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This paper presents a layered multi-physical model for sizing optimization as well as solving a specific optimization problem of interior 

permanent-magnet (PM) synchronous machine (IPMSM) for traction application. The advantages of the model structure are the 

management of the calculation time and the multi-physical aspect taking into consideration the iron losses and the thermal phenomena. 

An analysis is conducted over an optimization problem with different nested loops and for several operating points of the IPMSM. 

 
Index Terms—Electrical machines, electric traction vehicle, multi-physical model, sizing optimization.  

 

I. INTRODUCTION 

To enable the ecological transition toward cleaner and 

greener transportation, the automotive manufacturers partially 

or totally electrify their new models. The electrical machine is 

one of the key elements of the electrical traction chain which 

considerably affects the vehicle performances and the energetic 

efficiency. A traction machine should be able to reach the 

desired technical performances while having minimal losses 

over the whole operating cycle [1]. In this framework, the 

optimal design of the electrical machines is of prime importance 

for the electrical vehicle (EV) manufacturers. The electric 

machine design is a complex process requiring the use of a 

dedicated design model. The latter has to be sufficiently fast 

because it is intended to be run repeatedly by an optimization 

process to reach the optimal solution regarding the imposed 

constraints. In addition, the design model has to take into 

consideration all the essential phenomena for a realistic 

evaluation of the desired performances. 

Some studies on the electric machine optimization field 

exist. In [2], finite-element analysis (FEA) based optimal 

design of an IPMSM has been considered. In this study, only 

the magnetic behavior has been studied with the aim of 

reducing the torque ripple and a total harmonic distortion. 

Although the thermal phenomena and the iron losses within the 

machine have not been considered, the authors point out the 

problem of the numerical computation time with the developed 

optimization tool. In [3], a magnetic loss model is coupled to a 

2D FEA of a wound rotor synchronous machine. The control 

optimization of the studied machine has been achieved by 

considering the total losses (Joule and iron losses) instead of the 

classical approaches that consider only the Joule losses. This 

work shows the difficulty to optimize the control of the studied 

machine as well as the importance of taking into account the 

iron losses in the optimization procedure. Nevertheless, the 

sizing parameters have not been studied and the impact of the 

machine thermal behavior has been neglected. 

In [4], an optimization design of a switched reluctance 

machine (SRM) with a layered multi-physical semi-analytical 

model has been studied. The model based on the magnetic 

equivalent circuit (MEC) is used to solve the electromagnetic 

field and coupled to simple iron loss and thermal models. 

Although the used models are relatively simple, the proposed 

approach is particularly relevant for the SRM application.  

In the present study, a layered multi-physical semi-

analytical model intended to optimize a traction IPMSM has 

been developed. The model is designed to be modular. It is built 

in such a way that different granularities are offered to the 

designer in order to adjust the compromise between efficiency 

and accuracy. The whole physical phenomena involved in the 

application are considered based on three advanced models 

developed by specialists of each physics and coupled to form a 

consistent model dedicated to the design of a traction system.  

The paper is organized as follows: Section Ⅱ underlines the 

multi-physical model coupling structuration with its different 

layers as well as the calculation time of each sub-model 

corresponding to each physics. In section III, a problem of 

traction machine design has been formulated as an optimization 

problem and solved for different operating points. Temperature, 

control and geometry loops have been considered. Finally, in 

section IV, the results are presented and analyzed. The selected 

example shows the difficulties lying behind the resolution of a 

multi-physical problem in a system context. 

II. MULTI-PHYSICAL MODEL FOR SIZING OPTIMIZATION 

A. Description 

The multi-physical machine design model has been 

established by coupling three advanced models as shown in 

Fig.1. The first layer contains a generalized nonlinear adaptive 

MEC (or bidirectional reluctance network). It incorporates the 

saturation effect and uses the air-gap sliding-line technic to 

connect the static part (stator) and the moving part (rotor) of the 

machine. A detailed description of the model and the non-linear 

system resolution is given in [5]. The second layer contains 

three iron loss models with different accuracy levels (high, 

medium and coarse) [6]-[8]. The most accurate loss model used 

is the so-called loss surface (LS) model [8] that evaluates the 

iron losses in the machine based on the magnetic flux density 

waveforms given by the MEC. The third layer contains a 3-D 

aero-thermal model baptized SAME. This model allows 
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determining the thermal machine behavior depending on 

different aero-thermal conditions related to the cooling system 

and to the machine motion. SAME is nodal-based model which 

consists in discretizing the machine geometry into several 

isothermal volumes wherein the centers are connected by 

thermal conductances [9]. The temperature field is calculated in 

each zone of the machine knowing the power loss distribution 

(Joule losses PJoule calculated by MEC and iron losses PIron 

determined by the iron loss model.  

 

 
Fig.  1. Block diagram of the sizing model with different discretization levels 

(high, medium or coarse) allowing a compromise between accuracy and 

computation time.  

This sizing model is structured as an only Matlab® function 

named IPMSM with input and output data. The inputs are the 

geometrical parameters of the machine Gi, the control 

parameters Ci, the initial temperatures T0i and the options as the 

choice of the MEC discretization type, the choice of the iron 

loss model and the coupling between layers: (1, 1-2, or 1-2-3). 

Some options allow handling other functionalities like the 

parallel calculation used for the iron loss model, displaying the 

calculation progress graph, etc.  

The IPMSM model has 16 geometric variables Gi, 2 control 

variables Ci and 3 initial temperatures T0i. Their outputs are in 

the form of temporal vectors or space matrix. The quantities are 

both local (e.g., flux density in each magnetic element of the 

machine) and global (e.g., the losses of the winding heads or the 

PM temperatures). Such structuration is necessary to implement 

an adaptive design process. 

B. Computation Time 

The total execution time of the multi-physical model 

depends on the desired accuracy level. The MEC spatial 

discretization affects the iron loss model calculation times. 

Table I represents the calculation times for the different 

coupling layers executed on a classical computer (Intel® 

CoreTM i7-6700 CPU@2.6 GHz RAM 8 Go 64 bits); the idea is 

to see the order of magnitude of calculation time for each layer. 

The MEC calculation time for the medium level is a less than 

9 s. Nevertheless, if we need to use the high precision iron loss 

model, even with the coarse MEC, the calculation time becomes 

more important (around 60 s). Notice that the SAME 

computation time is of around 1 ms. 

Table 1. Calculation times for each layer of the sizing model.  

 Computing time [s] 

MEC Loss models SAME 

High Medium Coarse 

M
E

C
 High 38.0 578 0.17 0.0069 

0.0012 Medium 8.5 72 0.12 0.0036 

Coarse 3.8 56 0.1 0.003 

 

III. OPTIMIZATION PROBLEM  

As mentioned before, the purpose is to design an IPMSM 

dedicated to an EV traction application. The problem is typical; 

the machine should be able to reach predefined torque-speed 

operating points though with the minimum of losses and 

without abusively exceeding critical temperatures. Fig.2 shows 

eight operating points distributed over the torque-speed plane. 

Each point is characterized by a torque value Temj, a speed value 

Ωj and weight called wj represented in the figure by the dots 

size. This weight has been chosen according to technical 

specifications. 

 

 
Fig.  2. Operating points with different weights distributed over the torque-

speed plane. 

The optimization problem is described by three nested loops 

of the equation system (1). The O1 loop allows identifying the 

temperatures vector of the machine T0. The control loop O2 

allows the two parameters of the control necessary to to reach 

the desired torque Temref j for a given speed  Ωref j  to be identified 

for each operating point ((the control angle ψ and the stator 

current amplitude Is). This is performed while minimizing the 

total power losses and without exceeding the voltage and the 

maximal current thresholds VRMSMax and Ismax at the power 

electronic converter output.  
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Finally, the third loop O3 enables optimizing two design 

parameters: the stator length Ls, and the turn number Ns of the 

stator phases. The objective function of the O3 loop is 

formulated as a function of the power losses sum and the weight 

of the npts operating points (see Fig.2). 

A. Temperature loop – O1 

This loop allows identifying the temperatures of different 

parts of the machine for steady state operation. The model takes 

as input the initial temperatures of the active winding part T0(1), 

the winding heads T0(2) and the PMs T0(3). To evaluate the 

steady state final temperatures, an iterative process was added 

allowing minimizing the difference between the final and the 

initial temperatures. The convergence criterion ε for the 

iteration k, is defined as follows : 

 
0fk k

fk

T T
tol

T



   (2) 

Fig. 3 shows the convergence criterion evolution for the 

operating point 250 A @ 1,000 rpm on a log scale for different 

initial vectors of temperature. The number of iterations needed 

to obtain convergence is relatively low (5 iterations ≅ ε < 10-2).  

 
Fig.  3. Convergence criterion evolution for the operating point 

250 A @ 1,000 rpm. 

B. Control loop – O2 

The weakening regime is managed by the control loop to 

respect the constraints on torque, voltage and current. All the 

magnetic phenomena taken into consideration in the IPMSM 

model are used to find control variables ψ and Is. 

 
Fig.  4. Evolution of the torque as a function of electric angle ψ and current Is 

for a rotation speed of 5,000 rpm. 

If this optimization does not converge, it means that the 

operating point is unachievable for the defined machine. 

Following this approach, the robustness of the control loop is 

very important. Fig.4 shows the torque evolution as a function 

of ψ and Is for a rotation speed of 5,000 rpm. The red line 

represents the progress of the maximal achievable torque 

without the voltage constraint. The purple area shows the 

achievable torque for a voltage constraint VRMSMax=116 V. The 

areas are quite smooth, an optimization method based on 

gradient could be chosen. The identification of a control takes 

around 30 evaluations of the model. 

C. Geometry loop – O3 

Two geometrical parameters (the machine length Ls and the 

number of winding turns Ns) are selected to provide a typical 

case study and test the sizing process. 

IV. RESULTS AND ANALYSIS 

To assess the thermal loop effect on the machine behavior and 

performances, the study has been conducted in two parts. The 

optimization problem is first solved for an initial fixed 

temperature and then the thermal loop O1 was added.  

A. Without the temperature loop 

Fig.5 illustrates the (Ls, Ns) achievable areas for four selected 

operating points: no.1, 4, 6 and 8, indicated in Fig.2 and the 

associated winding temperature evolution. The studied area is: 

Ls = [60, 100] × 10-3 m and Ns = [28, 50]. The figure shows that 

the achievable domain is reduced in an opposite way in the case 

of the operating point 1 (low speed and high torque) and the 

point no. 8 (high speed and low torque). The winding 

temperature is highly affected by Ls in the case of the operating 

point no.1 and by the number of winding turns Ns in the case of 

the operating point no.8. The operating point no. 6 is set in 

weakening state wherein a valley appears clearly. Notice that 

all the model output quantities can be plotted and analyzed. 

 

 
Fig.  5. Achievable areas without the temperature loop and winding 

temperature evolution Tf(1) for 4 selected operating points. 

Fig. 6 shows the evolution of the normalized objective 

function of the O3 loop as a function of Ls and a discrete 

variation of Ns. The calculation time to obtain this area was 

5 days with a parallel calculation on the 8 operating points. The 

river shaped possible domain is mainly due to the operating 

points no. 1 and 8 in this example. Outside this domain, the 

https://www.linguee.fr/anglais-francais/traduction/convergence+criterion.html


4 

19th Biennial IEEE Conference on Electromagnetic Field Computation 

constraints of (1) are not respected. In this case, the possible 

domain might become narrow or non-existent. The normalized 

objective function has as a reference its minimum value. Thus, 

the value shows the additional loss ratio in comparison with the 

minimum. The global minimum among the calculated points is 

illustrated by a red point on Fig. 6. 

The nature of the objective function with a large and 

undefined area requires an optimization method that is 

particularly robust and able to find the achievable area. In 

addition, Ns is a discrete variable (integer) and must be managed 

by the algorithm. A mesh adaptive direct search (MADS) 

algorithm for blackbox optimization (NOMAD) [10] is used 

with a parallel calculation for the 8 operating points starting 

with an initial unachievable point in the field Ls = [30, 200] × 

10-3 m and Ns = [20, 90]. The obtained solution is Ls = 93.7 × 

10-3 m and Ns = 31 turns. The calculation time was around 15 h. 

B. With the temperature loop 

Adding a temperature loop O1 highly increases the 

calculation time. In order to get an area that is similar to the 

Fig. 6 for the same domain and with the same resolution, the 

calculation time takes 25 days using parallel calculations for the 

8 operating points. 

With O1 the optimization problem including the 8 previous 

operating points becomes impossible regarding the technical 

specifications. Indeed, there is no solution within the defined 

domain. There no achievable common area (Ls, Ns) between the 

operating points no. 1 and 8. 

Nevertheless, the optimization problem solved for 7 operating 

points after excluding the point no. 1 (points from 2 to 8). Fig. 7 

shows the evolution of the normalized objective function of the 

loop O3 as function of Ls and Ns for the domains Ls = [50, 150] 

× 10-3 m and Ns = [20, 60]. The achievable area on Fig. 7 

becomes wider than that of Fig. 6. The global minimum among 

the calculated points is stamped by a red point. The obtained 

solution is (Ls, Ns)* = (108 × 10-3 m, 20) for a calculation time 

of about 3 days. 

V. CONCLUSION 

This article presents an advanced layered multi-physical 

semi-analytical model of IPMSM for EV traction application 

intended to sizing optimization. A typical design problem 

applied to a traction machine on several operating points is 

presented. The analysis of the optimization problem is made 

from the achievable areas evolution of the temperatures and the 

objective function for different cases. The optimal solutions 

obtained by MADS algorithm for blackbox optimization 

(NOMAD) are given with the magnitude of the computation 

time. 
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Fig.  6. Evolution of the normalized objective function of the O3 loop as a 

function of Ls and of a discrete variation of Ns. 

 
Fig.  7. Evolution of the normalized objective function of the loop O3 in 

function of Ls and of a discrete variation of Ns for 7 operating points (2-8). 
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