j there also exists a uniqu<. i, such that t~i~,~,@~,@#~,...i@ ~)=~,~), and, in particular, t~(%,0,...,0)=@s .

Hence by the uniqueness condition in Hensel's lemma, we have tlSl =iq~% i.e., q)~ is a polynomial which is irreducible over F.

The algorithm for constructing each qO~ ~ following the process of Hensel's lemma, concludes its work in the construction of monomials of degree no higher than r in each variable ~1,-", ~

9 The description of the algorithm for factoring f is concluded.

Finally, we estimate the time for the work of the algorithm in case II). The process of Hensel's lemma works in polynomial time (in the case considered here of a finite field F, this follows from the fact that the calculation of the coefficients of the factors requires only a polynomial number of operations).

Hence it suffices to estimate the degree Further, the size of the polynomial f is not greater than a suitable polynomial in the size of the polynomial f and [~:.~] , since f is obtained from f by substituting elements @8' ~ for ~+i (for ~>I ) and the variable u for u~, and then reducing similar terms, the latter does not increase the size. Consequently, the algorithm given for factoring f works in time which is polynomial in q and in the size of the polynomial f.

This completes the proof of the last basic result of Chapter I. (Cf., e.g., [START_REF] Zariski | Co~nutative Algebra[END_REF][START_REF] Shafarevich | Fundamentals of Algebraic Geometry[END_REF] for the basic concepts and notation from algebraic geometry which are needed here and later.) As is well known, the affine space ~(~) can be imbedded in the f, projective space ~ (P) , so that the point (qY~c.. We also note that the degree ~e~o'... "~k-1 ' according to Bezout's inequality (cf. [START_REF] Shafarevich | Fundamentals of Algebraic Geometry[END_REF]). In [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed field~[END_REF] We note that essentially at the same time we have proved that if the system from point

2) has no solutions with Y0 = 0, then it has a finite number of solutions. We note finally that the coefficients of the linear forms of elements of ~2Q, can be chosen to be integral if card (F) = 0 or from a small finite field if ~.~.~r~)> 0 , so that the length of description of these coefficients is bounded above by a polynomial in n, ~o~

Case of a Finite Number of Roots of the System in Pro~ective Space

This case was considered in [START_REF] Lazard | Algebre lineaire sur k[Xa, .... Xn] et elimination[END_REF][START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF]. In the present section we formulate the results of these papers with modifications necessary for our further goals. We consider systems of homogeneous equations and we use the concepts and notation introduced in the preceding section. In [START_REF] Lazard | Algebre lineaire sur k[Xa, .... Xn] et elimination[END_REF], with the help of homological methods the following theorem is proved (cf. also [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF]). This estimate is better than the estimate from [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed field~[END_REF]. We note that it is sharp. is a root of the system, and the number of occurrences of forms proportional to Li in the product is equal to the multiplicity of the corresponding root of the system (~$g.$~) .

Thus, R coincides with the u-resultant [i] up to a factor from F if k = no Initially as the input of the algorithm given in [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF] the system ~o = .... ~k-~, = 0 is given. On the basis of Theorem 2.2, the algorithm establishes whether the system has a finite number of roots in Pm~)

and if the answer is positive, then as output it lists all the roots together with their multiplicities.

The algorithm of [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF] reduces the matrix A (cf. Sec. 2 of [START_REF] Yu | Multiplicative complexity of a bilinear form over a co~nutative ring[END_REF]) by elementary row and column transformations over F to the form 0 0 where A0 is a nonsingular upper triangular matrix with coefficients from F, the matrices ~o~.~ are diagonal nonsingular with coefficients from F of sizes ~o~..-~ , respec-! tively, the elements of the matrices A~ are linear forms over F with respect to the vari~ ables J~ J > ~,~ (for all 0~<"~ ~< $ ). Here and below we assume, without loss of generality, , +f)

that ~A=(~+s since otherwise the algorithm detects that ~A < (~ ~ in the course of its work and stops.

The algorithm mentioned for reduction of the matrix works in a number of aritP~etic operations over the elements of a field F which is a polynomial in the size of the matrix A. Consequently, we get a polynomial algorithm for the case of a finite field Fo For other fields it is impossible in general to assert that the algorithm works in time which is proportional in the length of description of the matrix A, so some additional considerations are necessary.

In the given matrix each minor of maximal order det (B~])> is divisible by the prod- up to an appropriate factor from F, which we can assume equal to i without loss of generality (a roof over a variable indicates the absence of this variable).

We note that ~e~0~,..~)=~ -~@~) (we recall that A' is the matrix with coefficients from F consisting of the first ~ 6~ columns of the matrix A). It follows 0~6k-~ from this that R coincides (up to a factor from F*) with any nonzero minor of size r of the matrix A, which contains rg(A') columns of the submatrix A'.

Our goal is to give an algorithm which is polynomial with respect to the length of description of the matrix A, which calculates ~4(0~...~0,~0~...~0/$[d~>0~...~0)~[~J~] ~ or gives the answer that the original system has infinitely many solutions (by calculating a polynomial, we mean here and later calculating its coefficients). This algorithm works for a sufficiently broad class of fields F, in particular for finite primitive extensions of purely transcendental extensions of primitive fields. For convenience of notation we renumber the variables ~o~-.~ ~ so that ~ ~o~ get the indices 0 and i, respectively. We start with the case when ~=~(~"'7J$) is a purely transcendental extension (~ >/ 0) . is polynomial, and hence the vectors q~) .~q~N~ can be substituted into R in polynomial time (analogously, the same thing is true in the ease of nonzero characteristic). Further,

we fix an index i and for brevity we let ~=qF~k~..~%_~-~_~ and we shall calculate the polynomial ~ ~o~ If~,... ,q}>~-4) "

For this we apply Gauss' algorithm (cf. [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed field~[END_REF]) over the field ~ (~o~) to the matrix There is another method for calculating ~(~o~,~4~,...~_,)

in Sec. 3 of [START_REF] Chistov | Subexponential-time solving systems of algebraic equations. I[END_REF]; it is based on interpolation [START_REF] Mcclellan | The exact solution of systems of linear equations with polynomial coefficients[END_REF] and uses the Gauss algorithm only for the case when F is a finite field.

We note that ~T~.. Then any element (~ .~0 is separable over F (if ~10~=u ). We consider further the new system of algebraic equations, obtained by replacing each coefficient of the original system by its q~ power. After this change the degrees with respect to each T{(~<,{,<{) if the coefficients of the system are multiplied by @J~.<~ .

For the new system the ratio of any pair of coordinates in the forms Le will be separable Further, to solve the system we shall follow the general plan of [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF]. First of all we calculate the polynomial 1~4(~,t~,0, .... 0) with the help of the algorithm given above.

Then we decompose it over F into irreducible factors (cf. Chapter I of [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF]). Let ~,~(i~t~#.', i~4~tb~,it,~,0,.,., 0) be some factor which is irreducible over F (the algorithm being described considers all irreducible factors) different from U I (in this case, if~( ~(6~-~<~ v 4 ~<e)=r 0 ). We note that the construction of [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF] leads to an upper bound on <~%~-.~T~ {~t} Let (s -i) steps of the procedure be made already. The following s-th step starts with the addition to the system obtained at the (s -l)-st step of the equation @~_~ X~-X~_ I = 0 (throughout the s-th step the polynomial R~ corresponds to this new system). Then we cal- for some E and any ~{,~ ).

We consider the elements 0; ~ ' ~ ~_,.+ ~@~ .... ~ @~_~+6~@~ , where 0 =6~: .... 6~ are pairwise distinct (in the case of characteristic zero we take 0~= ~-~ ). At least one of these elements is a primitive element for Fs over F (cf. [START_REF] Lang | Algebra[END_REF]). For each of @>~.~%.~@~, 4~..<s the algorithm constructs the minimal polynomial over F. For this it is necessary to solve the question ~f of the linear dependence over F of the powers i, ~_~.cr~@~, (05.~,~@~}~ .... (~W@~)J These powers can be expanded with respect to the basis <@~_~ }= @$ 'where ~ ~x< dr (P~_~ , Oe~ < 

~)

Moreover, the polynomials of these estimates are independent of P, j. For any s we decompose the polynomial ~$(Z)-----~(Z, 0 .... ,0,'4,0~ .... 0) (here } ~ ) over the field ~= ~[@~] according to Chapter I of [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF]. Then ~}(@~) = 0 for ~ , so (Z-@~)I ~ From this it follows [START_REF] Chistov | Polynomial factoring algorithm for polynomials and finding components of varieties in subexponential time[END_REF] that the degrees ~+~,...,~c(@}) in the expressions of 8j as an element of the field ~[@~] (the length of description of the coefficients of ej, respectively) can be bounded above by a polynomial in 9 ,d~ of degree 1 with respect to d 2 (by a polynomial in (M~. Mz+ 6 ~%~ ~, ~ of degree 1 with respect to (N~. N~+ ~ &~) , respectively) and, moreover, these estimates are independent of s, j, P.

Now we show by induction on s that one can express 0j (4 < -~< 3) in terms of powers of the element ks' in time which is polynomial in M~M~(~I~) ~*~ , and, moreover, the polynomial giving the estimate is independent of s, j, p.

Let the expressions for @~ (I.<$<~-4) , as elements of the field ~[@~-I] , be found al-F f ready. Since @6= %~-It~ ~ , using the polynomials %_,, ~ (cf. above), we find decompositions of the elements 4, @~,(@~)~ .... with respect to the basis (~_i)=@~ with coefficients from the field F, where 0-<~<d~<q)~_ I) , 0<~fl<Iz~(9~) Solving a linear system over F, one

! -f)~
can find the decompositions of @~, @~_~ with respect to the basis I,@~,(B~ .... After this, substituting into the expressions for @I . This remark is due to A. L. Chistov and is not used here.

We summarize the results of the present section in the following theorem, which is a modification of the theorem of [START_REF] Lazard | R@solutions des systemes d'dquations algebriques[END_REF]. The goal of the present section is the construction of an algorithm for explicitly finding the irreducible components defined over a maximal purely inseparable extension F ~>-~ of the field F, of the variety ~ ~ C~) defined by the system 7o=...=~-~ = 0 Namely, for any component the algorithm constructs a generic point of it (see below and also [START_REF] Zariski | Co~nutative Algebra[END_REF]), and, besides this, in Sec. 4 a certain family of equations with coefficients from F will be constructed, which gives the component as a set of points in ~m (~-) For brevity we shall call a component which is defined and irreducible over ~-~ an irreducible component over F; such a component can be given as the set of points of a system of equations with coefficients from F. An upper bound on the time that the algorithm takes will be given below in Thus, ~ defines a generic point of the variety W l (see [START_REF] Zariski | Co~nutative Algebra[END_REF]). Now we can describe the first level of components.

It consists of all sons of a root.

The vertices of the first level correspond bijectively to polynomials gi. For uniformity we now introduce notation which will be used below in the inductive step. We consider some eonjugacy class over F' of roots of (i) and the polynomial ~f k~/~o)t)e, L~ according to the isomorphism (2). This completes the proof of the lemma.

The following assertion was actually proved, for example, in [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed field~[END_REF]. 

  nomial over H QT,,..., ~r~) with leading coefficient ~Ozi~)= ~ , where 9~il~[z)~H[~,.1.,~] and le~(~b is the smallest possible. Any element ~EF[~0,..~X,] can be represented uniquely in the form where ~,~o,...,~, ~ e H [Ti,...,T~] and deg(b) is as small as possible, the polynomials $~,~o, .,~7~ are uniquely defined up to a factor from H*. We let ~e~Ti,...,T ~ ~) = By the length of description s if kE~ we shall mean its bit length, and ~e.~q~ the quantity ~ ~ By ~(f) we denote the maximum length of description of coefficients from H of the monomials TI,...,T~ in the polynomials ~s . Suppose given an input system ~ ..... ~<_i = ~ of algebraic equations (we assume, without loss of generality, that ~0,.,~ are linearly independent). In fact, in Chapter II we give an algorithm which decomposes an arbitrary projective algebraic variety into irreducible components, so we can assume that ~o,..,~=le~[~o,...,~] are homogeneous polynomials with respect to ~0,...,~ Throughout Chapter II we assume that In Chapter II by the size of the polynomial fi we mean the quantity qi~i~ [<~).

  let 2 = ~..~ I~r " Obviously, }uBI~I(&,, .... ' ~i~)I~ Hence I~1,4~,tt1~ ] and, consequently, [%1~ Then ]~,~* U~I<.~ and , so ]~[<.%p Arguing in the same way, we get a sequence l~l-<~y .... ,l.1+#l-<#y . Hence the question of whether it is true that ]B]~]~-} ~ , for any given ~y reduces to the solution of a linear system over ~+ , in which the unknowns are the coefficients of the polynomials 1&~,..., ~ The algorithm gives, successively, 2~ 0,I,... up to the value of

  of the finite extension ~ -~ ~ , where ~> ~ , we get that the rank of the original matrix is equal to the maximum of the ranks of the s + 1 matrices constructed. The ranks of the latter matrices are easily calculated by reducing these matrices with coefficients from ~qM to trapezoidal form. Based on what was just said, we choose a maximal linearly independent set of columns of the matrix M and a matrix S which moves them to the beginning. Then ~ = (~4,~), where ~4 consists of the columns mentioned above. We arbitrarily complete the matrix ~ to a nonsingular mtrix ~= (~, ~3) " This can be done, for example, by adding a sequence of columns with unique nonzero component equal to one, keeping track of the rank of the matrices obtained. 9 Something is missing in the Russian original -Publisher. Now we reduce the matrix D to upper-triangular form in polynomial time by row transformations, i.e~ we find a matrix Y with coefficients from A, such that Since the ring k is Euclidean, such a matrix exists. rix which had to be constructed in Lemma 1.1. . It is easy to verify that Y is the mat-We rewrite the last equation in the form ~=O~ -I and we write ~=(~/~) , where Since 4~/]s G~---~~ one has 10i~l~i~l (~i~) and by some appropriate row transformation we can arrange that I ~$ I ~ 16##I (I~} ~W) . Hence, without loss of generality, we shall assume that, for the matrix C, which must be constructed, one has We fix some t~ ~ and we consider the condition that all components of the vector 9 f ~ Y t (~...,~G~...,~.~) x for some polynomials 0~,~,...,~,~ are also polynomials (i.e., belong f to A), and in addition the order f~= 16m, ml is the smallest possible and the leading coefficients of the polynomials Cm,m are equal to i. The condition just formulated is equivalent to the following system of equations 6

  est. Proposition i.i [8]. Let K be a field and A = Kit]. Let M = (mij) be some nonsinguiar n~ ~ matrix (i.e., det M ~ 0) with coefficients from A. Then for some suitable non-LEMMA 1.2. matrix zero vector m~A ~ one has I~I~(41,)I~ ~I (to the end of this section, I(~ ..... ~)I ~---

First we reduce everything

  to the case when the polynomial f is separable. We set #~ ~-G =:$~ ~ . Since ~X S, <~X ~ (if ~X ~ : 0 , everything %J ~,}is trivial), we can assume that we have already decomposed fz over F. Let ~:~ , where ~:~A[X] and ~ is irreducible over F for any s. Then #:r~9:(X ~) . We fix s at some time and we let %(X)~-)~}X ~.

  For each s and for any factor ~ of the separable polynomial ~-~-~-----~ , which is irreducible over ~ , one has the relation ~ q~l~ , since the splitting field of this polynomial is ~ and, consequently, ~ ~i[~]/(~)~ ~@i and the degree of the field extension [~[~]/(~):~]=~ ~ (of. also [i]). Let ~>~%%1~I> I~I and ~-~<~% IEI for some s. Then there exists an irreducible polynomial ~ , such that ~ ~ and )P]~Z 9 If not, (~t~) 1~ , which leads to a contradiction.

  is polynomial in ~ a )o We consider the ring ~-----K[~/(~) 9 We let ~(~)= ~ be the Frobenius automorphism (~: ~-~) . Arguing as above at the beginning of this section, without loss of generality we can assume that g is separable. Thus let ~=~.-.~ be the factorization required. Then ~-~ ~ ~]/(~)==~ g$~ (here and below, @ denotes the direct sum of rings) by the residue theorem [6], since gi are relatively prime in pairs in view of the separability of g (si = deg gi)o We consider the subring ~-I~e~:~9(~)=~r It is easy to verify that the construction of a basis of E over ~ reduces to the solution of a suitable linear system over ~@ (it is necessary to describe the decomposition of ~ in the basis D over ~ with parametric coefficients, then the direct action of ~ and the equation ~;(=)= ~ provide a linear system with respect to the parametric coefficients). It is well known that the subfield {~:~(~)~-~} is isomorphic with ~ [I]. Consequently, ~= ~ ~ , where the i-th copy of ~ is contained in ~ We find this decomposition of E explicitly. We take any two elements ~,~E which are linearly indepen ~ dent over ~ . Considering the elements ~ + ~ consecutively for all ~ , we find among them a zero divisor. For this, for any fixed y we consider multiplication by ~*~# as a linear operator on E and we consider its kernel Er ~ ~ For some y we have ~r=~=0 , if ~> ~. Then E~ @ (~+~) ~ and we continue to apply the decomposition procedure described to both direct summands separately. Let ~ ~ belong to one of the direct summands of the decomposition of E. Then the polynomial which represents ~ in K[t] has a nontrivial divisor in common with the polynomial g if ~>i (for ~-----~ the polynomial g is irreducible). Repeating this process recursively, we factor g into irreducible factors in time which is polynomial in q~ m, s. Now, analogously to [20], we factor f mod p over the finite field A/(p), and let the polynomial ~[X] be such that h~ rood p is irreducible over A/(p), (~g~)l(~0~,~) and the leading coefficient ~x(~)~---~ One can find the polynomial h~ in time which is polynomial in ~,I[l, ~>~$~-~ ~ , based on the medified Berlekamp algorithm given above.

9

 9 Hensel's lemma (cf., form ~---~--4~K~,p i'-' , where %~A[X], ~<~-----6a for ~>~ and ]~iI<l~I i. One can show that a polynomial h, satisfying all these conditions, is unique. Let ~ ~=(~o~p)(~ n4~ p), where ~A ~]. , such that ~ ~ = ~+ ~ ~ and i~-~x~. Then ~=$-~4-----~v4 for some v~A[X] and ~v~<~ . We construct recursively for any ~>~$ three polynomials ~,~v[~[X] , which have the following properties: e.g., [5]) we shall seekhin the for any Let us assume that for all ~< ~ the polynomials ~,Then by the inductive hypothesis and 2) we have ~-~')~(~)--V~_ I p~-1 We find ~,~$~A IX] such that property i) holds for them and, in addition, u This can be done with the help of Euclid's algorithm in the ring of polynomials A/(p)[X], applying it to ~I,~ and keeping in mind that the polynomials h I mod p and gl mod p are relatively prime, since f mod p is separable according to the choice of p. Let ~-----~ +~$~(~+0~) for some suitable ~,~[X]. Then Y~---V}_~,V}_I~I~I+(V~_~-V~4)~I(~0~p), where v~_~ V~_4~4+~$(~p) and l~l<IpI, ~9~<~. Since ~vj_~<~ ~ by i) and ~4< ~'~i ~--~ , we deduce from this that for the polynomial %~,v~,~$_~_4 (H~0~p) and such that (~l<Ipl one has i~ ~ < ~ ~-~=~4. Then we get v~_~-~--(~,+~%)P ~-f --(~(}'I)+~(~~ . Consequently, ~__~(})~'(~) , i.e., ~-~(~)-~-vj~ ~ for some v}~J[X] such that ~V~<&~# For j = k, the constructed polynomial h = h (k) is the one sought.

  Consequently, ~4~ ,~4#/~=~'-p V~ for some ~A[X]. Multiplying this equation by the polynomial(~ § ~-4)~ , we get ~*~(~p~) for the corresponding ~&,~eA[x].The left side of the latter is divisible by h(mod pk) according to the construction of h)and hence finally we get (~pK)l(#~p~).

THEOREM 1. 2 .

 2 Let O=/={~g and for the element ~ suppose lpl~>~l~l*(~)I~l . Then the polynomial h 0 divides ~ in the ring A[X].

  let e = deg g, m' = deg b. Obviously, 0 ~ ~-< ~[~ We introduce the A-lattice M={ ),~,~. L#~A [X], o.~<~ce, o~i~#<(~_ ~ 1. Then M=A. AX+... + AX (~)~;~-~= V Let M' be the projection of the lattice M "to the direct summand r =AX~... § ~)*~C~-~ of the lattice V. Let us assume that some element ~+jw~M projects to zero in M'. Then ~e~(~+~)<~ . one has %~+7~=0 . Consequently, p = 0, since ~r quently, X = 0. (i.i) Since ~[(~+~) and deg g = e, -----g~(~/~) and (f/g)/D. Conse-Consequently, by what was just proved, the elements of the system of generators {Xk$:0~<~6elU{~L~:0~(d~#)-61 of the lattice M over A project into elements of an M ~ A-basis of the lattice M' which are linearly independent over A. Hence ~A M =~ = ~ § Now we show that under the assumption (I.i) one has the following inclusion: of (i.I) by the polynomial (l+p~*(pw)~-..+(,p~)K-')(v/~,) , we get X~k+#.v.(v/~)i~&p K) for some suitable kat~ae A[X]. We note thati~B%0~p~)J(VW%0~pK)) since v~M, bEL From this, (kf~0gp~)l [~v/~) ~Ip~). But on the other hand, a#qg ipD-h (since ~CX ~)= 4 ) and ~((V/%) ~PK)~e~(v/~)<e+tl-e-~, Consequently, qv/q)~e~A[)~] and, in particular, v~pKA[X] , which proves (1.2). We denote by Au(M') the determinant of the matrix whose columns are the coordinates in an A-basis of the lattice U of the elements of some A-basis of the lattice M'. Under change of bases the determinant Au(M' ) can only be multiplied by some invertible element of the ring A (i.e., an element of ~r ). First we estimate the order I~(M')I from above. Considering the basis of M' of which we spoke previously, we get I-x l § Now, based on (1.2), we estimate IA~(, )I from below. Since A is a Euclidean ring [i] there exists a triangular basis 6e~...,~(~e~)+m'-e-~ of the lattice M' over A, i.e., a basis such that deg bj = j for e~i<~e~)+~%5~. According to (1.2), ~6e),-..,~cX~e+~-~) e (pk). We note that e~[4-1 ~'+(~e~)-e-~ , since ~I~ and (h mod p) l[(~/q)m0~p) according to the assumptions made at the beginning of the proof of the theorem. Consequently, by the hypothesis of the theorem. This leads to a contradiction with the upper bound established above and completes the proof of Theorem 1.2. To conclude the section we briefly recount the general scheme of the algorithm for factoring apolynomial ~[~ First of all we choose p~A relatively prime with the discriminant ~s ~x) (cf. the remark above on the choice of p). Then we decompose f mod p over the field A/(p) and we choose some s , such that [~,-~Ip)l(~o~p)~ik~.mIp) is irreducible, ~=A~ 4. We set successively ~%=~41[,~4,...~)-~. We find the minimal integer k, satisfying ~IK~I> i~+~e~)l~ Then we construct h according to the process of Hensel's lemma, described above. Finally, we determine whether there exists (and if so we find it) a nonzero vector ~s for which IpIK~I>~I~I+[~s This can be done with the help of Theorem i.i of Sec. 1 in polynomial time. Actually, 5--~ for some 96~*=[$ . In fact, one has I~oI~I~I Consequently, s , and at the step when m = deg h0, by Theorem 1.2 the algorithm described gives 5 =k0p , since ~o65 and the polynomial h 0 has minimal order equal to I~oI among all nonzero elements of L again by Theorem 1consideration to the case when f is square-free and In what follows, the original field F=~ is extended in the course of the work of the algorithm, so that, as a result, we get a factorization [ =~ ~L over some field F, ~ F . One can pass to a factorization over F by considering the norm NF,/F(~[)I~ , which is irreducible over F. We make the change of variables ~ (.X,~%l,...,~)=o~ -i~ ~ ()(./o,~ t~,...,~.)E.F [)(, J~,i,...~]. Then ~X(~)=~ . From a factorization of g it is easy to pass to a factorization of f~ Hence we shall assume that ~Cx(~)= [. Let ~(~i,_.~[~)=Res• be the discriminant. If ~)=--0 (the polynomial ~) can

Let

  pairwise distinct and belong to the field F or some finite extension ~4 D ~ of it, Then one can find an element (~4~...~>~ ~ , such that ~(~4r,.)~> ~0. We replace f(X,[~...~) by the polynomial #(X)~-~4y..~-o~m). Obviously, getting the factorization of the latter polynomial, we get the factorization of f, and hence, in what follows, we shall assume that the polynomial f (X~0~..~O) is separable. Let c~=~#~ and ~>~Z~ > Z (k-#) We extend the field ~=~ to the field ~o~'% k successively (k times) by adjoining the square root of some element which is not a square, from the current field. We describe the process of seeking such an element P in the field F1. Let /~4 ~ ~d , and /~ =~4 (we find the element ~2 with the help of the modiwe arbitrarily choose ~2 ~ ), fled Berlekamp algorithmn, cf. Sec. 2), for p~ and -p= / ~ /~ so that t,l~ ) --and ,,/,-~ / =-/~ ; then we choose some square roots of J~ and~,~ ) ,etc.

  .. 0) due to the choice of k has odd degree over F, if ~=o~~ , or degree not divisible by 3, if char F = 2. As above, we choose an element /&~*\(~-~)Z in the first case and ~* \(~)~ in the second. For any s the polynomial Z~s-2~ 9 or, respectively, ~s-/~ is irreducible over F because, as is known [6], the polynomial ~-6u is irreducible over an arbitrary field G, if ~ ~P for any prime pl~ and ~-%~& if ~+I~-We let s = kn and let @ be a root of one of the two polynomials considered, respectively. Before the theorem we need the following version of Hensel's lemma. We let i=(~4~....)~m) bee multiindex, where 0 ~ ~Z for any~ and ~Z=~<... ~m , the weight ~, K be a field. We introduce a partial ordering relation on the multiindices, by setting if HENSELIS LEMMA. Let fr ] , the leading coefficient for X in f be equal to i, and the polynomial fo = #(X,~..~O)s [~] be separable. Let us assume that ~o=~o~ ' where .~o,~oe ~ [X] are polynomials with leading coefficients equal to i. Then for each multiindex I with l~i ~ ~ there exist unique polynomials I[,~[ ~ ~ [X], such that le~ I < ~o ~e~<~e~o and in the ring ~[[~4,...,~i~][X ] The left side of this equation transforms to the form Zl + I,+i~,:i>Id I$~<I Considering, by induction, that we have already found ~ 9L~Im , we can, using the Euclidean algorithm (cf. Sec. 2), find hi and gl. We note that the lemma extends in an obvious way to a factorization ~o----~ ) ~m),--~0 (~) into more factors, and here the monomial with multiindex I=/L4~---)~m) is constructed in time which is polynomial in ~4...~m,~=i~ THEOREM 1.3. Let Is ,~] be irreducible over F= F~z ~ for q # 2 and , F=~gm< if ~ is even, or F=~zm5 <, if ~ is odd, for q = 2, and in addition let ~Z[~)={ and {o=~(X,0~...,0)EF[~] be separable. Moreover, let ~ol~ for some ~'~-~[X]~ such that ~e~<~.. Then the polynomial ~ =~(X,~b,@P~@~t~v,-.,@~-~)e ~i [Z,~] is irreducible over the field FI=F[0]

9 Ft~

 9 it is possible to compute that ~7)=~(~) and ~i=~(z) , Ix where ~{J)mn LX-X-~(~.b..[)~iIr (:) by the factoriality of the ring ~[[~]] Ix] since ~= ~ (X-XL(~)) is the factorization of f into irreducibles in this ring. We let where ~. ' ,~-e ~ Since f(X, 0,, 0)= ~(~,0)=~(,)(~.,0)~[~)(~,0)i ~ the coefficients of the polynomials ~9)(X,0), 9(a)(X,O) lie in the splitting field F 0 of the polynomial By the choice of k, the degree of the composite L,0[:F] is odd for q ~ 2 or is not divisible by 3 for q = 2 and, consequently, is relatively prime with ~ --[F{'F] . Since, on the other hand, ~,(t)(,)~O)~(~(?')(X,O)~ ',C 1 [i] .' we get that ~(O,(.~0,,,~'~ <~(,)[,O)e ~ [)<]-X To the factorization #(~0~-.,~0)=~(4)(X~0) ~(~)(X,0) we apply the process of Hensel's • ane since ~ LAIvj...) i=~ (X,O~ and C(%~(Y O G~-Q r (X.0) , we get as a result the factorization f = C~ ({) C~ (z)" due to the uniqueness condition from Hensel's lemma. Hence, in fact ~ (q ~(z) L~d~r"~~ ~ ~d~r" ~m6 ~ again by Hensel s lemma. We show that there exists at least one coefficient -~ ~,e4~...:~ or -G~4p.., ru which is nonzero such that FbY <~4+.,.+ ~ ~< ~ ~u~ We assume the contrary and we let ~({)~ ~ ~(z)~-V~ + ~/~ , where ~6~ V4=~4:..~V{ ~< tb~ ~ff V~ ~< Yb% , and in ~/~ there only appear monomials of degree greater than 2st in ~,,,1 ~'m Then ~=~(J ~(~} =V~V~+(V4~+ ~4Vg +~/ W~ ) 2 and since ~#~<t~Z~(V4~g) ~< ~, and in [V4~/g+~/~L+~/4~') there only appear monomials of degree greater than 2nr, we get that ~=V~g , which contradicts the irreducibility of f. Thus, for definiteness let ~({] . @r~ 0 for some "v2~4;,..)o~tb , such that ~< ~=o~+.,.+&m ~<Z~' We show that ~b(, ~) # 0 We consider ~(X~Z~s ~g)=~4)<X:~{~)...)~)%~ ~ ~i~) h, Z Zq'"Zir ' We let ~oZ ~-~ "u~ ' "" ~ -. , ~ ~4+...*f~=&~ ,~4r"7~ Obviously, ~(X,~,4; :,t ,. , (X,~) , and moreover 6Lg)d=~b;&o(4~e~@<...]e ) By what was proved above, . g~,&o ~ 0 , since in it there appears the monomial ~(,Ib)e4:..,~m *Z: j'''z~ ~m # O. Since 0 %<~xK~}zY <~ , for different vectors (~.., ~r , such that ~4+...+~'~ =~ , the corresponding numbers 9~+~ ~ +---~rv are different, so ~(~6)~ @ 9~).,, @pm-~)=_ , .< #-k gree [~,: F ] =~ , so ~,(@)~aO, and consequently 0b(~) ~ 0 From this, ~ ~0) >~to > ~ but, on the other hand, ~(O I ~ and hence ~e~(%O:~de~)~,.

  I) %<~. Let ~[~,0~...~0) =~s ~ be the factorization of ~(X,O,...~O) over F and let ~(X~I,"-~)=~{'"~ be the factorization of ~(~,~,..o,ii~) over F, where ~[~0= ~X~0 =~ for all i. Then for some partition I=I4U,..UI~ one has ~ qX,O,...~O)= ~ ~ for all .|~j <~.Hence the algorithm in the case considered finds a factorization ~ (X~0, 9 .. ,0)=~i@~ and looks at all subsets ~-I I ~I
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 9 We let ~ =~,0 + i]~ ~,~ ~i , where ,jill. otl-I ,-t(X, l J,,@ ~,0 ~,...,@,1" tJ,) --~ (,X, t~1,) over F, = F[8,] L~i~) , the degree [[~:~], and q. Let f = @~,i e F4 [)~] , i ~0 , and moreover ~X @~,i ~ de~x ~r for ~>0 , since [6 x ~ = i and one can require that ~X~)-~ for all i. We note that ~[X,0,..-,0)=~,0)=~ ~(~i0)=~ ~t,0. Analogously to the way it was established in the proof of Theorem 1.3 that the coefficients of the polynomials-~(D(~O,...,0), G-~i7(%,O~.~.~ lie in F, one can show here that ~4,0eF IX] for all i. By Hensel's lemma applied to the factorization ~i~,O,...i~-~@L, 0, , there exist ~(%,~i,..., ~)e~[[~,...,~]][X] , ~such that q~(X~0 .... 70)=~,0 for all i and ~ ~ ~q~ We show that eP~EF [~,~,...,41~] for all i. Let ~=~HJi be a factorization of f over F, i.e., ~i~ F [X,~,...,~] and "~,X~i ~t for any j. Applying Theorem 1.3, we get that ~i~X,~, 0~ ~,0 ~' ~,-.-,~ 7)

  [~:P] from above as well as the size of the polynomial f. By construction [~:F]-~ ~6%~)~<6~, i.e., it does not exceed some polynomial in the size of the polynomial f (cf. Introduction).

THEOREM 1. 4 .

 4 One can construct an algorithm which decomposes any polynomial ~ tE ~ae [Xi, ...,X~] into factors which are irreducible over the finite field ~ar in time which is polynomial in 9 ~a~0r , where X~(~) <~ for i4~<~. , i.e., in time which is polynomial in q and in the size of the polynomial f. Chapter II SOLUTION OF SYSTEMS OF ALGEBRAIC EQUATIONS IN SUBEXPONENTIAL TIME I. Choice of a Transcendence Basis for All Components of Highest Dimension Suppose given a system ~o .... =~k-1 = 0 of equations, in which ~o,-.'~-1~-~[X~"" ~ Xw] are polynomials of degree ~o,-", ~k-4 , respectively. We de:ote by TL= s {L " (~o~...,Z~/~) the homogeneous polynomial of degree fi with respect to the variables ~0~...~. The system ~o = .... ik.~=0 defines an affine algebraic variety V={~...~vv)6l ~(~): ~o~,-.-,~)='..=~k-4~ 4;'" ;) The system L=...=~K_~--O in its own :right defines a projective algebraic variety a>

  l~m)~ A~'r is mapped into the point (~:q}~l...'q~l~P"~(~) , where the image of ~"~(~I in ~m(~) coincides with the open affine subset i(qY0:~-.:q~m) fq~o # 0 I In what follows, we sometimes identify ~(~) with its image in ~'~(~) , We note that V=~(~ ~0"~) . We shall call the hyperplane P~=I(o: ~4: ...:~Y~ E~} the hyperplane at infinity. We can uniquely represent the varieties V=.~l ~J~L , V=j~_~ W~ as finite unions of closed subsets which are irreducible over F (components). Then we can assume without loss of generality that ~=~O ~4~ where ~---~ , and moreover ~/Ln A~(~)= 56 L , and the closure in the Zariski topology ~=~a/g for any L~ i , besides this, ~/~ (I ~(F)= ~ for any } e ~4 (we shall call the varieties Wj the components at infinity). Let ~/c~w(~) or ~/C~rL(~) be some irreducible variety. By F(W) we denote the field of rational functions on W. One can consider any rational function on ~ as a ratio g/h, where ~,~ [~o,...;~,] are homogeneous polynomials of identical degrees and h .~ 0. A rational function on W is the restriction to W of some rational function g/h, under the condition that h does not vanish identically on W. This function is defined on the nonempty open subset of the variety W, equ~l to WN{q>:~(q~)#0} (two rational functions coincide if and only if they are defined and coincide on some nonempty open subset of the variety W)~ The transcendence degree ~e~z~ ~ (W) is called the dimension dim W of the variety W; by the dimension m = dim V we mean w~zz ~L~ . We J~ ~/i let ~=lJe]: ~m~/~ =~v~} In the title of this section by components of highest dimension we mean the set of components Wj, when j runs through 3=-

  the upper bound ~[~6 0+~+m~ ~ is established (it is best for large k). Hence, in what follows we shall sometimes give estimates for the upper bound in terms of the degree of the variety deg V. We note that ~---~e~ ~/i [7], and, in particular, The goal of the present section is to construct a certain family ~=~j~,o~ of collections, each of which consists of m + 1 linear forms 0,<~,~ ~, 0 ~< s $ wp ~ such that ~%~ ~ ~ if F is infinite, or ~Z~ belongs to some suitable finite extension of F, when F is a finite field and, moreover, the intersection ~ (~ $ ~ for which ~ ~<~ with the set of common zeros of the linear forms 0.~, Z~ 0 ~Z ~< ~V, is empty.In what follows we shall more than once need the following construction of a set from N (for arbitrary N) vectors ~4,---~N e ~s , where H = F or H~ ~ is a suitable finite extension of F, such that 0~%~[~)>~ , if O0y~(~)<oo. Let d4,,..&N e H be pairwise diss tinct elements. We define the vector ~L=~4~%~oL~...~o~ ) 9 LEMMA 2.1. Any (s + i) vectors from the constructed set ~4~...,~N are linearly independent over H.We now return to the construction of the family ~/ of collections of linear forms.We let N = 1 + nd and let (~4o,...~4~)~...~ (~N0~,.,s ~+~ be vectors, any (n + i) of which are linearly independent. For brevity we let 5]---'0~.~m~{~s Z ~ We show that as ]F~v one can take the family Of collections ~h~o~i.,~m ~, where ~o~...) ~ run through all values such that 4~<~o<~4...< ~m ~< N By induction we shall prove a somewhat stronger assertion. Namely, we show that for any 0 ~ 6 ~ one can find ~<io<i4 <''" < i% 4 ~ such that ~,~a{[,i~ .... Ub~0}=~-~-i (in particular, for m = s we have V~{~io~-.... ~,--0}=~). Suppose this assertion is already proved for s -1 (if 9, = 0 we assume that nothing has yet been proved). We must show that one can find a linear form Lj, where r i 4 N , such that Lj does not vanish identically on any component of the variety ~O[~.i~...=~iZ_4 = 0 } If this is not so, then by Dirichlet's principle, since ~e~?(%i~i:,..=~ is , one can find some component W of the variety ~l~ir. .... h$~_~:O} and n + 1 different linear forms ~5o~'"~LSm , vanishingly identically on W, and then %4 C ~.~$o='''--'Lsm=o} =~ The contradiction obtained proves the existence of the required form Lj. Arranging the indices ~0~"'~ig-~ } in increasing order, we get some new indices bo, "'' )b6 , such that ~m~o{~ .... ~]6=01 =D~-~-i and thus our assertion is proved. Now we prove the following lemma, which we shall use in the subsequent sections. LEMMA 2.2. Let ~ ~-{~0= . . . = #k-4 = Ol be the variety of common zeros in ~(~) of homogeneous polynomials ~o~ ...~#K_1s Then the following conditions are equivalent : the field ~<%4,..'~ %m~ , where +v,i<.. ) #'~-m are algebraically independent over the field F, has only a finite number of solutions in ]~!#-~(~'(%4...~)) and has no solutions at infinity, i.e., solutions with Y0 = 0. Proof. i):-~2). The system of equations 7o ~, o=~k_~=O~ ~I-+~Y~ = ..... ~.~%-~ ..... equivalent with the system from point 2>. Since ~ =V~<%-.F~))nt~...=u ={r .... ~_< '#C e~ ~'o:O], by the theorem on the dimension of an intersection (cf. [3, 7]), the system of equations from 2) has only a finite number of solutions. The system from point 2) cannot have solutions with Y0 = O, since, if it did, \/(~4~ %~ <' " ~u~)(~{~o ..... Y,~=0} ~, and from this, as is well known, it follows that ~/l' / ). Let us assume that V(~{~,0=o.=~ =0} ~ and let {0: ...: 0" ~+4~o 9 A { ~0=.-.=Y,~0}. Then (0: ~,~+,I 1 " ~t~ ~-~'~ ---, ~ (~~~) is a solution of the system from point 2) with Y0 = 0. The lemma is proved.

  COROLLARY.Under the conditions of the lemma, for any component Wj of highest dimension m of the variety V the rational functions ~4 /)~o,.-.~m~/~j0 form a transcende:nce basis of the field of rational functions F(Wj) over F.Proof~ The linear form Y0 is not identically equal to zero on Wj, since if it were, ~q {~=,..=Y~=0}=\~{~ .... =v =0],~ by the theorem on the dimension of the intersection [7]. Hence it suffices to prove that the functions Yi/yo ~ J ~<j ~< rrL ~ are algebraically independent in F(Wj). Let us assume the contrary, and let there exist an algebraic dependence relation among ~4/~'" Ym//Yo Then there exists a nonzero homogeneous factor V<Y0~,.,~ Y~v~ ~ [Yo~---Yrm] which is identically equal to zero on Wj. There exist linear forms 5o~ ,,,~5~ in ~o~,--~ with coefficients from 9, which are a basis of the space of linear forms in L~ ~r~ and such that for the polynomial ~4< o~..,~r~)=q~(~o~. ,"(~u> the leading coefficient ~6$1~4 =~ Then we get by the dimension of intersection theorem ~7~2~N [s 0]=~ N {s O] A{' ~f~(s 4 AI,~4=,,,=Sr~FO } n[~=O]=.~;A {u163 which contradicts the hypothesis of the lemma and proves the corollary. I/m0 Now we estimate the. number of elements of the family ~gv~ . We have c~) = ~ -~, ~< [~V+4) +{ <(3~(d~@V+~, m.+.0) ~*+4 , the last number does not exceed ($(~.m t/+{ ~+~ ~V '~+* if ~!.<w~<~. If we know (cf. Seo. 3 if 04rrL<~ , and does not exceed (6 (~e +~); below) that ~< ~,~-r~ then r )7~u can be estimated above by a polynomial in ~(~-m) (~+~ for -O~> We sum up the properties of the family ~ in the form of the following lemma.LEMMA 2.3. One can construct a family ~=~,~ , consisting of (m + l)-tuples of linear forms in the variables ~o~.,.~X~ such that for any closed set V~(~} , for which ~\~ ~ ~ ~e~V ~ ~ , one can find an (m + l)-tuple (~o~...~y~) ~. , such that V~ {hr ~ Here ~e~ ~,~-k ~.q ~ ~ and ~ can be constructed in time which is polynomial in r163

THEOREM 2 .

 2 1 [17]. Let @.~...~_~ [Xo,,,.~X~] and the system of homogeneous equations ~o=.,.=~_~=0 have no roots in ,~ (~ Then the ideal (~o~..,~_~l~(X0~...,~! I~, for ])= ~+ n ($~-4)~ where ~--~-. ~ ~'

2 )

 2 Now let ~o~.o.~k_i ~ ~[~o~,o.~X~] be homogeneous polynomials of degree ~I0>i ~l introduce new variables ~o~" ~ " ~ ~J~ ' algebraically independent over , , ...~$~) We set ~=XoUo+.,.+~e~(~0r ~![X0,. ~k'~] and ])-~,<.~mZl~{~_~,n)L ~) o where ~' =@ We consider the map@~:~o@...@~-'~ which is linear over the field ~(~0~--.~,~) K where ~ (respectively, ~ ) is the space of homogeneous polynomials in Xo~-..~X~ over ~(J~o~--;,~m) of degree ])-~ (respectively, D) for 0 4~4 ~ , namely, O~{~-o,...~) l~=(~o~,..~l~'~O~o @. ~d~k be written in the form h 0,< ~,~k ~ 9 .. can ~=(~0,~,...~0,So~,~._i~i,~Q...~k,~,..~e~where ~=~+~-~) and ~,~...)~,S~ are the coefficients of the polynomial hi, under the condition that some enumeration of the polynomials of degree ])-~ is fixed. One describes the elements of the space ~ analogously. map ~u has matrix A of size <~+ID) x <0,<L,<~$~ represent ~ , A" the matrix A in the form A = (A', A"), where A' contains 0,~'~4k-~ columns contains $~ columns; moreover, the elements of A' belong to F. The elements of A" are linear forms over F in the variables ~o~-.-~J~ The following result is found in [18], based on Theorem 2.1. THEOREM 2.2. i) The system ~o=...=~_~-O has a finite number of solutions in P~F) if and only if ~A)= ~)[we let ~,~-~'~)) ]. All ~ ~ ~ minors of the matrix A together generate a principal ideal, whose gener.ator R is their greatest common divisor~ = ]~ ~i, where 3) The homogeneous form R in ~o~---~+ decomposes into a product ~ 4~I r_

  uct ~r + AoT. ,I ~ .. ~8~(A$~i$ + As )I , Consequently, ' "~ZC A, . ~}s+ffg). The number DI of roots, considering their multiplicities, of the original system is equal to o~,~$N$ according to point 3) of Theorem 2.2. We fix some pair of indices 04r ~ The form Re~[~o,...~ ~t~] can be represented in the form of a product ~=R~Z , where R= is the product of all the linear forms Li (cf. Theorem 2.2), for which one has ~(~) -~(~ --0. Then ~ ~ ~ [~o~...~ol~r.o)J~zr..~JJv~] and ~ ~ ~ [~o~ ~]

  Now let H I be some finite field such that (~-%)D~< r ~<~(~-~) ~I ' where q = char (H~) if ~=c~vj(~! > 0 In this case we extend the field F to the composite of the fields F and H I and we assume further that ~ C ~ In the case of characteristic zero we let ~=~. Using Lemma 2.1 of Sec. i, one can construct a family of ~=((~-%)])I + ~ ) vectors ~9:(~$...3~)~...~(~):(~(~!..~ ~)E~ -I , any n-i of which are linearly independent. Now we show that for some ~6 ~$ ~ the polynomial ~(~0~l)~ ..-~m~l~)c~(J~o~) is different from zero. If this is not so, then by Dirichlet's principle for at least one of the linear forms ~=0~ ~(,z)j~. (el. Theorem 2.2) for which ~o=~ =0 and for (n -i) vectors among qf~. q~ 1 0 ,44~.<~-~ , q~(~,.,~ q~(N) (let them be 4f(q,,, qy(~-O ) one has ~(0~0~ 4~ ,,) ~_~ which contradicts the linear independence of the vectors q~(~..,,~r(~-t) The algorithm calculating R4(~o,~4~0~---, 0) considers in turn q~(O...~ ~(~) and finds (~,~6~(~... ,~-~O' ) for ~ v ~< N For some i the polynomial R(~,~6~f~L ~ ., .~r(~).~_~ ) .~ O-Then ~q(~0~h0/...~ 0) coincides with the form of highest degree of the polynomial ~ (~0~ ~" "~ ~) (up to a factor from Hz* or ). In the case of characteristic zero, by the construction of Lemma 2.1 one can take Ifj(~t=~ t ,~r the length of description Z~q~j(~))

A-

  (J~o,~[6~F~,...~F~_q~ The algorithm is determined by the sequence of choices of leading elements. If Ai is the result of performing the i-th step (~)0, Ao=~o,~4~... ~F~_~) and 0~k~ ~ is the element of the matrix Ai chosen as the leading one at this. step, then the element y,$ ~, ~(,~ ~ /~(~) ~+9=~[;~ ~%~v~,9i/ ~L,gL for ~o~o~...~s We denote by /k~":~ the de-terminant of the with indices g~,..~~v and columns with indices i4<..~: LEMM~.2.4 (cf., e.g., [14]). One has ~($ =~'~o,...,~/~ do,...)~ L ~5o,..,,~~ ; further, gL [~ § --'0 for ~d0,... c/b Finally, other pairs ~ , (~~ ~ submatrix of the matrix A(~o~6~V~.~.,,~qV~_I) , spanned by the rows for ~':/: 4-~) r .. ~oL[, and g! !+~ )= ~b(J]~ for all The lemma can be proved by induction on i. Applying the Gauss algorithm to the matrix ~(~,~4~ ~. ~ ~-I), we choose leading elements so that at the i-th step ~i should be as small as possible. Then if ~5~(A(~4~) ...,qF~_~)=~ , one has 0/=!~'~o~)"V~,...]~_~I=~6o<",~.-4 according to the remark above; we recall that A = (A', A"), where A' is a matrix with coefficients from F, the coefficients of the matrix A" are linear forms in /~{,0~,...)~,r Now if ~=~(~4)~__ ~..)~_{],then the algorithm turns to the consideration of the following vector ~(~+0 The time of working in realizing the Gauss algorithm can be estimated by Lem~na 2.4 by a polynomial in (%~+~)7~+~ ~$ , where, we recall,Z---s ~T~)...TZ{~II~<~ ~ and ~(~) ~< MZ (see Introduction).

  -,T$ ~ (~o~6qf4j...~-~)~%~ and on the basis of Hadamardls inequality one can deduce that ~(~(~o~4) ~..:~_~))~%(~+~% . ~%). Now let ,~=~[~] and h0(~)= 0 , where ~0~[Z] and ~ is irreducible over K, where K is a pure transcendental extension of transcendence degree Z over ~ or over a finite field (cf. Introduction). We consider a transcendental extension ~c~(T) and we calculate the polynomial ]~(~0,I$i ' %r~ ..... If~_~ ) under the condition that in the matrix A the element T is substituted for ~. We assume that each element of the matrix A is represented as an element of K[T] of degree in T less than ~(<p} Then we sustitute ~ in reverse for T in ]~(~o,~,~,..,,v~_,) and we reduce it rood ~ . The calculation of ]~(~,~,~...~ ~f~_~) requires time no greater than some polynomial in (%(~,~)+~)~*I and the length of description of the initial data (including ~ ), i.e., of (~4.~)@(~+~)+~)~ (we recall, cf. Introduction, that d~T ' ..... %(@)<4~,4r ~ ) We note also that ~ .... ,~(~(~%~...~%_~)) 9 <~(<+~3 and ~(~(~0)%~v~),.. ~ Thus, we have finished the description of the process of calculating the polynomial ~{li0,1~0z..., 0) Now we begin to calculate the linear forms h~-~-0<.$.<n ~ ~(?)~$ (cf. Theorem 2.2). We assume further that the field P~H(T~ .... ,Tt)[%] is the same as in the Introduction. In what follows, all arguments about nonseparability relate to the case ~c~a~(~)~ 0 o We fix a pair of indices 0.<~<~:_< n Again, as above, one can assume without loss of gen-9 F .[ /' ~.(6)~) (~:) 9 ~-(~) (8) erality that ~#J0, ~4 = I Since ,,s o ~+ ~4 ~d)l ~(~0,~,0,..., 0) , we get that ~I," ~ , 0, .... 0)-----0 Considering that R~(~0~I~#,0~ .... 0) is a homogeneous polynomial of degree no greater than Dl, we get that the element ~e)/~cs~ (if ~) ~0 ~a =#= 0 ) has degree over the field F no greater than D I. Consequently, its degree of nonseparability over F is all the more no greater than D I. Let ~./~<~ ~ If the characteristic q = O, then here and below we i#~,~/~))~t ~ set ~=4 for convenience of notation.

  over F, namely, this ratio coincides with (~e)/~(e))~ for the corresponding }0,}4 If }~ I.o we solve the new system, then in order to find a solution of the original system we have to calculate the elements (~}i / }0 ) ' starting from the elements (~l~}0J~ e ~ [@I] found, where 0' is a separable element over F, whichwillbe constructed by the algorithm. Besides this, we show further that [~[@~: ~]-~ ~ and for the minimal polynomial ~)(Z) of the element 0' over F with leading coefficient s ~ , the degree i~T~ ..... T~ ~ can be bounded above by a polynomial in %=(~), ~,~ , while the polynomial has degree i with respect to d~ (we represent (P=~ (~ 0,~(T~,..,,T~) ~] Z ~ where ~,~[T4,...,T~] and ~% ..... ~(~) ~, o~.<,t,.1~ ~) .~T~ ..... T~) is the smallest possible, and we set /~Tm, ..... Tee = ~a~{ ~.,~, ..... V (~,$),~,7~ ..... %(~)} (cf. Introduction). In what follows we write the elements of the field F[e] in the form g(e'), where 9 ~.~ [Z] and ~.z(~)<~,~z(r ( ~-(~.)~ ~-(6), ~.'~ -~,~ We estimate the degrees with respect to q~ .... ,Tt~ of the element s4 I~0 ) =~'~ Since the polynomial (Z-~)I~4(Z,-~,0 ..... 0 ) (here the polynomial El corresponds to the new system), we can apply Chapter I of [4] to the polynomial ~(Z,-#,0 ..... 0)e~[@~[Z] and the separable extension ~c ~[@rj Then, keeping in mind that ~e~ ..... ~(Z,-~,0 ..... 0) ~ %(~*~) and ~e~z~ ~ {Z,-4,0,...,0)_<$~ according to Chapter I of [4] and the bounds on ~,...,Tq),~e~ ~) mentioned above, one can also estimate ~v ...... % (~,"i from above by a polynomial in ~,$4,~ of the first degree relative to d~. Now we decompose Z~$-~ ~ into factors over the field F[e'], applying Chapter I of [4] to the separable extension of the field ~.~[@~] 9 The decomposition has the form Zr ~= (Zr ~)~-~ , where ~%~ ~[~ ; then ~ ~[~ (here and below in similar cases we assume ~r ). Then the extension of the original system corresponding to the linear form Ls, i~) ) where the elements ( ~i "~ ) ~ ~[@~] are can be represented by the vector (~,. ~ , given, while #~05~ is such that ( ~!e)/$~ ~-~e'~)%v~~ [@ ] (all of this under the condition that ~ 0 ) By What was just said, we shall assume in what follows without loss of general-h=k 9 ity (raising the coefficients of the original system to the power qD, if this is necessary), that for any linear form (~e)~.~ ~+ ~ ~i'~"a~" ~i ]~(0,.o.,0, ~.,~j0,,.,,~'" 0,~$,0~...~0)the element ~i) I ~)~ is separable over }' (under the condition that ~!aJ=~= 0 ) for any ~ , }~ j,~,

  in ~ , 4~ , ~% and in addition of the first degree with respect to d2, and to an upper bound on the length ~(~i) of description of the coefficients which is polynomial in M~* M~. {~ ,~&;~ and this polynomial has degree 1 with respect to M~ + M~ * f~ The procedure given below finds all the forms LE satisfying the condition ~).~ O. To find all forms, it suffices after this to find the forms satisfying the-condition .~=~0 andto choose among them the forms for which ~<~s)--~--0 (or one can add the equation X a = 0 to the original system), etc. We set ~-I(Z}==~,(Z,-I)~ ~[V] ; then. ~ =~ /oo -0 . We let ~ 9 ,P[@~]==P[Z]/(~(Z)),~ where ~(@~)=0 and @f==~, (~=~ The construction of ~,, @~, @~, q~ completes the description of the first step of the procedure. We can assume without loss of generality that e&tg(H)> d~= ~ ~I (otherwise we can extend the finite field H, as before in similar situations).

  culate the polynomial ~(~, O; .... 0,'~0 .... , OJ and we find a factor ~(~,~)I ]~t(~,O,.~ ~, O~ .... O} which is irreducible over the field ~'~-~ , constructed at the (s -l)-st step (cf. [4]); the algorithm considers all irreducible factors hs~ We let ~= ~(Z,-J) [@~]=~ ,[2]/(~6(Z}) where ~(#~} 0 (as 8i, of course, one can take ~) ~?~ ~ /

  ~'~ and the question reduces to the solution of a linear syste~n over F. Moreover, the degrees with respect to T~...~ T~ of solutions of the system, i.e., of the coefficients of the minimal polynomial, are bounded above by a polynomial (independent of i) in ~, ~'z~ ~ (of degree one with respect to d=) and in m(~aid,e~ % ..... r (~4},~e~,,...!~(~l ~ . Moreover, the length of description of the coefficients of the monomials in ?~ .... ,~g, ~ can be bounded above by a poiyf nomial in ~g~(N~+ M~+ ~i of degree i with respect to {N~+ M~+~%} We denote by @'~ the [ primitive element constructed of the form ~_~+0p~@~ of the field Fs over F, and by ~{Z} ~[Z] its minimal polynomial, ~(@~)= 0 Now we prove that the degrees ~ ..... ~(~) (the length of description of the coefficients 6((~) , respectively) can be bounded above by a polynomials in %, i%, ~ of degree 1 with respect to d 2 (in $,iI, (M~,M~ + {d~) of degree i with respect to (M~+M~+ ~4.~ respectively), independent of s. We note that by construction @~L_~+~. ~ ~ @~ and ~--g~ ~ __~-(~/~s~/~ for some e, where ~ E~ and 0~F~$-~ , when char (F) = 0, for 4.<~$ We consider the auxiliary system of equations obtained from the original one by a nondegenerate linear change of variables under which Xo--~o , ~e ~ ~ X~--~ Then the roots of the auxiliary system are the vectors (~q) s ~ ~ ~r ~, ~ &.~ o~ .... ) for all 4~]~ ~ One can choose the linear substitution so that the length of description of the coefficients of the auxiliary system are bounded above by J(~%.t~0%i~+{0~$) o For the auxiliary system the element @~* ~>/~ ~ ~ ~m =~ ~I~0 +~<~ ~ ~. is a root of the polynomial ~(Z~-~ 0, 0 ) corresponding to the auxiliary system. Consequently, arguing as above, one can get the upper bound wanted, independent of s, by the degrees with respect to ~,...,Tr and the length of description of the coefficients of the polynomial ~ Now we let @i____@~ ~=~ . We show that the ratios sought ~2~/ ~) ~0 of the original system can be expressed in terms of the basis 4,@~,(@),... with coefficients from the field F, and here the degrees with respect to ~,...,T6 of these coefficients are bounded above by a polynomial in % 4~,~ of degree 1 with respect to d 2 and the lengths of description of the coefficients in the monomials in ~,,..~ T~, @, are bounded above by a polynomial in (M~+ M~+~ ~| ~,~ of degree 1 with respect to (~.~

  .... @~-I in the field ~[@~-i] the expression found for @'~_~ , we get what is required. The expressions constructed for %j (I<,~,<~) satisfy the estimates given above, so the time of construction of all 8j (as elements of the field ~[@r]) is polynimial in ~,~,(~ ~) ~+~ , K, Now we somewhat alter the primitive element 8= ~ ~k(~; '~:r) (here ~i= ~k and 0 for ~<~o )" Namely, we set ~-~-m a~ i~*J~} and @r~({~5~* ~(~ Then Remark. We note that if ~[(~cs9 l~r ~ i~cs)/~},r (~) ~ a .~(~) --c~.,~ ' ~' ~ sf~,i/~g),...,~/~:, j ~,~g.~/~: ) ] ~ i.e., ==~g.~/gf. )~ is a primitive element, then 8r=~ according to our construction of a primitive element, since c z = 0, while the polynomial ~$+)=~+ coincides with ~_g=~=~+) (cf+ the notation above; the superscript s means that we consider Lg), is irreducible over F, and ~(~)=~ 0 Moreover, if (~)" a ~~ ~ for any g, i.e., for any root of the original system, then for any fixed .! pair of indices ~+=0, ~ the corresponding polynomial R z = R . Moreover, if (~{~/ ~a))~ is a primitive element for any g, whose minimal polynomial over F is ~I ~+(Z,M~0~ .... 0) (here ~~(~) correspond to the modified system obtained from the original by raising ,[ its coefficients to the qD-th power; see above), then R = R 1 for the pair ~0 ,~=~ and the product ~(~))~:~(Z~-4,0 .... ~ 0) up to a factor from F*, where ~ runs through the set of conjugacy classes over F of roots of the system (e corresponds to ~). Finally, according to the construction given above, to each conjugacy class over F of roots of the original system there corresponds a polynomial ~r with suitable g and, conversely, to each polynomial ~{~J there corresponds here a conjugacy class of roots (not necessarily unique). The po!ynomials ~(~ can coincide for different g. The exponents of the degrees 4~ are equal to the multiplicities of the linear form Lg in the polynomial R (see Theorem 2.2 above).

THEOREM 2 . 3 .

 23 Suppose given a system of homogeneous equations ~ .... -~_~ = 0 , where ~[~o,...~], ~= ~, $(>]~...~[(q (without loss of generality, ~K ), where the field IP= ~(~ ..... T~)[~]; ~ or H is a finite field of characteristic ~0 ; T~,+++,~r are algebraically independent over H; U is an algebraic and separable element over ~(~+ ..... T~ ) with minimal polynomial ~)6~(T4,. '"~/w)[Z] , ~<~ = 0 We let ~)=-~o ~ + ~;~ ..~.~_t~)<~-~(),% = Qlg+pt~) , (~4_~>=ie~To..)T$~Z(~ ~ ; by d 2 --i we denote the degree with respect to ~)+..+~ of the coefficients of the system (see Introduction), by Mm (respectively, M~) we denote the maximum of the lengths of description of the coefficients of the monomials in T4~ ...... ~]v+~ in the system (respectively, in ~ ). An algorithm is constructed which first determines whether the system has a finite number of solutions and, second, if it does, then it finds all the roots in the following form+ The roots are divided into conjugacy classes over F, and the multiplicities of the roots are given. For each class the algorithm finds a polynomial ~(~+..~Ts which is separable and irreducible over F, with leading coefficient ~Cz(C~ ) =~ , let e" be a root of the poly+ nomial C~. For each class, in addition the algorithm finds a 0~ jo~ ~ such that ~io~0 for any root ~o~.+.:~P~ of this class and ~ =0 for $< ~o , and calculates the elements <$~/~o~Je F [ @~] for ~oSJ~ 9 (in the case of characteristic q = 0, we assume ~=O and~ = ~ for notational convenience), where ~$~i~]D 4 (we recall that 3~ ~ ~ is the number of all roots of the system; see Theorem 2.2), and here ~/~j~-~ where ~i~ (we assume that C++~+~])+~< or we extend H; see above), ++: jPP~++j + The number of conjugate roots in a class (without considering multiplicities) is equal to ~e~Z + The degrees i~,...)T$C~/~o) ~v~ ' ~,...,TZ+ (the lengths of description @~ of the elements <~/~o) ~ and of the coefficients of the monomials in T4~...~T~, ~ of the coefficients of the polynomial q~ , respectively) can be bounded above by some polynomial in ~Z, ~4 of degree 1 with respect to da (by a polynomial in{M~M~Z~)~ z> ~ of degree 1 with respect to ~4+ ~+g~) , respectively) and, moreover, these estimates are independent of j and of the conjugacy class of the roots. The algorithm constructed works in time which is polynomial in ~4 ~ C~ I~4) ~+4, ~> ~. 3. Direct Method for Finding the Tree of Components and Generic Points As in Secs. 1 and 2, let ~0)..-)~k_~ F [Xa,.~.~Xr~] be homogeneous polynomials. Further~ without loss of generality we assume that ~ ~L=~ , by replacing each fl by.{~l.~ ~ }0~ij~m' where ~=-0,~L,<~_~{cL~ ~[I . Moreover, without loss of generality we assume that {~L~0~k-,; are linearly independent, so k ~< (~) $ (~+{) ~ We assume that the ground field F = ~... T/~) [_ ~ ] , where either ~.----~ or H is a finite field, q = char (F), the elements T I,-..~T 6 are algebraically independent over H, the element h is separable over ~(T~,...>~$1 and '~T)~H [~,.-.~s is its minimal polynomial. We shall assume without loss of generality that ~L~H[~f.-,~gj~o).--)<~] for O~<~<~-~ 9 We denote by d I an upper bound on ~e@q~, T (~) and by M~, an upper bound on the length of description of the coefficients 9 -., s from H of the polynomial ~ in monomials in ,~...,~Z~ ~ . By d 2 we denote an upper bound on ~T~,...,Ts 0~<~<k-{ , by M 2 an upper bound on the length of description of the coefficients from H of the polynomials ~o~..-~k-~ in the monomials in ~ ..j~/~) ~ ~o~ "

Theorem 2 .4 of Sec. 4 .

 24 We proceed to a description of the tree of components, which is constructed by the algorithm in the course of performing it. The tree of components has a root which is ascribed to projective space. Any vertex v, different from the root, is ascribed to some varietyI~ ~(~). which is irreducible over F. By the level m of the vertex v we mean the number of edges in branches going from the root to the vertex v. The algorithm constructs for any 'I ~< ~ ~< ~ + 4 the linear combination ~ = ~. ~6~; "~I ~, where ~5~ e H (if H is a finite field, then it "is possible that it must be extended, so that ~IC~ > kr ; see Secs. 1 and 2). Moreover, ~01~p~[~/~t ) =_ ~p for ~<~u~< ~+~ (in particular, ~/q% = ~ when m = n + i) and the family of components of the variety {~f=...=Im=O~c~[{) of common roots of the polynomials ~4)...)~ , whichare irreducible over F, coincides with the family of varieties Wv for all v of level m and of varieties Wvl for all leaves v I of the tree of components of levels less than m, such that Wvl is a component of the variety ~#o=,..=~k_~ = O} If v is a vertex of level m which is not a leaf, then ~,t+4 does not vanish identically on Wv. Moreover, for any son w of the vertex v in the tree the variety Ww coincides with a component of the variety ~Tqr~m+ ~ = O} Conversely, any component of the latter variety coincides with Ww for some son w of the vertex v, except for those components W (i) of the variety ~/N ~=0 1 , such that ~I(Dc\~q~ for some leaf v I of level not greater than m, such that Wvl is a component of the variety {#o = .... ~_~=0} To any component W of codimension m of the latter variety there corresponds a leaf v I (in general not one) of level m, such that ~=~/~ Conversely, there are two types of leaves of level not greater than n. For any leaf v I of level m of the first type Wvl is a component of the variety {~o = .... ~_~=OJ and 60~/~ = ~ If v 2 is a leaf of level m of the second type, then ~+~ does not vanish on Wv2, so~F~ ~ ~o ..... ~_~=0} , but, on the other hand, ~%~{I%m § = .... ~ and there does not exist a component of the variety ~IFz <~ {~+4 = 0 ~ , which is a component of the variety {#o ..... #k-~=O! 9 First of all we estimate from above the number of vertices in the tree of components~ Namely, we show by induction on m that ~i~F e~ ~qf $ ~m~ , where v runs through all vertices of level m. If WqrN{~+~-0} =~ I?/~)~)~W(~) ) (see above) is the decomposition into irreducible components over F, where the components Ww are ascribed to the sons w of the vertex v of level m, then ~i~/f~< ~le~/~F according to Bezout's inequality [7] S~nming these inequalities over all vertices v of level m, one can get the inequalities required for vertices of level m + i. From this it follows that the number of all vertices of the tree of components is less than ~+4) i~+ ~ , since the depth of the tree is not greater than n + i. Thus, it suffices to estimate in what follows the time the algorithm works for the construction of one vertex of the tree of components. The algorithm given constructs ~)... ~ ~ , the tree, and the components Wv by induction on the level m of the vertex v. We write the first step (m = i). We let *~=='~o Based on Chapter I of [4], we decompose ~o =]~ 9~ ~ , where gi are irreducible over F for each i. We fix some index i. We let ~={~L=O}c ~s be a hypersurface which is a component of the hypersurface {#o = 0 Now we construct s generic point of the component W i [3]o Let ~= ~(~0 ~-~ where ~e~[7o,o..)~ and ~i' are as large as possible, when ~>0 , and ~ = { ~ when char (F) = 0 (the analogous remark is valid below in analogous situations). Obviously, gi is irreducible over F. Let O~ <~<~ be an index such that (~% /~)~0 and let ~o ~ ~ (let us assume ~ > 0 ). For convenience of notation let us assume temporarily that ~'o =0 ' ~i~ =~ , and, moreover, we assume that ~[~C~. 9~{. We set ~4/~o=~4~...~_~/~o = ~g_~ (~/~o)~ ~ = %~ , where ~4~ .... ~-~ are algebraically independent over F; we let ~4 (Z)=~(~4~i"~-,~)~o~<~4~'"~-~)[~J' where ~lo=~lo(~...~m.~)=~C~(~L(~6...~_~))~ ['~'"~'~n-.~" We have ~b4(0~l=O and, moreover, c~4 is the minimal polynomial for the element O~ over the field ~(~...~_~) We consider the field ~(~4r.,,~_~l[~]/'(~D~)= ~ (~)...~_~) [0~] Then the expressions given above for X~/X o supply a generic point of the component W~ in the following sense. An isomorphism of fields ~(Xd/Xo~ .... )X~_~/Xo,~XUX~)~{)~--~(~4r.)~.D[O~](the field ~(X4/X0~...~X~_~/Xo, (Xm/Xo)~) here and later in similar situations, is a subfield of the field ~-oo (~/4) , generated by F and the rational functions X4/Xo~...~X~t_~/Xo~(X~/Xo)a$ "~ on w~) can be lifted uniquely to a field imbedding~7~:F ~-~ (~/~I~ ~%~... $~_~) (in fact, the image of the field V~-~(V$+) under the imbedding ~ is purely inseparable over the field ~(~ .... ~-<)[~] ), since the extension ~(~4/Xo,+..~)(~-4/X~/Xola/{)c ~r is purely separable.

  Let the polynomial gi correspond to the vertex v of the first level. Then the component Wv = Wl is ascribed 9 r ,@y) =~/N(qr ) where r = = = o A geto it in the tree of components ~f=L~ ~ = .... 0 ' ~o .... ~N-~ neric point of the component Wv is given by the equations X4/~o =t4,.+, X~_r % m-4 '(Xrt/Xo~@~-'-@~tT-~4 ; we set, finally, c~qr=CJD 4 (see above).Now we formulate the inductive hypothesis. Let ~q~...~ ~ and all the vertices v of level m (and also vertices of levels less than m) of the tree of components be constructed already; we assume ~r~<[b . Moreover, there is constructed a certain family of homogeneous t / i , ,(~O _.,(~) ", such that ,%~= polynomials ~;,...;tpN 67[X~,.+.>)<m] .... =V~,-o and ~ ~< (3~) rv Moreover, there is given the field ~(~, ~+D[~], where t, ~+ + are algebraically independent over F, the minimal polynomial O~(t~..,,*'~-~L~] of the element Ov over the field ~'(t;4~...~l~_~ with leading coefficient .~cZ(~r)=~. Finally, there is constructed a generic point of the variety Wv, more precisely, there are written expressions (X~/. X;~+vi~(~< ..... ~ll,-m,)[Z] ' for some fixed j, and any j and suitable ~+i~<(d+d+ § depend on the vertex v, but we shall not state this explicitly in what follows). Here X~/Xi~ are considered as rational functions on Wv, and these expres-sions define a field isomorphism (after suitable renumbering of the variables X0,.-~X~b),~(~/~o,..~ also by the inductive hypothesis), this isomorphism X~/~--~$7~ ~ ~< ~ pb-~ . Further, this isomorphism can be lifted uniquely to a field imbedding ~/-~(~)C~ ~' ~,4,,,.~,+~m) , i.e., to a generic point of the variety Wv. We also formulate estimates on the parameters Of all the elements indicated. The degrees O~Xor,., {a'r(~rl~ ~q~F "< ' ~+4+ m X+t~'+ , ]~<c~+(d+~4+~{+)+d+e+ (++,~++d~,) 4 ~++l~+++W+~<+m, + moreover ~e~,~r.)Ts 5 does not exceed a polynomial in (~+~+~~+~) mild ~T~t,.+~T~,~r.,~ (q~%~), ~T~,,ff,s are bounded above by some polynomial in (~{+d~+d~) ~ (here and below in analogous situations the polynomial does not depend on the original system, the vertex % f~,r(~) ) the maximal length of description of the coefficients v, etc.). We denote by I +i ]<~Ix!{ j ' for a suitable polynomial p. The algorithm considers all elements of the family ~ . We fix an element (~ ~sLX~) ~ We add the forms I~.~ ~-~t} 0~$~-~-~ (they are linearly independent by the construction of Sec. i) to a basis of the space of F-linear forms in the variables ~o~...~X~ and we denote this new basis by Yo,-"~ ~ , in particular, Ys = ~gX~ for 0 ~S~ ~-,~-i As a result of taking the current step all sons of the vertex v will be constructed (under the condition that the fixed element of ~ satisfies the condition { m ~o ~:= =n ~ ~l~g=O} = ~ and for each son w there will be constructed homogeneous polynomials ~(~r) ~.~ ~ L~o,... ~m), ~ 4 ($~(~+4~)'~ such that ~ ~" "~ N the corresponding variety ~ =_~l~( ~u')--l~, (%v -0 i " Besides this the algorithm finds a L o ..... ~ --'' ~' ~(t4,...,t~m_~[O~]. for ~-~b4 ~ ~ ~, generic point for Ww, i.e., the expressions C~/~0)~ ]~ ' " defining a field isomorphism ~[ ""~i' ,$~m--{)[@' ~r]-~ ~C~/~,-" ~m--r ' C%o~/%) ~' ~:~' ~, (~/~ ~r The variables ~o~...?X m can be expressed as linear forms in Yo,...,Y~ and conversely. Substituting these expressions in ~ and Q~/~o) ~#i , one can get the polynomials desired (where the length of description of all these elements can increase no more than polynomially). For convenience we also represent the polynomials ~o ~'"~/N~ ~+~ as polynomials in Yo~...~Y~ and we preserve the same notation for them. We shall assume in our arguments that the fixed element of ~ satisfies the condition W~{Y~',~r,-~FOI=~> because otherwise the algorithm detects that this is false in the course of its work, and goes on to consider another element from ! In what follows we shall consider the intersection of the variety W(F'), where ~=H(~...~ Ti~...,~-m-l[~=~(~4,,,.~-~-~ with the linear space ~={L-$~Yo--oI46~z~-4 , where ~-"~-~-i are algebraically independent over F (here we consider varieties as subvarieties in ~CF -~) ). since ~{~...=Y~_~_~=o}=~ , one has that ~/(~t)~ ~ consists of a finite set of points, lying in an affine subspace {~0}CP~(~ (by Lemma 2.2 of Sec. I). Hence the zero-dimensional variety ~ L~ t) ~ ~ is defined over the field (~)~-~ ~,~ q4f~)...~N~ ~ for Yi for ~ 4 ~ 4~-,%-~ The We substitute TiY0 in the polynomials roots of the system of equations ,e <t u ..,% ~m+~(~f) correspond bijectively to the roots of the system defining the intersection W(~)~c~(~r) -We apply Theorem 2.3 of Sec. 2 to (i), where the role of F of the theorem is played by F', respectively, the role of ~)...~T~ is played by ~,...~ ~,~...~-~-~ If the algorithm of Theorem 2.3 detects that ~(~)~ ~ is infinite or there exists a root of (I) with Y0 = 0, then for the fixed element of ~ the condition ~N{~o=...=~_m_ 4 =0} =~ does not hold (see the remark on Lemma 2.2 of See. i) and the algorithm goes on to the consideration of the next element of ~ (namely, at this place the algorithm determines whether the condition ~Ns =0} =~ holds).
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 24 [Z] corresponding to this class which is irreducible over F ~ and ~r =,{ (see Theorem 2.3)~ Our next goal is to establish a bijective correspondence between the components of the variety W and the conjugacy classes over F' of roots of (i), i.eo, in particular, to any son of the vertex v there corresponds a uniquely determined polynomial ~D First we verify that the elements ~4,.--~-r~-i form a transcendence basis over the field F for the ring A~= ~ [~4~-Z ] /{~'r(431~J, .bZ~).: ~'the kernel of the homomorphism A~ F [Y~/~o," ~ /7 ] the affine variety Wn {Yo~ O} over ~-~ (under which ~C*Yi/~, j $~4~ ) is the nilradical ~(AV) of the ring A v . The components w: of the variety W correspond bijectively to minimal prime ideals ~s of the ring ~V (see [3]; also see the proof of Lemma 2.9 below). The elements ~4~.../~-~-~ are algebraically independent over F, since they are algebraically independent in the ring ~[~i~fa~f~0}]DA~/IW~. On the other hand, for any ~A? and any component ~/9f~ of the variety W, there exists a polynomial 0#~16#~ ~[24~'''~2~'~] (here ~4~,.,, ~-~ are algebraically independent over F), such that ~f4(~4~..,~Z~_~_4~) ~ ~f~ 9 We let ~=~ be the product of the polynomials ~Q over all components WI~ of the variety W. Then ?v(Z4~..,,Z~_i_~>~(Av) (see [3]). Consequently, ? (Z4)-..~Z~-~-4~k)=O for a suitable integral e, i.e., the family {~4~,--~ ~'~-~-4 is a transcendence basis of the ring A~ over F. We let ~=~LZ41...,Z~_~\{0}cA~ be a multiplicative!y closed subset, Keeping in mind that [n&'~ ~-~ for each w~, we get that the minimal prime ideals of the ring ~-~ A v correspond bijectively to the ideals, ~9~ and have the form 5-~,1~ (cf., e.g., [3]). On the other hand, ~ ~ ~ ~=~ ~.-.~_~C~ A~ and A~ is a finite-dimensional algebra over the field ~ [~4~...,~-4 Consequently, all prime ideals of the ring ~-~ are simultaneously minimal and maximal. LEMMA 2.5. Let ~c~4 c ? be field extensions and let "~q=~4@g AV Then there exists a bijective correspondence between the following three sets (we recall that \~ ~0 = a) components W'~ of the variety W which are irreducible over FI; b) classes of homomorphisms having the same kernel 5~AI~F~h~ of algebras over the field ~=~(t6.,,~. m (here the inclusion ~C_~ % -4 A~ is defined by the correspondences %--~Z~, 44L4 ~-~-J ); C) pairs, the first term of each of which is a conjugacy class over ~I=~{~4~.o~m-~-{> of roots of (i), and if the polynomial ~D~ ~r[~) corresponds to this class (see Theorem 2.3 of Sec. 2), the second term is a factor ~D~[Z] of the polynomial @ which is irreducible over ~ . Proof. First we construct a bijective correspondence between the sets of points a) and b). Let Wu' be a component of the variety W which is irreducible over Fz. It corresponds to a simultaneously minimal and maximal ideal S ~TI' ~-fA? i I ~C D A~. , where !~cA~ is a minimal ideal (see above). Since ~ C(~ 4 A~/~I~ is a finite field extension (analogously to the Here in point a) of Lemma 2.5 it is necessary to consider the set of all components Wu' of highest dimension n -m -i. The proof is essentially unchanged since S ~ [2 ~ ~ for any prime ideal ~C A~ if ~t~ (A~T/ As a consequence (it is necessary to apply Lemma 2.5 to the case when F~ = F), we get the required bijective correspondence between the components ~/~fl of the variety W and the conjugacy classes over F' of roots of (I). Moreover, from the proof one can get a representation of a generic point of an arbitrary component V/~s (let the polynomial ~=~D~6 ) correspond to V~I according to point c) of Lemma 2.5 and ~r< ( ~IF0 =0 " Namely, according to Lemma 2.5, to the component ~If~ corresponds a homomorphism B-~A~s P'-~' of F'-algebras with kernel ~-~ !~ This gives an imbedding of fields B "~ Aqr/8 -~ n~1 ~ which is the identity on F'. This imbedding can be extended uniquely to an imbedding of fields 6~:~ ~ C_~P ~. Then, as in ~he proof of Lemma 2~ for the image under ~he coincidence of fields ~ [01~i]=~ [ (~_~)~ ~,, ff(~{~ ] And, finally, there is isomorphism (obtained from the preceding isomorphism, in which the imbedding o participates. Under the isomorphism (2), the elements Yj/Y0 are considered as rational functions on ~J%~ . This isomorphism also gives a generic point of the component ~q ~ Now we make more precise to which components W~q of the variety W there correspond sons (we shall denote them by wz) of the vertex v. For this it is necessary to verify whether ~4C~/~ , for some leaf vz of level no greater than m of the first type (in this case to the component ~f~ there does not correspond any son of the vertex v). In order to verify this inclusion, the algorithm substitutes into the polynomials ('~/o~))~ . . . ~ Ng (here ~) ~,~+~ ~ ) the expressions for (~/~o)~/~ 0~, from (2) (after replacement of the variables Xo~...~X m by Yo,..~ ). The inclusion ~/Ig~C~ holds if and only if all N 2 + 1 elements of the field L qf~j obtained are equal to zero (see Lemma 2.7 below). If ~/~/~ for all the v I mentioned, then the son w of the vertex v corresponds to Ww. If v has no sons, then v is a leaf of the second type. Thus, all the vertices w of level m + 1 are constructed; in Sec. 4 the algorithm constructs for each component Ww a system of equations defining it. Below by w we denote a son of the vertex v. Construction of a System of Equations Defining a Componen! One says that the component Ww is defined, over the field ~-9 if the ideal "$~C ~[~a}...~' of the affine variety ~/~{~0} has a system of generators from the subring ~9 g{~.--~$] (here it is essential that ~/~ ~o=0} ). LEMMA 2.6. The component Ww is defined over the field ~-9 , where ~ =~_~&~%~ . Proof. The assertion of the lemma is equivalent to the fact that the natural homomorphism ~(~q~f(l~[~4r..~l)--~ is an isomorphism. There is an isomorphism ~-~t~/that the composite homomorphism ~:~%~-~ ['~/~,,.:., isomorphism in the chain is induced by raising to the qv-th power). The last ring is the direct sum of fields, since 9 the polynomial ~ is separable. Consequently, the ring ~F~-~ has no nonzero nilpotents. On the other hand, the nilradical Z~i(~f)=~ax/(~| (~97(~-9[~4,.-.~m])), since an arbitrary element ~%~ can be represented in the form 6b=~L~b~ " where 6b~ ~ [~4s is a finite system of generators of the ideal 7q~F , the polynomials ~Ls ] , and, consequently, 6L~@m#-~(]~,N~-9-[~, ~m]) for some s. From this ~.. it follows that~e~5)C~(~ [~4A,...)~o] ) , i.e., ~6~(~)=0 . Obviously, the homomorphism ~ is surjective. The lemma is proved. re' For the construction of polynomials ~/?~,).-. ~ , defining the component Ww we formulate the following basic property of a generic point. Let @9= ~ ~,~ r ~-~4~,< 9 ~ LEM~ 2.7. Let A] be a homogeneous polynomial. Then ~/ vanishes identically on the component Ww if and only if ~/~ (4)Y4/~o)'")~/~0) =0 in the field [ 0% ]. suitable polynomial ~e~ [Yo,...~Y m ] Using the expressions from (2), one can find the ~v Ym/Y0) in the field ~'[0~] =.~ (~4~...}%~_,$_~) [ 0~] The polyvalue of q~ (~Y4/Yo~...) nomial %{ vanishes identically on the component Ww if and only if O=~f(4/{~/Yor~ e ~ (~/r . The latter is equivalent to the fact that 0=~/4~/~,~ ~Y~.~.J~,~{~.~) , ~,/L,,aY, mlr,,t'l --(" ~ "-o.'". m-.+-., _, ~.r+-,,., .i ;'".
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 28 Let ~CP~(~) be a variety of degree ~~ , defined over some infinite or sufficiently large finite field K and ~cWc~ m , where W is a projective variety. Then there exists a homogeneous polynomial ~k[Xo~...~X~] such that ~(~)~<a and g vanishes identically on U and, moreover, for any absolutely irreducible component W, of tl~e variety W, which is not an absolutely irreducible component of the variety U, . the dimension a~(~/4 fl i~=O})=~OA/4) --i Proof. Let ~='~;~ be the decomposition into components which are defined and irreducible over K. We prove the assertion of the lemma respectively for each component Ui. As a result, we get polynomials gi and after this one can set ~=,~$, keeping in mind that ~(~.)=_~-~ ['~2~,'~) . Hence in what follows, without loss of generality, we shall assume that the variety U is defined and irreducible over K. Then all absolutely irreducible components of the variety U have the same dimension~ We choose in each component W~, which is not a component of the variety U, one point ~f4~/4 \r~ From considerations of "general position" (cf., e.go~ [14]) it follows that there exists a (surjective) projection ~:~--~(%)+~) with center in a suitable (ndim U -r)-dimensional plane ~Q ~ , defined over the field K, such that ~t~=~) and ~u(~qAF~>~-~) for a!Icomponents Wlo For convenience of notation we shall assume that ~u(X0:--.:X~o:.-.:X~+~. Moreover, without loss of generality we shall assume that • Since U is defined over K (cf. the proof of Lemma 2.6), the homomorphism ~| is an isomorphism <here and later, are considered as rotional functions either on U or on ~----~))o To the dominant morphism ~u:45~---~) corresponds the dual imbedding of rings ~ [~)~ {~o~ O}]=~[X4/~oF"~.+4/X~ ~ ~[~ f~70}] -~ ~ Our next goal is to show that the homomorphism ~: N@~i[XJXo~..vXi~/Xo]-'~i[~(~/a{~o~ol] is an isomorphism. Obviously, ~ is an epimorphism. On the other hand, the homomorphism K|174 ...~X~/Xo] is a monomorphism due to the fact that the tensor product over a field preserves injectiveness [3]~ It follows from this that ~ is also injective and, consequently, v(u) is defined over K (see the proof of Lemma 2.6)~ Further, ~(u) is a hypersurface in P~(%)+~ and let ~Ek [~0)...~i~)+~] define ~(u). Obviously, i~~(~))4~)4~ [3]. It is straightforward to verify that the polynomial g is the one sought. This completes the proof of the lemmao COROLLARY. Let ~cAmQ~l be a variety defined over the field K, all of whose components have the same dimension n -m. Let us assume that the linear forms ~{~ .... 5~+46 K [X6...,Xm] have the property that the rational functions h~...~_~ form a transcendence basis for all components of the variety U. Then the ideal [C~ [74~ ~ ..o~k~_~+4] of relations on U between is principal and has a ~enerator (~)= [ ~ where ~D'~ < [~4~ ..... Y~-~,4] is a polynomial of degree i~ ~ ~ ~ If U is irreducible over K, then ~ is also irreducible over K. Proof. We consider the projection 6~:~--~A ~-~ § , defined by the formula (X4j,~,~ X~--~(u~,.,~_.++4)-It follows from Lemma 2.8 that the variety ~(u) is defined over K. the hypothesis of the corollary, any component of the variety ~(u) has dimension (n -m), and, consequently, ~(u) is a hypersurface in ,~m~+i ~ defined by some polynomial d~ [~4~,,,~Y~_~t.~] of degree ~(~)=i~(~(~))41~(~) (see the proof of Lemma 2.8). If U is irreducible, then ~(u) is also irreducible, and, consequently, ~ is irreducible, which completes the proof of the corollary. By We proceed now to the construction of the required family of polynomials ~qfo(a~ I) .... ~/$*~), where N ~< ~5~_(~+~) ~ The polynomials ~0~%r~'---)~f~ ~y form a basis for the linear space

f over the field F of all homogeneous polynomials q~ ~[Yo~...~fI~] of degree ~ ~(~+4)

Now we proceed to perform the following step of the algorithm for 9 the tree of components. We consider the polynomials T0~-.-~K-~ and for each of them we verify whether it vanishes identically on the component Wv. Namely, we fix i and we substitute in We verify that at least one of the vectors oZ~ .... ~o~N~ can be taken as ~--0 ~" "'~',K-~ "/ , so that ~m+~ will not vanish identically on Wv for any vertex v of level m, which is not a leaf of the first type. In the opposite case, by Dirichlet's principle there exist at least k vectors among ~4~,,,)o~, (let them be o~4~..7~o~ K ), such that ~[a~)~ IC~K) vanishes on Wv for some fixed vertex v of level m (which is not a leaf of the first type), since the number of vertices of level m is not We turn now to the bounds for the length of description of the coefficients from H of all the rational functions constructed and the degree i~T4,.,.aTbi~Yd(~). We recall that then the algorithm in See. 4 constructs a basis q~)...p V~ ) of all solutions of some homogeneous linear system with coefficients from the field F (see above the description of the algorithm). The unknowns in this system are the coefficients of the At the end of its work the algorithm returns from the coordinates {Yi} introduced earlier to the original coordinates {Xi}. For this we need the following lemma.

LEMMA 2.10. Let Ww be a variety, irreducible over the field F, and let the isomorphism In conclusion, at the very end of its work, the algorithm chooses all components which coincide, corresponding to leaves of the first type of the tree of components. For this, for each pair of components obtained, it substitutes the expressions from (2) for a generic point of one of these components into the system of equations constructed defining the other component, and conversely. By Lemma 2.7, the components coincide if and only if the results of all these substitutions are equal to zero.