Dima Yu Grigoriev

Marek Karpinski

THE MATCHING PROBLEM FOR BIPARTITE GRAPHS WITH POLYNOMIALLY BOUNDED PERMANENTS IS IN NC (EXTENDED ABSTRACT)

It is shown that the problem of deciding and constructing a perfect matching in bipartite graphs G with the polynomial permanents of their n n adjacency matrices A (perm(A) = n O(1)) are in the deterministic classes NC 2 and NC 3 , respectively. We further design an NC 3 algorithm for the problem of constructing all perfect matchings (enumeration problem) in a graph G with a permanent bounded by O(n k). The basic step was the development of a new symmetric functions method for the decision algorithm and the new parallel technique for the matching enumerator problem. The enumerator algorithm works in O(log 3 n) parallel time and O(n 3k+5:5 log n) processors. In the case of arbitrary bipartite graphs it yields an `optimal' (up to the log n-factor) parallel time algorithm for enumerating all the perfect matchings in a graph. It entails also among other things an e cient NC 3 -algorithm for computing small (polynomially bounded) arithmetic 1 permanents, and a sublinear parallel time algorithm for enumerating all the perfect matchings in graphs with permanents up to 2 n " .

Introduction.

Given a bipartite graph G, and its (bipartite) adjacency matrix A. The problem of constructing all perfect matchings of G (the computation of the arithmetic permanent perm(A)) is #P -complete Va 79]. Let PER T (logical permanent problem) denote the set of all square adjacency matrices that have a perfect matching. PER T does have polynomial time algorithms and O(m 5)-uniform circuits HK 73], Ra 85].

Also a problem of nding some perfect matching (not the enumeration of all matchings) can be done in polynomial time HK 73]. The problem of perfect matching for bipartite graphs is known to be in RNC 2 MVV 87], KUW 85]. The problem of deciding whether there exists a perfect matching (the problem of the logical permanent) possesses some interesting lower bound properties for monotone circuits Ra 85], as well as interesting connections of its circuit upper bounds to the intractability of the discrete logarithm problem FLS 85], for example. In 1984, Rabin and Vazirani RV 84] have proved that if a graph has a unique perfect matching, then the problem of nding it lies in NC.

Kozen, Vazirani and Vazirani KVV 85] and Hembold and Mayr HM 86] have designed NC-algorithms for the problem of testing for unique matching as well as for interval graphs and the connected problem of 2-processor scheduling. DK 86a] has generalized the result on interval graphs to strongly chordal graphs (Fa 83], Ta 85]). It was observed in DK 86a] that the perfect matching for chordal graphs is complete for the general matching problem. Surprisingly, it was proved in DK 86b] that the problem of matching for regular graphs is complete for the general matching problem.

It is also known that the perfect matching construction for bipartite regular graphs is in NC 2 LPV 81]. In Br 86] interesting approximation methods have been proposed for bipartite matching problems. The status of the general perfect matching problem remains open and is still one of the most intriguing open problems in parallel computation.

In this paper we attack the problem of checking and constructing perfect matchings in bipartite graphs in the case where its number is bounded by the constants and the polynomials. It was known from Rabin and Vazirani RV 84] that if a graph has a unique perfect matching, then the problem of nding it lies in NC.

The aim of this paper is to prove the following three results:

(1) If a bipartite graph G has a polynomial adjacency permanent (perm(A G) cn k), then the problem of deciding the existence of a perfect matching and its construction is in NC 2 and NC 3 , respectively (Theorems 1 and 3).

(2) If a bipartite graph G has a bounded adjacency permanent (perm(A G) k), then the construction problem of `all perfect matchings' lies in NC 2 (Theorem 2).

(3) If a bipartite graph G has a polynomial adjacency permanent, then the problem of constructing all perfect matchings lies in NC 3 (Theorem 4). The enumerator algorithm works within O(log 3 n) parallel time and O(n 3k+5:5 log n) processors.

The algorithm involves development of the new method of symmetic functions (Theorem 1) and the new parallel techniques for the matching construction and the matching enumerator.

It is interesting to notice that we have displayed a new parallel complexity feature of the matching problem, the easiness of its parallel enumerator for the small number of solutions. This feature is seemingly not shared, on the di erent complexity levels, by other hard counting problems (cf. VV 85], MVV 87]).

The Algorithms.

Given a bipartite graph of n vertices, denote its 0-1 bipartite adjacency matrix by A G . The permanent of G is the permanent of A G = (a ij) n n , i.e. the number perm(A G) = P a 1 (1) a 2 (2) a n (n) , where summation extends over all per- mutations on f1; 2; ; ng. Given a 0-1 matrix A = (a ij), a 1-pattern t A of A is a mapping from f1; ; ng f1; ; ng into f1; ; n 2 g such that t A (i; j) = l if a ij = 1 and a ij is the l-th non-zero element, t A (i; j) = 0 otherwise. Theorem 1. If a bipartite graph G has a polynomial permanent, perm(A G) cn k for given constants c and k, then the problem of deciding the existence of a perfect matching (the logical permanent problem) is in NC 2 .

Proof. Suppose G is a given graph of n vertices and A its adjacency matrix. Let p 1 ; p 2 ; ; p k denote consecutive prime numbers. We construct the following NC 2 -algorithm for deciding the existence of a perfect matching:

1. Construct in parallel all matrices A m = (a m ij) for 1 m cn k by a m ij = (p t A (i;j)) m if a ij = 1 0 otherwise 2. Compute the determinants of A m ; 1 m cn k : Det(A m) = m

In this paper we shall use the boolean circuit model of computation (Co 85]). Computing the determinants of an n n matrix of n-bits numbers takes O(log 2 n) boolean parallel time and O(n 4:5) processors (BGH 82], BCP 83]).

3. If 9m m 6 = 0] then `accept' else `reject'.

We prove the correctness of the algorithm by the following Lemma 1. 8m m = 0] () perm(A) = 0.

Proof. (=)). We make use of the fact that the determinants of the consecutive matrices (a m ij) form symmetric di erences of the form P i x m i P j y m j ; for x i ; y j prime codings of all matchings, 1 m cn k . Codings x i and y j are pairwise di erent x i 6 = y j , x i 6 = x j , etc. or equal to zero. m = P i x m i and 0 m = P j y m j are symmetric functions. All such functions are uniquely represented by the elementary symmetric functions s i (cf. Ma 79]), s i stands for the i-th symmetric function, by the use of the Newton formulas (cf. Ga 60], pp. 87-88): 1 = s 1 ; 2 = s 2 1 2s 2 ; 3 = s 3 1 3s 1 s 2 + 3s 3 ; etc. Any two solution systems for fx i g and fy j g must coincide up to permutations, so in general there must exist a permutation such that x i = y (i) . On the other hand all x i and y j are di erent or equal to zero; therefore equal to zero, which ends the proof.

It is interesting to note that because of the monotonicity property, computing the logical permanent of matrices with k-bounded arithmetic permanents, perm(A) k, for k = 1; 2; ; does have superpolynomial n (log n) monotone circuit complexity (Ra 85]) for all k's. It stands in contrast with our Corollary 1. The Logical Permanent Problem for matrices with k-bounded arithmetic permanents is computable within the uniform O(log 2 n) depth and O(n 4:5) size boolean circuits.

Theorem 2. If a bipartite graph G has a bounded permanent, perm(A G)

k for k a constant, then the problem of constructing all matchings of G is in NC 2 .

Proof. One sees that the algorithm of Theorem 1 encodes matchings in the form of the numbers P i x m i P j y m j for 1 m cn k . The problem of decryption of these numbers and recovery of all actual matchings is a very interesting problem of polynomial algebra. We shall be able to prove the existence of such parallel `matching recovery' in Lemma 3 for numbers of matchings bounded by log (1 2 ") n.

However, we now apply for a constant k a completely di erent method which is an interesting new `divide-and-conquer' approach to the problem of matching.

The following is the NC 2 -algorithm for constructing all matchings of a given bipartite graph with a bounded permanent, perm(A G) k for k a constant: Input: Matrix A Subroutine (Split (A `)). Take in parallel all (i; j) entries of a matrix A such that a ij 6 = 0 and compute two new matrices A `+1 1 and A `+1 2 :

A `+1 1 is the (n 1) (n 1) matrix resulting from the cancellation of its i-th row and j-th column; store the numbers (i; j). and A `+1 2 is the n n matrix resulting from plugging `0' into its (i; j)-entry.

Algorithm.

1. A 0 A G 2. Repeat in parallel subroutine Split (A `) until `= k 1.
3. Construct new matrices N = (x ij) on the leaves of the computation tree. Suppose M = (y ij) is on the leaf; then x ij = p t M (i;j) if y ij = 1 0 otherwise 4. Compute the determinants of all matrices N. 5. If a determinant is an encoding of a unique matching (the condition: det(A k 1 1) 6 = 0 and det(A k 1 2) = 0 is ful lled), recover it from the determinant (by consecutive dividing by prime numbers p 1 ; p 2 ; ; p n and retrieving stored numbers (i; j) from the computational path) and print it out. (If you do not want repetition, do additional parallel sorting.) The correctness of the algorithm is based on the following Lemma 2. For every matching in a graph G there exists a leaf of a computation tree (step 3) with the unique matching in it. We now aim at improving Theorem 2. First we prove Lemma 3.

If a bipartite graph G has a permanent bounded by log 1 2 " n; perm(A G) log 1 2 " n, then the problem of constructing all its matchings lies in NC.

Proof. Denote by k the number of matchings. Let k < log (1 2 ") n, and fq i g are such primes that 1)q i > k (in fact q i kn log n < log (1 1 2 ") n) and 2) Q i q i > 2 n (n!) k > j (x 1 ; ; x `); 1 j k; x 1 ; ; x k | products of primes plugged in matchings; the number of q i is near kn. Fix q i 0 (in parallel) and solve the system

P 1 i `xi P 1 j k `yj = A 1 P 1 i `xk i P 1 j k `yk j = A k 0 @ mod q i 0 1 A :
Take any solution x 1 ; ; x `; y 1 ; y k `(at the beginning we test `= 0; 1; ; k), then compute j (x 1 ; ; x `); j (y 1 ; ; y k l); 1 j k. Any two solutions of this system coincide up to permutations in x 1 ; ; x `and y 1 ; ; y k `(separately) because q i 0 > k. Therefore j (x 1 ; ; x `); j (y 1 ; ; y k `) are uniquely de ned and j (x 1 ; ; x `) = j (x 1 ; ; x `)(mod q i 0) j (y 1 ; ; y k `) = j (y 1 ; ; y k `)(mod q i 0) where x 1 ; ; x `; y 1 ; ; y k `is the unique (up to permutations in x 1 ; ; x `and in y 1 ; ; y k `) solution of the system 8 > < > : P x i P y j =A 1 P x k i P y k j =A k and so j (x 1 ; ; x `); j (y 1 ; ; y k `) are de ned uniquely. By the Chinese remainder theorem restore j (x 1 ; ; x `), j (y 1 ; ; y k `). It is possible since Q q i > j (x 1 ; ; x `), j (y 1 ; ; y k `). Then apply Lo 83] or BKR 84] to nd x 1 ; ; x `, y 1 ; ; y k `.

The complexity of the solving system mod q i 0 (the method of ChG 83] and ChG 84]) is polynomial in (deg) (var) 2 . q i 0 k k 2 kn log n is polynomial in n. The point is that the method of ChG 83] and ChG 84] can be done simultaneously in parallel time log (sequential time) O(log n) { its main subroutine is factoring in IF q x 1 ; ; x n] { and the method in ChG 83] needs only linear algebra { not reduction basis.

Having proved the existence of an NC-algorithm for the enumerator of log 1 2 " n matchings (which seems to be a limit for an e cient parallel algebra algorithm), we are now going to attack the general matching problem of polynomially bounded permanents, both for the construction of a matching and the matching enumerator. We are able to prove a much stronger result than Lemma 2 by using our symmetric functions technique of Theorem 1 for the solution of the logical permanent problem (surprisingly not using any e cient linear algebra).

Theorem 3. If a bipartite graph G has a polynomial permanent (perm(A G) cn k), then the problem of constructing a perfect matching lies in NC 3 .

Proof. Denote by A = (a ij) a 0-1 n nmatrix. For any entry a ij , by A ij denote the (n 1) (n 1) matrix obtained from A by canceling the i-th row and the j-th column. For any a ij = 1 test (with the help of the deciding method of Theorem 1) whether A ij has at least one matching. We call such a ij generators. Consider a row (i 0th) containing at least two generators a i 0 j 1 = a i 0 j 2 = 1 (otherwise, if no such row exists, we have found a unique matching). Then at least one of the two matrices A i 0 j 1 and A i 0 j 2 has at most half of all the matchings of the matrix A. This is a crucial point of our algorithm (the rest is a consequence of our decision algorithm of Theorem 1) Then apply the same construction to both matrices A i 0 j 1 ; A i 0 j 2 (call recursively the subroutine of Theorem 1), and so on. After t log(cn k) = O(log n) steps we shall obtain one of the 2 t matrices with the unique matching.

Theorem 4. (Catching all Perfect Matchings in NC 3) If a bipartite graph G has a polynomial permanent (perm(A G) cn k), then the problem of constructing all its perfect matchings lies in NC 3 . The algorithm works in O(log 3 n) parallel time and O(n 3k+5:5 log n) processors.

Proof. We start with a de nition: De nition. A set of entries a i 1 j 1 ; ; a i u j u of the matrix A is called (matching) active if there exists a matching in the graph corresponding to the matrix A, containing all these entries.

One can test for any given set of entries a i 1 j 1 ; ; a i u j u whether it forms an active set. Namely, it is equivalent to the fact that for all a i 1 j 1 = = a i u j u = 1, the indices i 1 ; ; i u are pairwise distinct (and also j 1 ; ; j u) and besides, in the matrix A (i 1 ; ;i u) (j 1 ; ;j u) , obtained from A by canceling the rows i 1 ; ; i u and the columns j 1 ; ; j u , there is at least one matching that can be checked by means of the decision procedure exposed above (Theorem 1). Now we describe an algorithm yielding all the matchings of the matrix A. We can suppose w.l.o.g. that n = 2 m . The algorithm works recursively in (m + 1) stages. At the rst stage it produces all the active entries.

Next, x a certain i; 1 i m; and assume that after the i-th stage the algorithm has produced the family of all the active sets of entries of the form a 2 (i 1) s+1;j 1 ; ; a 2 (i 1) s+2 (i 1) ;j 2 (i 1) for each s; 0 s < 2 m i+1 . So, at the (i + 1)-th stage for every 0 t < 2 m i the algorithm tests in parallel for any pair of active sets of the form a 2 (i 1) (2t)+1;j 1 ; ; a 2 (i 1) (2t)+2 (i 1) ;j 2 (i 1) and a 2 (i 1) (2t+1)+1;p 1 ; ; a 2 (i 1) (2t+1)+2 (i 1) p 2 (i 1) whether the union of these two sets a 2 (i 1) (2t)+1;j 1 ; ; a 2 (i 1) (2t+1)+2 (i 1) ;p 2 (i 1) forms an active set. If yes, then the algorithm outputs it as one of the results of the (i + 1)-th stage. This completes the description of the algorithm. At the end of it (after (m + 1) stages) we obtain all the matchings of the matrix A.

Let us prove that the described algorithm is in NC. The depth of the algorithm is O(log 3 n). To estimate the size of the algorithm observe that after any stage there would be less than n cn k active sets. Thus, at any stage the algorithm tests less than c 2 n 2k+1 pairs of active sets. This proves that the described algorithm lies in NC 3 and takes O(n 3k+5:5 log n) processors.

We now derive some important corollaries from the construction of Theorems 3 and 4: Corollary 2. The problem of computing a polynomially bounded permanent is in NC 3 . Corollary 3. If the number of matchings in a graph G is n O(log n) , then the decision problem (logical permanent) and the construction of a perfect matching problem are mutually O(log 2 n)-uniform depth reducible.

Corollary 4. If a bipartite graph G has a permanent less than 2 log k n , then there is a log k+1 n parallel time (log k+1 n-sequential space) algorithm for enumerating all perfect matchings. Corollary 5. If a bipartite graph G has a permanent less than 2 n " for a constant " < 1, then there is a sublinear parallel time (sublinear sequential space) algorithm for enumerating all the perfect matchings in a graph.

`Optimal' Parallel Time Enumerator Algorithm.

We consider now the computational problem of enumerating all the perfect matchings in an arbitrary bipartite graph. A lower bound for the parallel (boolean) time is (log(perm(A))) for perm(A), say, at least linear, perm(A) n (the worst case is (n log n)). We are now interested in the best possible parallel enumerators for (big sized) permanents not covered by Theorem 4. The enumerator algorithm of Theorem 4 can be reused now to design the `optimal' up to the log n-factor parallel time enumerator algorithm: Theorem 5. There exists an O(log(perm(A)) + log 2 n) log n parallel time (uniform boolean depth) algorithm for enumerating all the perfect matchings in an arbitrary bipartite graph.

Proof. Given an arbitrary bipartite graph G with the adjacency matrix A. The parallel algorithm for the logical permanent of A (Theorem 1) can be designed working in O(log(perm(A)) + log 2 n) parallel time. Now we generalize the enumerator algorithm of Theorem 4 for the case of graphs with arbitrary permanents. We reduce the resulting unbounded fan-in at every stage to the bounded one on the expense of O(log(perm(A)))-depth. This yields an algorithm working in O(log(perm(A)) + log 2 n) log n-parallel time Corollaries 4 and 5 are now special cases of Theorem 5. 4. Deciding whether the Permanent is Small; a Randomised Version of the Matching Enumerator.

It is known that for every positive integer k there exists a (0; 1)-matrix with the permanent k. The minimum order of (0; 1)-matrices with the permanent k does not exceed dlog(k 1)e + 2 for k = 2; 3; (GMW 74]). An important computational problem of bounded counting arises: given an arbitrary k; k = 0; 1; 2; 3; , decide whether perm(A) is k-small, i.e. whether perm(A) k. If the answer is yes, our enumerator algorithm of Section 2 will produce all the perfect matchings.

Our algorithms provide a way of deciding whether perm(A) = k, for k > 0, but unfortunately they cannot distinguish between zero and many matchings.

A similar situation holds for polynomially small permanents. For a function f 2 n O(1) ; perm(A) is f-small if perm(A) f(n) for an n n-matrix A. We are now interested in detecting all matrices A with f-small permanents. We produce here an attractive randomized version of our Theorem 4.

Theorem 6. (Randomised Enumerator) For any polynomial f 2 n O(1) (f(n) = cn k) there exists a randomized (Las Vegas) RNC 3 -algorithm for deciding whether perm(A) is f-small. In the case perm(A) is f-small, the algorithm outputs all the perfect matchings of A. The algorithm takes O(log 3 n) parallel time and O(n 2k+6:5 log n) processors.

Proof. There exists a Las Vegas RNC 2 -algorithm (not outputting any errors) for the logical permanents (cf. MVV 87], KUW 85], Ka 86]) working in O(log 2 n) parallel time and O(n 5:5) processors and using O(n 2 log n) random bits. We use this algorithm (instead of applying the deterministic procedure of Theorem 4) to compute the logical permanent of the active set matrices A i 1 ; ;i u j 1 ; ;j u in the algorithm of Theorem 4.

We control the number of active sets produced at any level by comparing it in parallel with the number n cn k (computed by another NC 1 -circuit). If it exceeds this number, we switch the circuit o . If not, we shall obtain a printout of all the matchings in A in O(log 3 n) parallel time. The algorithm takes O(n 2k+6:5 log n) processors.

The randomized enumerator algorithm above reduces the number of processors by the factor of O(n k) on the expense of O(n 2k+8:5 log 2 n) random bits.

Remark. As an immediate application of the randomized enumerator algorithm, we observe that the problem of checking whether perm(A) = det(A) for any given 0 1 matrix A with det(A) = n O(1) has been put in RNC 3 .

It is also interesting to note that the general problem of testing whether perm(A) = det(A) (VY 87]) for 0 1 matrices is polynomial time equivalent to the problem of checking whether a given bipartite graph has a Pfa an orientation (LP 86]), and to the Even Cycle Problem (VY 87]) for directed graphs.

Extensions.

Our results can be extended to the problem of Maximum Matching for the case of non-bipartite graphs with the polynomially bounded number of matchings. In this case we deal with computations over skew matrices and Pfa an functions rather than bipartite adjacency matrices. Due to the enumerator algorithm of Theorem 4, the problems of Maximum Weighted Matching (with weights in binary), Exact Matching (cf. MVV 87]), First Lexicographical Perfect Matching, or the connected Stable Marriage Problems are all put in NC 3 , provided the number of underlying matchings is small. Also, as a consequence of the enumerator, inherently di cult problems of counting perm(A) mod k (Va 79], VV 85]) have been proved e ciently parallelisable for the polynomially small permanents.

6. Further Research.

It remains to be seen whether the method applied in our algorithm for bounded cases of the logical permanent could be re ned to provide a general deterministic solution. It seems that a more careful look at the algebraic varieties stemming from our symmetric functions construction of Theorem 1 is now justi ed.

Independently, it would be very nice to shed some light (say, via NCreducibilities) on the mutual interdependence between the decision methods and the construction of a perfect matching for graphs with superpolynomial permanents (Theorem 3 and Corollary 3 might be good starting points).

Acknowledgements.

We are thankful to Avi Wigderson, Volker Strassen and Mark Jerrum for a number of interesting conversations. Special thanks also go to Erich Kaltofen for valuable comments concerning parallel algebra for computing integer roots of polynomials used in Lemma 3. Finally we thank Michael Ben-Or, Noga Alon and Michael Rabin for commenting on the preliminary draft of this paper.