Micro/macro-scale robotic approach for middle ear surgery
Jae-Hun So, Brahim Tamadazte, Jérôme Szewczyk

To cite this version:
Jae-Hun So, Brahim Tamadazte, Jérôme Szewczyk. Micro/macro-scale robotic approach for middle ear surgery. IEEE Transactions on Medical Robotics and Bionics, 2020, 2 (4), pp.533 - 536. 10.1109/TMRB.2020.3032456 . hal-03053016

HAL Id: hal-03053016
https://hal.science/hal-03053016
Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Micro/macro-scale robotic approach for middle ear surgery

Article in IEEE Transactions on Medical Robotics and Bionics · October 2020
DOI: 10.1109/TMRB.2020.3032456

CITATIONS 0
READS 34

3 authors, including:

Tamadazte Brahim
Institut FEMTO-ST
96 PUBLICATIONS 785 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- Microrobotics View project
- NEMRO: Impact of Smell Deficiency on Neurodegenerative Diseases View project

All content following this page was uploaded by Tamadazte Brahim on 24 October 2020.

The user has requested enhancement of the downloaded file.
Micro/macro-scale robotic approach for middle ear surgery

Jae-Hun So¹, Brahim Tamadazte¹,², and Jérôme Szewczyk³.

Abstract—This paper deals with the development of a robotic solution for middle ear surgery. The surgical procedure consists of the resection of pathological tissues that occurs inside the middle ear cavity known as cholesteatoma. The current surgical procedure is performed manually, is invasive and does not guarantee an exhaustive cholesteatoma tissues removal leading to reoccurrence in 25-30% cases. To remedy this, we developed a new surgical protocol that combines a robotic solution and original surgical instruments. On one side, it consists of a redundant seven degrees of freedom (DoFs) robotic arm extended with a 2 DoFs flexible fibroscope (emulating a future microrobot under development). On the other side, different control architectures are proposed to achieve the surgical procedure. One control mode is based on the teleoperation of whole developed system using a joystick such as an Omni device. The other mode combines comanipulation of the 7 DoFs robotic arm using an embedded force/torque sensor and teleoperation of the remaining 2 DoFs fibroscope using a lab-made in-hand joystick. The proposed materials and methods were validated experimentally using a robotic setup. The obtained results using the different control schemes are discussed.

Index Terms—Medical robotics, teleoperation, comanipulation, middle ear surgery.

I. INTRODUCTION

CHOLESTEATOMA is an abnormal skin growth that occurs in the middle ear cavity. It is usually due to ventilation problem where dead skin cells cannot be ejected out of the ear. Gradually, the cholesteatoma expands in the middle ear, filling in the empty cavity around the ossicles and then eroding the bones themselves (ossicles and mastoid). Cholesteatoma is often infected and results in chronically draining ears. It also results in hearing loss and may even spread through the skull-base into the brain. It was reported that one case per 10,000 citizens occurs every year in European countries. Currently, the most effective treatment for cholesteatoma is to surgically resect or ablate the infected tissues [1]. This procedure consists of addressing the middle ear cavity invaded by cholesteatoma simultaneously through the external ear canal and through a large mastoidectomy [2]. Mastoidectomy is a procedure which consists of drilling the mastoid in order to get direct access to the middle ear cavity. The surgeon uses this made access to insert the dedicated surgical tools which are rigid and straight-line miniature instruments. Moreover, this direct access is necessary to visualize the surgical site when using an external view (an optical stereo-microscope).

It can be highlighted that the current surgery protocol is invasive and requires high-expertise of the surgeon. Also, the access and the visualization of the entire middle-ear cavity through the incision hole is very challenging. Consequently, a perfect and exhaustive ablation of the tissue is not guaranteed and leads, in 25-30% cases, to a second surgery, 6 to 18 months after the first intervention due to the growth of the residual cholesteatoma. Hence, there is a high demand for improvement of current surgical procedures towards less invasive approaches; i.e., reducing the incision hole and avoiding a second surgical intervention by ensuring an exhaustive resection of the infected tissues.

Using a flexible miniature and actuated tool passing through a small incision hole will allow accessing the entire epitympanum cavity where cholesteatoma develops while reducing the invasiveness of the traditional surgical procedure. This alternative could definitely help the clinician to exhaustively remove the cholesteatoma. Indeed, mounting the actuated tool on a robotic arm would increase both the dexterity and the accuracy of the surgical system.

In a recent survey, Dahroug et al. [3], reports different innovations and developments carried out as part of middle ear surgery including robotic holders, surgical tools, imaging systems, as well as the requirements for an optimal system and surgical protocol for middle ear surgery. In fact, several robots have been designed for middle ear microsurgery to bring back sufficient accuracy, dexterity and ergonomy to the physician. They are mainly dedicated to cochlear implantation [4], tympanic membrane grafts or ossicular chain replacement with a prosthesis [5] which requires high accuracy and reproducibility. However, all these solutions are based on rigid tools and do not include any dexterous instrument for intracorporeal fine movement execution. Other works highlight the feasibility of robot-assisted ear surgery such as robot-assisted mastoidectomy [6] and tool-guidance [7] which is not sufficient for the cholesteatoma treatment in which surgeons mainly suffer from a lack of dexterity and accuracy in tool-tip positioning. The main contributions of this paper are the design of a redundant macro/micro-scale robotic structure with embedded teleoperation interface as well as the development of two control modes for robotic middle ear surgery execution. The control modes are 1) an end-frame teleoperation of the whole kinematic structure with an intuitive and transparent user interface and 2) a combination of a comanipulation of the macro-scale robot and an in-hand teleoperation of the micro-scale tool.

¹Authors are with Sorbonne Université, CNRS UMR 7222, INSERM U1150, ISIR, F-75005, Paris, France. so@isir.upmc.fr
²Author is with FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, Besançon, France.
II. MATERIALS

As discussed in the introduction, the cholesteatoma surgery requires accuracy, ergonomics and intuitiveness, especially for junior surgeon. To meet these challenges, we propose an original approach by combining a macro-scale system (robotic arm) and a micro-scale system (flexible microrobotic endoscope for cholesteatoma resection).

The macro-scale system is comprised of a 7 DoFs collaborative robotic arm PANDA from Franka Emika® in which is attached at the distal part, a 6 DoFs force/torque sensor of type of ATI MINI-40, as well as an ergonomic lab-made handle in the form of a half steering wheel (Fig. 1(a)). Additionally, a 2 DoFs microrobotic sub-system is attached to the distal part of the PANDA robotic arm. Thus, the obtained full system is a redundant 9 DoFs robot which can be controlled either in comanipulation manner or in teleoperation mode using a Sensable Phantom Omni. Note that the development of a specific flexible microrobot devoted to the cholesteromatous tissue resection is currently in progress, so we have used a miniature actuated 2 DoFs OLYMPUS IF2D5-12 fibroscope to mimic the future microrobotic system. This fibroscopic device can be controlled via a lab-made miniature and lightweight joystick which is attached to the PANDA end-effector (Fig. 1(c)). In this work, we use only the mechanical features of the fibroscope and not the provided images.

III. MODELLING AND CONTROL

The outlined specifications for the surgical system are based on ergonomics, easy-to-use and accuracy required by the achievement of the surgical procedure. In order to control the whole redundant robotic system (macro and micro-scale robots), we propose two control modes; i.e., a teleoperation controller and combination of comanipulation of the macro-scale robot with an in-hand teleoperation for the micro-scale system.

Controlling a 9 DoFs robot in the context of the minimally invasive surgery is challenging. The classical approach consists of tele-operating the system at its effector level while relying on an automatic management of joint redundancies to cope with the kinematic constraints at the point of insertion in the body [8]. However, this approach is complex and requires a perfect positioning of the robot within the task-space (patient’s middle ear). Simpler solutions are based on a two-handed tele-operation of the robot in the task-space [9] or on a special management of the movements of its end-effector [10]. Nevertheless, these approaches lead to an increase of the cognitive workload and operation time. This is why, in this paper, we evaluate a new approach using a comanipulation scheme for the macro-scale sub-system and an in-hand joystick for the teleoperation of the micro-scale one. We compare this original solution to the classical end-effector teleoperation solution. The kinematical feature of is described below on the Figure 2 and was used to derive the system’s kinematic model.

A. End-frame Teleoperation

Teleoperation mode is based on a position-based controller allowing the interpretation of the local pose of the Phantom Omni end-effector as the desired pose of the micro-scale system tip. In addition, as the micro-scale tool enters inside the middle ear cavity through the incision hole, its motion is kinematically constrained in a fulcrum effect manner at a point located at the origin of a fixed frame \(R_{rcm} \) as illustrated in Fig. 2.

In order to simplify the computational process, the movements of the PANDA’s end-effector frame \(R_{PE} \) will be expressed in RCM (Remote Center Motion) frame \(R_{rcm} \) instead of its original base frame \(R_0 \). Moreover, in order to comply with the kinematic constraints at the ear entrance point, we chose to make the origin of \(R_{PE} \) and \(R_{rcm} \) to always coincide during the task. Thus, only 3 rotations between frame \(R_{rcm} \) and \(R_{PE} \) expressed by \(q_z, q_y, q_x \) are possible.

Consequently, as depicted in Fig. 2, as the kinematic chain between \(R_{PE} \) and the system terminal frame \(R_9 \) is completed by the 2 DoFs of the actuated fibroscope. The system provides to the operator 5 intracorporeal controllable DoFs;
that is this scenario, this control strategy does not require any
surgeon can also control simultaneously the micro-scale tool
a desired one corresponding to that of the surgical site. The
system and an in-hand teleoperation for the micro-scale one
association of a comanipulation scheme for the macro-scale sub-

The corresponding joint-space velocities are \(\dot{Q} = (\dot{q}_x, \dot{q}_y, \dot{q}_z, \dot{q}_8, \dot{q}_9) \) and the task-space velocity vector is ex-
pressed by \(\dot{X}_{rcm} = (\dot{x}, \dot{y}, \dot{z}, \dot{\alpha}, \dot{\beta}, \dot{\gamma}) \) \(^\top\). The relationship be-
tween task-space velocities and the joint-space ones can be ex-
pressed, using a Jacobian \(J_{rcm} \in \mathbb{R}^{5 \times 5} \) defined as follows:

\[
\dot{X}_{rcm} = J_{rcm} \cdot \dot{Q}
\]

For control purposes, it is required to invert relation (1) in or-
order to get the joint-space velocities from the desired tool-tip
ones. Indeed, \(J_{rcm} \) being a 6\(\times \)5 matrix at this stage, we can
reduce it to a 5\(\times \)5 format by ignoring the tool rotation around
its own axis; i.e., along \(z_9 \). Leaving this rotation uncontrolled
has no consequence on the task execution. Accordingly, the
corresponding joystick own rotation on the master side will
not be accounted for. Thus, we obtain:

\[
\dot{Q} = \tilde{J}_9^{-1} \cdot \dot{X}_9
\]

where \(\dot{X}_9 = (\dot{x}_9, \dot{y}_9, \dot{z}_9, \dot{\alpha}_9, \dot{\beta}_9) \) \(^\top\) and \(\tilde{J}_9^{-1} \in \mathbb{R}^{5 \times 5} \) is the
inverse matrix of the new simplified \(J_{rcm} \) matrix. Based on
this, the overall teleoperation scheme can be depicted as on
Fig. 3.

FIG. 3. Control loop of the tip-frame teleoperation with RCM simplification.

The Phantom Omni’s end-effector pose \(X_{ph} \) is the desired
set-point for the micro-scale tool’s end-effector pose. The
difference of the two poses is expressed in \(R_9 \) using the
rotation matrix \(^9R_{rcm} \). Thus, the task-space error \(\epsilon_{X_9} \)
is converted into a joint-space error noted \(\epsilon_9 \) using (2). This
error is then minimized through a proportional-derivative (PD)
controller giving the desired joint-space velocities as
\(\dot{Q}_{9d} = (\dot{q}_x, \dot{q}_y, \dot{q}_z, \dot{q}_8, \dot{q}_9) \) \(^\top\) where \(\dot{q}_x, \dot{q}_y, \dot{q}_z \) are the rotational
velocities moving the PANDA arm around the fixed origin of
\(R_{rcm} \) and \(\dot{q}_8 \) and \(\dot{q}_9 \) the joint velocities relative to the micro-
scale tool.

B. Macro-comanipulation and Micro-teleoperation

The second control scheme is based on an intuitive asso-
ciation of a comanipulation scheme for the macro-scale sub-
system and an in-hand teleoperation for the micro-scale one
as shown in Fig. 4. Therefore, the surgeon can achieve the
approaching task; i.e., bring the robot from any position to
a desired one corresponding to that of the surgical site. The
surgeon can also control simultaneously the micro-scale tool
with the other hand by the in-hand lab-made joystick. Note
that in this scenario, this control strategy does not require any
registration effort.

The implementation of this controller is relatively unde-
manding. The force and torque noted \(F_{ext} \) provided by the
embedded force sensor on the PANDA end-effector frame
\(R_{PE} \) is converted into desired operational velocities that
serve as the inputs of a classical PD loop (upper path in
Fig. 4). Furthermore, to control the 2 DoFs micro-scale device,
a simple joint-position controller is carried out based on a
desired joint position specified using the embedded micro-
joystick (lower path in Fig. 4). Note that because it is mounted
on the moving PANDA’s end-effector, the micro-joystick base
frame always remains aligned with the micro-tool base frame
thus making the tool-tip teleoperation intuitive.

IV. VALIDATION AND RESULTS

A. Validation Scenario

To replicate the surgical protocol (removing residual
cholesteatoma tissues) and reproduce, at a scale up factor
2, the middle ear cavity environment (access constraints and
limited visibility), we designed the test-bench shown in Fig. 5.
Inside the designed cavity, we added 5 targets (red dots) which
represent possible residual cholesteatoma which has to be
pointed by the micro-cavity system for resection/ablation; e.g.,
by laser shots. The carried-out validation scenario consists of
positioning as accurately as possible the fibroscope tip in front
of and orthogonal to the simulated residual cholesteatoma.
The micro-scale tool positioning task is performed first using
the end-frame teleoperation method and then using the hybrid
comanipulation and in-hand teleoperation approach.

Furthermore, the visualization of the surgical site is pro-
vided thanks to an external camera simulating an endoscopic
system which would be introduced through the ear canal dur-
ing the targeted surgical protocol. Therefore, in the validation
scenario discussed here, the view provided by the fibroscope
is not used by the operator during the task. An example of the
view provided by the external camera is shown in Fig. 5.

B. Results Analysis

The experimental scenario was carried out by three subjects.
The size of the target points is 3 mm of diameter similar to
residual cholesteatoma tissues. Before experiment, the 3D
poses (position and orientation) of each target are recorded.
During experiment, when the subject judges that the target is
reached, the reference poses are compared to the actual 3D
pose of micro-scale tool-tip.

The obtained results are depicted in Fig. 6 where we
represented the 3D poses achieved using both proposed control
modes. The corresponding numerical values are summarized in Table I and compared to those obtained when the operation is performed manually. The positioning error is separated into \bar{e}_{lat}, the axial error along the z axis of the fibroscope device and \bar{e}_{rot}, the lateral error corresponding to the planar positioning error within the $x - y$ plane. Note that in the targeted surgical protocol, the surgeon will have to position the surgical tool-tip in front of the residual cholesteatoma (in $x - y$ plane) without any obligation to touch it.

The mean linear error \bar{e}_{lat} for all control modes are below 2 mm which is in phase with the predefined medical requirements. Moreover, the mean angular error \bar{e}_{r} is below 0.2 degree for both control modes but slightly high for manual handling with 0.73 degree. Throughout this preliminary study, robot assisted task execution demonstrates a better performance than manual handling as the total mean error are smaller for both modes. Otherwise, the comanipulation with in-hand teleoperation appears slightly more precise comparing to the end-frame teleoperation method as the standard deviation for total lateral error is greater for teleoperation case. Concerning the time required to achieve the pointing task, it is estimated to 142 seconds for the teleoperation mode and 184 seconds for the comanipulation and in-hand teleoperation.

Although the obtained performance meet the surgical requirements in this scenario, significant improvements are expected thanks to the future miniature robot (concentric tube robot) and a narrower view of the surgical site (endoscopic system introduced in the middle ear cavity through the ear canal). In fact, the fibroscope system that mimic the microrobotic tool, showed substantial limitations in terms of resolution and repeatability due to its cable-based actuation.

![Fig. 5. Representation of the targets to be pointed by the robotic system miming residual cholesteatoma.](image)

Table I

<table>
<thead>
<tr>
<th>N(^{\circ})</th>
<th>Comanipulation</th>
<th>Teleoperation</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{e}_{lat}</td>
<td>\bar{e}_{rot}</td>
<td>\bar{e}_{rot}</td>
<td>\bar{e}_{lat}</td>
</tr>
<tr>
<td>1</td>
<td>1.76</td>
<td>0.66</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>2.03</td>
<td>1.40</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>1.21</td>
<td>2.52</td>
<td>0.31</td>
</tr>
<tr>
<td>4</td>
<td>1.61</td>
<td>1.60</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>1.67</td>
<td>0.71</td>
<td>0.30</td>
</tr>
<tr>
<td>μ</td>
<td>1.66</td>
<td>1.38</td>
<td>0.22</td>
</tr>
<tr>
<td>E((\cdot))</td>
<td>0.50</td>
<td>0.93</td>
<td>0.08</td>
</tr>
</tbody>
</table>

References

