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In recent years a number of algorithms have been designed for the "inverse" computational problems of polynomial algebra-factoring polynomials, solving systems of polynomial equations, or systems of polynomial inequalities, and related problems-with running time considerably less than that of the algorithms which were previously known. (For the computational complexity of the "direct" problems such as polynomial multiplication or determination of g.c.d.'s see [START_REF] Aho | The design and analysis of computer algorithms[END_REF][START_REF] Knuth | The art of computer programming[END_REF] and also [START_REF] Yu | Multiplicative complexity of a pair of bilinear forms and of the polynomial multiplication[END_REF].) It should be remarked that as a result a hierarchical relationship between the computational problems of polynomial algebra, from the point of view of computational complexity, has been elucidated. The successful design of these algorithms depended to a large degree on developing them in the correct order: first the algorithms for the problems which are easier in the sense of this hierarchy were designed, which were then applied as subroutines in the solutions of more difficult problems. So far problems of the type discussed here have been considered easier only when they are special cases of the more difficult ones; e.g., the solution of a system of polynomial equations is considered as a particular case of quantifier elimination.

A powerful impetus for this development came initially from the development of polynomial-time algorithms for factoring polynomials. On the other hand, a major role has been played by a new insight from the computational point of view: treating the solution of systems of polynomial equations in the framework of the determination of the irreducible components of an algebraic variety. This has made it possible to apply the polynomial factorization algorithm to this problem. In addition a successful reduction of the problem of solving systems of polynomial inequalities to the "nonspecial" case of this problem was achieved by means of an explicit use of infinitesimals in the calculations, and the "nonspecial" case was in turn reduced to the solution of a suitable system of polynomial equations. Finally, for the design of decision procedures for the first order theories of algebraically closed or real closed fields, appropriate solvability criteria for the corresponding systems with variable coefficients were produced which are "uniform" in the set of auxiliary parameters. Since all the bounds on time complexity given in the present paper are only specified up to a polynomial, while on the other hand all reasonable models of computation (such as Taring machines or RAM's) are equivalent in the sense of polynomial time complexity, the choice of a particular model of computation is irrelevant to this paper. One may take the complexity measure below to be the number of bit operations executed. As usual, complexity is considered as a function of the size of the input data in the worst case. The terms "polynomial time" and "exponential time" will be used in this sense (see, e.g., [START_REF] Aho | The design and analysis of computer algorithms[END_REF]).

1. Factoring polynomials. Attempts to design procedures for factoring polynomials go back to Newton (for a historical survey see [START_REF] Knuth | The art of computer programming[END_REF]). The Kronecker-Schubert algorithm for factoring polynomials from the ring Q[Xi,..., X n ] is well known (see, e.g., [START_REF] Van Der Waerden | Moderne Algebra[END_REF]). This and similar algorithms have exponential running time, however. Thus the question arose as to whether a polynomial time algorithm for factoring polynomials exists.

In the case of polynomials / G F P [X) in one variable over a finite field of characteristic p, a positive answer to this question was given by Berlekamp's algorithm (see, e.g., [START_REF] Knuth | The art of computer programming[END_REF]), whose running time is polynomial in p, s and the degree deg x (/). For a long time there was no significant progress in attempts to design fast algorithms for factoring polynomials, until finally in [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] an ingenious polynomial-time algorithm for factoring polynomials from the ring Q[X] was produced. In [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] the problem of factoring polynomials was reduced to one of finding a sufficiently short vector in a lattice, and in addition for the latter problem a polynomial-time algorithm was designed. The result of [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] was then generalized in [START_REF] Chistov | Polynomial-time factoring of polynomials over a global field[END_REF] (see also [START_REF]Subexponential-time solving systems of algebraic equations. I, II[END_REF][START_REF]Complexity of quantifier elimination in the theory of algebraically closed fields[END_REF][START_REF] Yu | Fast decomposition of polynomials into irreducible ones and the solution of systems of algebraic equations[END_REF]), where a polynomial-time algorithm for factoring polynomials / G F[X\,... ,X n ] in many variables over a fairly large class of fields F was produced. We mention also that in [START_REF] Kaltofen | A polynomial reduction from multivariate to bivariate integral polynomial factorization[END_REF][START_REF]A polynomial-time reduction from bivariate to univariate integral polynomial factorization[END_REF] an algorithm for factoring polynomials from the ring Q[Xi,... ,X n ] was designed, whose complexity is polynomial for a fixed number n of variables.

Before proceeding to an exact formulation of the result from [START_REF] Chistov | Polynomial-time factoring of polynomials over a global field[END_REF], we need to describe how a ground field F and a polynomial / G F[Xx,..., X n ) are presented. Thus, we consider a field of the form F = H(T\,... ,T e )[rj\, where H = Q or H = F p (in other words if is a prime field), the elements T\,...,T e are algebraically independent over H, the element r\ is separably algebraic over the field H(T U .. ..T.). Let <p(Z) = Z^< deg ,(",fo (1) /P (3) )^ € H{T U .. .,T e )[Z] be the minimal polynomial of r\ over the field H(T\,... ,T e ) with the leading coefficient lcz(<p) = 1, where the polynomials <pj\ <pW G -ff" [Ti,... ,T e ] and the degree deg(^2)) is the least possible. Any polynomial / G F[Xi,... ,X n ] can be uniquely represented in the form /= E te* UbW^-'-xi? Another measure of the size of a representation of a polynomial is the (bit) length of its coefficients (from the field H). Namely, if H = Q and a/ß G Q, where a,ß are relatively prime integers, then the length l(a/ß) is defined by log 2 (|a/?| + 2); if fl" = Fp then the length 1(a) for any element a G F p is defined as log 2 p. The length /(/) of the coefficients of a polynomial / is defined as the maximal length of the coefficients from H of the monomials in the variables Ti,... ,T e occurring in the polynomials «..ii....,."»&• Finally, as the size £_(/) of a polynomial / we take here the value

(max^ deg X| (/) + l) (mm deg T .(/) + l) (deg z fo>) + !)*(/), analogously 
Lifa) = (/^ de ftr,Gp) + l) (<kgz(^) + l)Jfop)-
The size of a polynomial provides an estimate for the sum of the bit lengths of all its coefficients. We use the notation g± < g 2 P(gs, • • •, 0_) for functions g\,..., g 3 to mean that for a suitable polynomial P the following inequality holds: |ffl|<MP(N,...,|ffa|).

THEOREM 1. One can factor a polynomial f over the field F within time polynomial in L\(f), L\(ip), p. Moreover for any normalized divisor f\ G F[X\,... ,X n ] of the polynomial f the following bounds are valid:

d egT,(/i) < ^gT .(f)P (max^ deg x .(/), max deg rj .(^),deg z (p) J , 1(h) < (1(f) + 1(<P) + e max deg T (/) + n) i<j__ß •Plmax deg x (/),max deg T (^),deg z (^) ) .
First Theorem 1 was proved in [START_REF] Chistov | Polynomial-time factoring of polynomials over a global field[END_REF] for finite fields F, where in order to reduce the multivariable case to the case of two variables an effective version of Hilbert's Irreducibility Theorem was given.

Theorem 1 has various applications (see, e.g., [START_REF]Subexponential-time solving systems of algebraic equations. I, II[END_REF]) to absolute polynomial factorization, to constructing a primitive element in a field extension, and to finding the Galois group of a polynomial.

Solving a system of polynomial equations. Let the polynomials

/i? •••)/« ^ F[Xi,...,X n ]
be given for a field of the same form as in §1. Assume for the present section that the following bounds are fulfilled:

de Sx! x n {fi) < d, deg Tl Tei z{<P) < d u d eg riI ...,T B C/i) < d 2 , l(<p)<M u l(h)<M 2 , l<i<K.
A way to decide the solvability of a system of the form /i = ••• = /« = 0 over the algebraic closure F of a field F was given in the nineteenth century relying on elimination theory (see, e.g., [START_REF] Van Der Waerden | Moderne Algebra[END_REF]). The time complexity of this procedure, however, is nonelementary (in particular, it grows faster than any tower of a fixed number of exponential functions). In [START_REF]Constructions in algebra[END_REF] (see also [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed fields[END_REF]) a method was devised with the help of which one can solve systems within time (M 2 K,d) 2 when either JF = Q or F is finite. In [START_REF] Lazard | Resolution des systèmes d'équation algébriques[END_REF] an algorithm was produced for solving a system of homogeneous equations in the case when the projective variety of all its roots (defined over the field F) consists of a finite number of points, and the running time of this algorithm is polynomial in M 2 , K,d n ,p'\î the ground field F is finite of characteristic p. In [START_REF]Subexponential-time solving systems of algebraic equations. I, II[END_REF] (see also [START_REF]Complexity of quantifier elimination in the theory of algebraically closed fields[END_REF][START_REF] Yu | Fast decomposition of polynomials into irreducible ones and the solution of systems of algebraic equations[END_REF]) an algorithm for solving systems of polynomial equations was designed, whose running time can be bounded by a polynomial in M 2 ,K,d n ,p in the case when either the field F = Q or F is finite.

Actually, the algorithm from [START_REF]Subexponential-time solving systems of algebraic equations. I, II[END_REF] finds the irreducible components Vi of the variety V = \J { Vi C F of all the roots of the system /_ = • • • = f K = 0. Furthermore, the algorithm represents each component in two ways: by a generic point, and secondly by a certain system of polynomials, whose associated variety coincides with the component.

In this connection, a generic point of a variety W C F of dimension dim(W^) = n -m which is both defined and irreducible over the perfect closure F p °° of the field F [START_REF] Zariski | Commutative algebra[END_REF] is an effective version of the usual notion of generic point in algebraic geometry (an embedding of the field of rational functions on the variety). Thus we now define a generic point to be a field isomorphism of the following form:

F(t 1 ,...,t n . m )[e]cF(X jl ,...,X jn _ m ,X p 1 '',...,X^)cF^(W) (1) 
where _i,..., t nm are algebraically independent over the field F, and in addition F p °°(W) is a field of rational functions on the variety W over the field F p °°, and the exponent v > 0 (we adopt the convention that p v = 1 when char(jP) = 0); furthermore the element 6 is the image under the isomorphism (1) of a linear function Y2i<j< n c jXj for certain natural numbers ci,..., c n . Under the isomorphism (1) the coordinate function Xj. is mapped into U, for 1 < i < n-m.

The algorithm represents a generic point by specifying the coefficients ci,..., c n , the exponent p u , the minimal polynomial $(Z) G F(t±,..., t nm )[Z] of the element 6, and the images under the isomorphism (1) of the functions _YJ in the field F(t\,... ,t nm )\6\.

In the formulations of the theorems below we use the notations introduced in (1), and we define the degrees and the lengths of the coefficients of tb of their images.

coefficients of the functions Xj as the degrees and the lengths of the coefficients THEOREM 2. For given polynomials /i,...,/« one can find all irreudcible components Vi of the variety V C F of all the roots of the system f\ = • • • = f K = 0 within time polynomial in M±,M 2 , (d n did 2 ) n+e ,K,p. Moreover, for each component Vi the algorithm yields a generic point for it (see [START_REF] Aho | The design and analysis of computer algorithms[END_REF]) and a family of polynomials &[,..., $}/ G F[X\,.. .,X n ) such that Vi coincides with the variety of all roots of the system ^y = • • • = #$ = 0. Denote m = codim Vi, 0i = 0, $i = <&. Then the following bounds hold:

p v < d 2m , CJ < deg z ($*) < degVi <(d-l) m , N < m 2 d* m ; z(<^y(xf),^ degx, x B (»i°) < rf 2m ; <***_ TM ] ) < d*P{drM
Theorem 2 allows us to answer the principal questions about the variety of roots of a system of polynomial equations, namely, whether the variety is empty, and what its dimension is. Provided that the variety consists of a finite number of points, the algorithm enumerates all of them; otherwise if the variety is not zero-dimensional then the algorithm allows us to pick out any desired number of roots of the system.

Evidently, the time-bound in Theorem 2 cannot be considerably improved in general, if one desires to find all the irreducible components of a variety, since the size of a presentation of a component with dimension near n/2 is of the order 2 M 2 d n in the case when either F = Q or F is finite.

The algorithm from Theorem 1 is involved essentially in the proof of Theorem 2. On the other hand, polynomial factorization is a particular case (when «: = 1) of the problem of finding all the irreducible components of a variety.

As a corollary of Theorem 2 one can find all the absolutely irreducible components of a variety within the same time-bound as in Theorem 2 [START_REF]Subexponential-time solving systems of algebraic equations. I, II[END_REF].

Note that the methods discussed do not allow us to recognize within the same time-bound, whether a polynomial / belongs to an ideal (/_,...,//_) C F[Xi,... ,X n ] (by means of Theorem 2 one can test, however, whether a polynomial / belongs to the radical rad(/i,..., f K )).

Quantifier elimination in the first-order theory of algebraically closed fields.

Quantifier elimination in the first-order theory of algebraically closed fields is a generalization of the problem of solving systems of polynomial equations. Thus, consider a formula of this theory of the form

3X 1A • • • 3X li9l V_Y 2|1 • • -V_Y 2j , 2 • --3X aA • • • 3X a>a _ (II) ( 2 
)
where II is a quantifier-free formula of the theory containing /_ atomic subformulas of the sort (fi =0), 1 <i < K, here the polynomials fi G F\X\,... ,X aQ ,Xi^,...,Xa ìSa ]

(we assume the field F and the polynomials fi satisfy the same bounds as in the beginning of the previous section). Denote by n = so + s_ + • • • + s a the total number of variables (including free ones X\,... ,X 8Q ), and by a the number of quantifier alternations in the formula (in the presentation of the formula (2) a is odd, but this is not essential).

In [START_REF] Tarski | A decision method for elementary algebra and geometry[END_REF] (see also [START_REF] Seidenberg | A new decision method for elementary algebra[END_REF]) a quantifier elimination procedure was described, which for a given formula of the form (2) yields an equivalent quantifier-free formula. The time-bounds of these procedures, however, were nonelementary. In [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed fields[END_REF] a quantifier elimination method is described, having time-bound (M 2 K,d) 2 " in the case when either the field F = Q or F is finite (when F = Q the same time-bound follows from the methods of [START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition[END_REF][START_REF] Wüthrich | Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper[END_REF]). In [START_REF]Complexity of quantifier elimination in the theory of algebraically closed fields[END_REF] a quantifier elimination algorithm is produced with time-bound polynomial in M 2 , (K,d)(°W> ° in the case when either F = Q or F is finite, more exactly the following is valid. THEOREM 3. For a given formula of the form (2) one can construct an equivalent quantifier-free formula of the first-order theory of algebraically closed fields within time polynomial in M\,M 2 ,(Kd)^°^n^ ae ,(d\d 2 ) nJte ,p. Moreover the polynomials gij G F[X\,... ,X SQ ] satisfy the following bounds:

àeg Xl Xao ( 9ij ) < (ÄC r)(8a(»+3)(n +a -)/a)-= M . degT u ... t T e { a ij) < d 2^(M,^ï); l( Qi j) < (Mi + M 2 + ed 2 )P(M,dì); M,K < M.
The main auxiliary subroutine for proving the theorem is the projection (with respect to many variables) of a quasiprojective variety, based on Theorem 2. Furthermore, a bound on the degree of a projection of a constructible set is obtained. For a constructible set W C F we say that its degree degÇW) < D, provided that there is a representation W = UtC^A^*)» w ^ere "^5 Ui are closed sets (in the Zariski topology [START_REF] Wüthrich | Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper[END_REF]) such that Ei( de g(^) + d eg(£Z_)) < D. The method from [START_REF]Complexity of quantifier elimination in the theory of algebraically closed fields[END_REF] entails the following bound. If TT: F -• F is a linear projection, then deg(<?r(W)) < (deg(^))°( nm+1 ).

The time-bound in Theorem 3 is significantly lower than time-bounds from [START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition[END_REF][START_REF] Wüthrich | Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper[END_REF][START_REF] Monk | An elementary-recursive decision procedure for Th(i_, +[END_REF][START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed fields[END_REF] for small a. We remark, on the other hand, that an exponential lower bound for the complexity of a decision procedure for the first-order theory of algebraically closed fields was obtained in [START_REF] Fischer | Super-exponential complexity of Presburger arithmetic[END_REF] (see also [START_REF] Berman | The complexity of logical theories[END_REF]) for a succession of formulas in which the number a of quantifier alternations grows linearly with the number n of variables. From this remark and from Theorem 3 one can conclude that the parameter a gives the most significant contribution to the complexity of quantifier elimination in a formula of the theory. 4. Solving system of polynomial inequalities. Let a system of polynomial inequalities /i>0,...,/ m >0,/ m+ i>0,...,/ K >0

(3) be given, where the polynomials fi G Q[Xi,..., X n ] satisfy the bounds

d eg Xl x n Ui)<d, l(fi)<M, 1 <*</_.
Decidability (over the field R) of systems of the form (3) was proved in [START_REF] Tarski | A decision method for elementary algebra and geometry[END_REF] (see also [START_REF] Seidenberg | A new decision method for elementary algebra[END_REF]). The time-bounds of the procedures from [23, 21], however, were nonelementary. In [START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition[END_REF][START_REF] Wüthrich | Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper[END_REF] the algorithms for solving systems of inequalities were designed with time-bound (M/_d) 2 n (also, an algorithm with a worse elementary time-bound was described in [START_REF] Monk | An elementary-recursive decision procedure for Th(i_, +[END_REF]). In [START_REF] Vorob'ev | Finding real solutions of systems of polynomial inequalities in subexponential time[END_REF] an algorithm for this 2 problem was produced with time-bound polynomial in M(/_d) n . We mention that in the case when deg(fi) = 1 for 1 < i < « (linear programming) a polynomial time algorithm was described for the first time in [START_REF] Khachian | A polynomial algorithm in linear programming[END_REF] (a more practical polynomial time method was described in [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF]).

For the exact formulation of the result [START_REF] Vorob'ev | Finding real solutions of systems of polynomial inequalities in subexponential time[END_REF] we introduce the notion of a representative set for a semialgebraic set. The set consisting of all real points satisfying a system of inequalities of the form (3), is a semialgebraic set S C R n , which can be represented as a union S = \J i Si of its connected components (in the euclidean topology), each Si being in its turn a semialgebraic set [START_REF] Tarski | A decision method for elementary algebra and geometry[END_REF]. We say that a finite family of points T C S C R n is a representative set for the system of inequalities (3) (or for the semialgebraic set S) if T CìSi ^ 0 for every i.

Observe that unlike §2, where an algebraic point from F was given by the algorithm actually as an element of a class of points conjugate over the field F, to represent a real algebraic point a = (a\,... ,a n ) G R n one needs to specify an interval containing a unique root of the minimal polynomial of a primitive element of the field Q(ai,... ,a n ). Namely, ai = Y^j a i $ where a\ 3 We remark that the number of connected components Si of a semialgebraic set S does not exceed (KO 1 ) 0 ^ (see, e.g., [START_REF] Milnor | On the Betti numbers of real varieties[END_REF]). The proof of Theorem 4 involves essentially Theorem 2.

' G Q and 6 G R is a root of a polynomial ®(Z) G Q[Z] which is irreducible over Q, furthermore 0 = Y^i<i< n c i a i

Deciding Tarski algebra.

Similarly to the case of algebraically closed fields ( §3) we now consider the first-order theory of real closed fields (or in other words, Tarski algebra). Namely, consider a formula of the form

3*1,1 • • • 3_Yi, ai VX 2 ,i • • -VX 2iS2 • • • 3X M --. 3X ûjSa (Q) ( 4 
)
where Q is a quantifier-free formula of Tarski algebra, containing /_ atomic subformulas of the kind (/_ > 0), 1 < . < /c; here the polynomials fi G Q[Xi ì i,... ,Xa t3a ]. As in §3 a is the number of quantifier alternations. Unlike §3 we consider only closed formulas (without free variables) in the present section; denote by n = si + \-s a the number of all variables. As in §4 assume that deg(/i) < d, .(/<) < M, 1 < i < /_.

In [START_REF] Tarski | A decision method for elementary algebra and geometry[END_REF] (see also [START_REF] Seidenberg | A new decision method for elementary algebra[END_REF]) a quantifier elimination procedure for Tarski algebra was described, which implies its decidability. The time-bounds for these procedures, however, were nonelementary. In [START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition[END_REF][START_REF] Wüthrich | Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper[END_REF] quantifier elimination methods for Tarski algebra were described with running time (M/_d) 2 n . (Also in [START_REF] Monk | An elementary-recursive decision procedure for Th(i_, +[END_REF] a certain method was described having an elementary, but worse time-bound.) In [10] the following theorem is claimed. THEOREM 5. There is a decision algorithm for Tarski algebra with running time for formulas of the form (4) polynomial in M(Kd)(°( n ^ ° .

In the proof of Theorem 5, Theorems 3,4 are involved essentially. Observe that as in §3 one can draw the conclusion that the parameter a makes the most significant contribution to the complexity of the decision procedure.

As a corollary of Theorem 5 one can calculate the dimension of a semialgebraic set S C R n consisting of the solutions of a system of the kind (3) within time polynomial in M(Kd)(°( n ^ . Note in conclusion that it would be possible to design a quantifier elimination procedure for Tarski algebra with the same time-bound as in Theorem 5, provided that one could solve within time e.g. P(M(Kd) n ) at least one of two following computational problems. First: elimination of a single quantifier in a formula of Tarski algebra. Second: for a given semialgebraic set S C R n to find its connected components Si, i.e., to find quantifier-free formulas f_i of Tarski algebra such that Si coincides with the set of points in R n satisfying Vii.
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 4 f°r some natural numbers c±,..., c n ; the algorithm gives <&,oi£\ci and in addition an interval (ßi,ß 2 ) C R with rational endpoints ß\ < ß 2 , containing only one root 0 of the polynomial $. Below in 4}he-foimulation=of^heorem=4-we-utilte^ THEOREM For a given system of inequalities of the kind (3) one can construct a representative set T containing (/_d)°( n ) points within time polynomial in M (ad)71 . Moreover, for any point a = (_*i,..., a n ) G T the following bounds are valid: d < deg(_) < (Kd)°W; /(_0,f(af ),*(/?!),/(A) < A_(/e_)°<»>.