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Introduction

Aerial manipulation has been an active area of research in recent times for Unmanned Aerial Vehicles (UAVs) since it increases the application in both the military and civilian sectors. Unlike fixed-wing UAV configurations, whose flight profile lacks hovering flight, VTOL (Vertical Take-Off and Landing) rotorcrafts with three, four, six, or eight rotary propellers are well-suited for aerial manipulation operations. However, numerous scientific challenges, technological and theoretical, remain open. The main issue arises from their limited payload capacity. Thus, alternatively, multiple robots can carry heavier payloads using cables or grippers [START_REF] Mellinger | Cooperative Grasping and Transport using Multiple Quadrotors[END_REF] which feature light and dexterous end-effectors. Furthermore, the dynamics of the robot is significantly altered while shifting and/or carrying payloads, due to the center of gravity shifting and external disturbances. Indeed, this is also an attraction in assembly because aerial robots can use this to sense disturbance forces and moments, as in [START_REF] Mohammadi | Cooperative aerial tele-manipulation with haptic feedback[END_REF]. Moreover, the performance of the aerial manipulation task relies on effective estimation of dynamic couplings for compensation purposes. Numerous approaches have been proposed to deal with such problems. In [START_REF] Orsag | Lyapunov based model reference adaptive control for aerial manipulation[END_REF], a Lyapunov based model Reference Adaptive Control is used to stabilize a quadrotor with a multi degree of freedom (DoF) manipulator. However, the stability analysis is carried out with a linear approach and only the dynamics of the quadrotor was concerned due to the Regular paper This work was supported in part by CONACYT-Mexico, LabEx PERSYVAL-Lab (ANR-11-LABX-0025) and Equipex ROBOTEX (ANR-10-EQPX-44-01). complexity of the system. [START_REF] Jimenez-Cano | Control of an aerial robot with multi-link arm for assembly tasks[END_REF] presents a Newton-Euler approach to model and control a quadrotor through a Variable Parameter Integral Backstepping (VPIB) approach. However, the parametrization of the system is made through Euler angles, which present attitude estimation singularities. [START_REF] Kim | Aerial manipulation using a quadrotor with a two DOF robotic arm[END_REF] presents aerial manipulation using a quadrotor and a 2-DoF robot arm. The dynamic model of the system is obtained by the Euler-Lagrange formulation. Then, an adaptive sliding mode controller is designed. The effectiveness of the proposed method is showed experimentally by picking up and delivering an object. In [START_REF] Thomas | Toward autonomous avian-inspired grasping for micro aerial vehicles[END_REF] the problem is solved through an autonomous avianinspired grasping method, however the design of the controller is formulated in the vertical plane, which supposes a limitation to the full 3d space. [START_REF] Sun | Amplitude-Saturated Nonlinear Output Feedback Antiswing Control for Underactuated Cranes With Double-Pendulum Cargo Dynamics[END_REF] presents an amplitudesaturated nonlinear strategy for underactuated cranes with double-pendulum dynamics. Such a strategy is twice validated: theoretically and practically. The experimental platform consists of a car and a double-pendulum crane, where the coupling between the two systems (car and pendulum) is taken into account and a dynamic model is obtained. However, compared to an aerial vehicle, the attitude and position dynamics must be taken into account. Finally, in [START_REF] Yuksel | A Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] a new class of aerial manipulator is presented. It consists in a PVTOL (Planar Vertical Take-Off and Landing) equipped with parallel manipulator arms attached to the Center of Mass (CoM) of the aerial vehicle, which is called protocentric. A control law has been proposed for the case of rigid joints and validated through simulations.

The contribution of the present paper is centered on a strategy that combines an alternative torque compensation approach with a nonlinear control design. Specifically, a mathematical model is presented in detail using quaternions and it takes into account the coupling between the two systems, quadcopter and manipulator. Unlike the research previously cited, the design of the attitude control law uses the quaternion parametrization, which avoids the presence of singularities.

With quaternion parametrization one proposes a constructive control law for the attitude and position stabilization. First, the design of a smooth, almost globally asymptotical control law for attitude stabilization which takes into account the dynamics of the robotic arm, is carried out. After that, a globally asymptotical nonlinear controller for the translational dynamics is proposed. In general the control law is based in the usage of a sum of nested saturation functions in order to take into account the actuator's limitation. Real-time experimental results and a statistical study of the obtained results validate the proposed strategy.

The paper is structured as follows. In section 2, the attitude model of the quadcopter with the manipulator arm is presented. Then, the attitude control design is formulated in section 3. Section 4 gives a strategy to estimate the angular position of each link in the robot manipulator through a Luenberger observer. Section 5 is devoted to the design of the position control law. Section 6 presents the hardware setup, experimental results, as well as a statistical study. Finally, some conclusions are presented in section 7.

System Modeling

Unit quaternion and attitude kinematics

Consider two orthogonal right-handed coordinate frames: the body coordinate frame, B(x b , y b , z b ), located at the center of mass of the rigid body and the inertial coordinate frame, N (xn, yn, zn), located at some point in the space (for instance, the earth NED frame). The rotation of the body frame B with respect to the fixed frame N is represented by the attitude matrix

R ∈ SO(3) = {R ∈ R 3×3 : R T R = I, det R = 1}.
The cross product between two vectors ξ, ∈ R 3 is represented by a matrix multiplication [ξ × ] = ξ × , where [ξ × ] is the well known skew-symmetric matrix.

The n-dimensional unit sphere embedded in R n+1 is denoted as S n = {x ∈ R n+1 : x T x = 1}. Members of SO(3) are often parameterized in terms of a rotation β ∈ R about a fixed axis ev ∈ S 2 by the map U : R × S 2 → SO(3) defined as

U(β, ev) := I3 + sin(β)[e × v ] + (1 -cos(β))[e × v ] 2 (1) 
Hence, a unit quaternion, q ∈ S 3 , is defined as

q := cos β 2 ev sin β 2 = q0 qv ∈ S 3 (2) 
where qv = (q1 q2 q3) T ∈ R 3 and q0 ∈ R are known as the vector and scalar parts of the quaternion respectively. The quaternion q represents an element of SO(3) through the map R : S 3 → SO(3) defined as

R := I3 + 2q0[q × v ] + 2[q × v ] 2 (3) 
Remark 2.1 R = R(q) = R(-q) for each q ∈ S 3 , i.e. even quaternions q and -q represent the same physical attitude.

Denoting by ω = (ω1 ω2 ω3) T the angular velocity vector of the body coordinate frame, B relative to the inertial coordinate frame N expressed in B, the kinematics equation is given by

q0 qv = 1 2 -q T v I3q0 + [q × v ] ω = 1 2 Ξ(q) ω (4) 
The attitude error is used to quantify mismatch between two attitudes. If q defines the current attitude quaternion and q d the desired quaternion, i.e. the desired orientation, then the error quaternion that represents the attitude error between the current orientation and the desired one is given by qe := q -1 d ⊗ q = (qe 0 q T ev ) T

where q -1 is the complementary rotation of the quaternion q which is given by q -1 := (q0 -q T v ) T and ⊗ denotes the quaternion multiplication [START_REF] Shuster | A survey of attitude representations[END_REF].

Model of a quadcopter carrying a manipulator arm

The attitude dynamics and kinematics for the quadcopter have been reported in many works e.g. [START_REF] Castillo | Real-time stabilization and tracking of a four-rotor mini rotorcraft[END_REF][START_REF] Guerrero-Castellanos | Bounded attitude control of rigid bodies: Real time experimentation to a quadrotor mini-helicopter[END_REF][START_REF] Alaimo | Mathematical modeling and control of a hexacopter[END_REF]. In these works the quadcopter mass distribution is considered to be symmetric. However, the mass distribution of a quadcopter with a manipulator is no longer symmetrical and varies with the movement of the arm. Consider a quadcopter with a manipulator arm with n links attached to its lower part. If the dynamics of the arm is neglected, the attitude kinematics and dynamics is given by

q0 qv = 1 2 Ξ(q) ω (6) 
J ˙ ω = -ω × J ω + ΓT [START_REF] Sun | Amplitude-Saturated Nonlinear Output Feedback Antiswing Control for Underactuated Cranes With Double-Pendulum Cargo Dynamics[END_REF] where J ∈ R 3×3 is the symmetric positive definite constant inertial matrix of the rigid body expressed in the body frame B and ΓT ∈ R 3 is the vector of applied torques. ΓT depends on the (control) couples generated by the actuators, the aerodynamic couples such as gyroscopic couples, the gravity gradient or, as in the case of the present work, the couple generated by the movement of a robot manipulator placed under the body. Here, only the control couples, gyroscopic couples and the couple generated by the manipulator is considered in the control design. Consequently,

ΓT = Γ + Γarm + ΓG (8) 
where Γ and ΓG will be described in section 2.3. On the other hand, the vector Γarm is the torque generated by the total propulsive force being applied at the quadcopter geometric center which is displaced from the center of mass.

Taking the robot manipulator as a physical pendulum attached to the fuselage of the aerial vehicle and following a similar process to the one in [START_REF] Sangbum | Dynamics and control of underactuated multibody spacecraft[END_REF], the manipulator torque can be computed by:

Γarm dyn = magζ cd × R(q)e3 (9)
where Γarm dyn is the manipulator torque taking into account the dynamics of each servomotor in the robot manipulator; ma = Σ n i=1 mmi + m l is the total mass of the manipulator plus the load and

ζ cd = (ζ cxd ζ cy d ζ cz d ) T ∈ R 3
is the position of center of mass of the quadrotor with respect to the pivot point. Then, the center of mass can be computed by

ζ cd = 1 ma n i=1 mmi id + m l ld ( 10 
)
where id and ld are the position vectors of each link of the manipulator and the load, respectively, both with respect to the reference body frame given by the quadrotor. In this case, let us consider the scheme in Fig. 1, which shows an anthropomorphic arm manipulator. This system has three degrees of freedom and then, the corresponding id , where i = {1, 2, 3}, is given by

1d = [ 0 0 -lc1 ] T 2d = [lc2 sin θa2 m cos θa1 m lc2 sin θa2 m sin θa1 m -(l1 + lc2) cos θa2 m ] T 3d = [(l2 sin θa2 m + lc3 sin(θa2 m + θa3 m )) cos θa1 m (l2 sin θa2 m + lc3 sin(θa2 m + θa3 m )) sin θa1 m -(l1 + l2) cos θa2 m -lc3 cos(θa2 m + θa3 m )] T (11) 
where lc1, lc2 and lc3 are the distances from the respective joint axes to the center of mass of each link, l1, l2 and l3 are the total length of the links, and θai m measures the angular displacement from z and x axes. Then, since servomotors are used as actuators for the manipulator arm, these can be easily considered as first order systems. For this, a parameter identification is performed in order to know the different constant values of the motors. In general, the found system has the form:

θai m = Ku(t) -θaim a ( 12 
)
where θai m is the angular position of the servo output shaft, θaim is the angular velocity of the servo, a is a time constant linked to the time response of the servo, K is the gain of the system and u(t) is the input.

Actuator model

The collective input (or throttle input) is the sum of the thrusts of each rotor f1, f2, f3, f4. Therefore, the reactive couple Qj generated in the free air by rotor j due to the motor drag and the total thrust T produced by the four rotors can be, respectively, approximated by

Qj = ks 2 j (13) T = 4 j=1 fj = b 4 j=1 s 2 j ( 14 
)
where sj represents the rotational speed of rotor j. k > 0 and b > 0 are two parameters which depend on the density of air, the radius, the shape, the pitch angle of the blade and other factors [START_REF] Alaimo | Mathematical modeling and control of a hexacopter[END_REF]. The vector of gyroscopic couples ΓG is a consequence of the simultaneous rotation of the structure of the quadrotor and the high-speed rotation of the actuators, and it is given by

ΓG = 4 j=1 Jr( ω × z b )(-1) j+1 sj ( 15 
)
where Jr is the inertia of the so-called rotor (composed of the motor rotor itself with the gears). The components of the control torque Γ ∈ R 3 generated by the rotors are given by Γ = [Γ1 Γ2 Γ3] T , with

Γ1 = d(f3 -f4) = db(s 2 3 -s 2 4 ) (16) Γ2 = d(f1 -f2) = db(s 2 1 -s 2 2 ) (17) Γ3 = -Q1 -Q2 + Q3 + Q4 = k(-s 2 1 -s 2 2 + s 2 3 + s 2 4 ) ( 18 
)
where d is the distance between the rotor and the center of gravity of the quadrotor.

3 Attitude Control Design

Problem statement

The objective is to design a control law which drives the quadcopter to attitude stabilization under the torques and moments exerted to this from the movement of a manipulator arm attached to its lower part. In other words, let q d denote the constant quadcopter stabilization orientation, then the control objective is described by the following asymptotic conditions

q → [±1 0 0 0] T , ω → 0 as t → ∞ (19)
Furthermore, it is known that actuator saturation reduces the benefits of the feedback. When the controller continuously outputs infeasible control signals that saturate the actuators, system instability may follow. Then, besides the asymptotic stability, the control law also takes into account the physical constraints of the control system, in order to apply only feasible control signals to the actuators.

Attitude control with manipulator arm

In this subsection, a control law that stabilizes the system described by ( 6) and ( 7) is proposed. The goal is to design a control torque that is bounded. Definition 3.1 Given a positive constant M , a continuous, nondecreasing function σM : R → R is defined by

(1)σM = s if |s| < M ; (2)σM = sign(s)M elsewhere. ( 20 
)
Note that the components of Γarm i are always bounded, i.e. | Γarm i |< δi. Then, one has the following result.

Theorem 3.2 Consider a rigid body rotational dynamics described by ( 6) and ( 7) with the following bounded control inputs Γ = (Γ1 Γ2 Γ3) T such that

Γi = -σM i2 (Γarm i + σM i1 (λi[ωi + ρiqi])) (21) 
with i ∈ {1, 2, 3} and where σM i1 and σM i2 are saturation functions. Assuming δi < Mi2 -Mi1 and Mi1 ≥ 3λiρi. λi and ρi are positive parameters. Then the inputs (21) asymptotically stabilize the rigid body to the origin (1 0 T 0 T ) T (i.e. q0 = 1, qv = 0 and ω = 0) with a domain of attraction equal to

S 3 × R 3 \ (-1 0 T 0 T ) T .
The proof of this Theorem is given in Appendix A.

Remark 3.3 Note that the stability analysis has been carried out considering the asymptotic condition q → q d = [±1 0 0 0] T . In the case where the asymptotic condition q → q d with q d = [±1 0 0 0] T is considered, the control law applied will be

Γi = -σM i2 (Γarm i + σM i1 (λi[ωi + ρiqe i ])) ( 22 
)
where qe represents the attitude error between the current orientation and the desired one.

4 Manipulator links angular position estimation

Problem statement

The objective is to design a strategy for the estimation of the angles on each link in the manipulator arm, combining the data coming from the first order model of the manipulator actuators and the data coming from the end effector position tracked by the VICON system (motion capture system). Since the first order model does not fully describe the behavior of the arm manipulator (non-modeled dynamics, actuators malfunction, etc.). In order to know the angular positions of the manipulator links with respect to the base body (quadcopter), the inverse kinematics of the manipulator arm is used.

Manipulator links observer design

In this subsection a Luenberger observer is designed to estimate the angles on each link in the manipulator. For this, the end-effector position is computed through the arm inverse kinematics to know the angle on each link. The expression that describes a link angle is given by:

θaV = θa + µV ( 23 
)
where θaV is the estimated angle computed with the inverse kinematics, θa is the real angle and µV is a noise of minimal value. In addition, the observer allows the computation of the angular velocity. The expressions that represent the observer are given by:

θδ = a θδ + Ku δ + L(θaV -θ) (24) θ = θV ( 25 
)
where θδ is the estimated angle on a link in the manipulator, a and K are parameters of the first order system previously presented and L is a positive tuning parameter. Now, given the expression (24), where θδ and θδ were estimated, it is possible to compute the manipulator torque from [START_REF] Alaimo | Mathematical modeling and control of a hexacopter[END_REF] and use this new term as Γarm into the attitude control law (21).

Position Control Design

Problem statement

The objective is to design a control law which stabilizes the quadcopter to a desired position, thereby solving the attitude stabilization problem. In other words, once the control law has stabilized the attitude of the system, limt→∞(q, ω) = (q d , 0), the position control law should stabilize the quadcopter in a desired position, limt→∞( p, v) = ( p d , 0). This stabilization must be ensured even under the disturbances from the manipulator arm. The schematic representation of a quadcopter carrying a manipulator arm can be seen in Fig. 2, where the inertial reference frame N (xn, yn, zn), the body reference frame B(x b , y b , z b ), the force u (thrust) and the weight vector m g are depicted. The dynamics of the whole system is obtained with the Newton-Euler formalism and the kinematics is represented using the quaternions formalism, given by ΣT :

Position stabilization strategy

         ˙ p = v mT ˙ v = -mT g + R    0 0 u    (26) ΣO : q = 1 2 Ξ(q) ω J ˙ ω = -ω × J ω + ΓT ( 27 
)
where p and v are linear position and velocity vectors, mT is the total mass of the system (the quadcopter and the manipulator), g is the acceleration due to gravity, and R is the rotation matrix, given in (3). Note that the rotation matrix R can also be given as a function of the Euler angles, that is

R(φ, θ, ψ) =    Cψ Cθ Sψ Cθ -Sθ Cψ Sθ Sφ -Sψ Cθ Sφ Sθ Sψ + Cψ Cφ Cθ Sφ Cψ Cφ Sθ + Sψ Sφ Sθ Sψ Cφ -Cψ Sφ Cθ Cφ    , (28) 
Taking into account the equations ( 26) and (27), this system can be seen as a cascade system, where the translational dynamics (26) depend on the attitude ( 27), but the attitude dynamics do not depend on the translational one. This property will be used to design the control law. Now, assume that using the control law (21) one can stabilize the yaw dynamics, that is ψ = 0, then after a sufficiently long time, system (26) becomes:

   ṗx ṗy ṗz    =    vx vy vz    , (29) 
   vx vy vz    =    -u m T sin θ u m T sin φ cos θ u m T cos φ cos θ -g    (30) 
With an appropriate choice of target configuration, it will be possible to transform (29)-(30) into three independent linear triple integrators. For this, take

φ d := arctan r2 r3 + g , θ d := arcsin -r1 r 2 1 + r 2 2 + (r3 + g) 2 (31) 
where r1, r2 and r3 will be defined after. Then, choose as positive thrust the input control

u = mT r 2 1 + r 2 2 + (r3 + g) 2 (32) 
Let the state be p = (p1, p2, p3, p4, p5, p6, p7, p8, p9) = ( px, px, vx, py, py, vy, pz, pz, vz), then (29)-(30) becomes:

Σx :      ṗ1 = p2 ṗ2 = p3 ṗ3 = r1 Σy :      ṗ4 = p5 ṗ5 = p6 ṗ6 = r2 Σz :      ṗ7 = p8 ṗ8 = p9 ṗ9 = r3 (33)
Note that u will be always positive, and u ≥ mg, in order to compensate the system's weight. Since the chains of integrators given in (33) have the same form, a control law can be proposed as in [START_REF] Cruz-José | Estabilización global de mini naves aéreas tipo VTOL[END_REF], and can be established by the next theorem: Theorem 5.1 Consider the quadcopter translational dynamics expressed in (29-30). Then, the thrust input u given by (32) with r1, r2, r3 as in (34), where σM 1 (•) is defined in [START_REF] Alvarez-Munoz Received The | Electronics, from the Autonomous University of Puebla, Mexico and the Ph.D. degree in 2017 in Automatic Control from GIPSA-Lab from the University of[END_REF] with M1 = 1 and ςi are given by ( 35 Furthermore, if none of the σM 1 are saturated, the poles of the linearized closed-loop for the subsystems (33) reside at b,c)1,b,c)2,b,c)3, respectively.

r1 := -ς1{a3σM1[ 1 ς1 (a2p1 + p2 + p3)] + a2σM1[ 1 ς1 (a1p2 + p3)] + a1σM1[ 1 ς1 (p3)]}, r2 := -ς2{b3σM1[ 1 ς1 (b2p4 + p5 + p6)] + b2σM1[ 1 ς2 (b1p5 + p6)] + b1σM1[ 1 ς2 (p6)]}, r3 := -ς3{c3σM1[ 1 ς1 (c2p7 + p8 + p9)] + c2σM1[ 1 ς3 (c1p8 + p9)] + c1σM1[ 1 ς3 (p9)]} (34) ς1 = r1/(a1 + a2 + a3), ς2 = r2/(b1 + b2 + b3), ς3 = r3/(c1 + c2 + c3) (35) 
Due to space constraints, the proof of this Theorem is not presented here, but it can be easily derived from the seminal work of [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF], [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] and [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF].

Remark 5.2 In the above Theorem, the stabilization goal is the origin. In the case where the asymptotic condition is different from the origin, the variables p2, p5, p8 should be replaced in the control law (34) by e1 = p2-p d

x , e2 = p5-p d y , e3 = p8 -p d z , respectively. In this case p d x , p d y , p d z represent the desired position in the space.

Experimental Validation

Hardware setup

In order to test the effectiveness of the proposed control law, a set of experiments were performed. The aerial system Fig. 3: Mini-quadcopter with its manipulator arm in flight. consists of a home-made quadcopter and arm manipulator, see Fig. 3. Both structures were specially designed and built for this project. The characteristics and parameters of each system are described in the TABLE 1. The total weight of the quadcopter with its arm is 315g and its carrying capacity is about 50g.

The attitude control law (21) for the quadcopter was programmed in a Microwii Copter board, which has gyros, accelerometers and the ATMega32u4 as processor. Then, a ground station estimates the position and attitude of the hexacopter using the Vicon Tracker system and T40s cameras [18]. With this system it is possible to compute the position and attitude up to 100Hz. The estimated states are sent to MATLAB/Simulink through a UDP frame every 2ms. The position control algorithm is implemented in real-time at 200Hz on a computer using xPC target toolbox [19]. The control variables are finally sent back to the quadcopter on the Microwii, through a GIPSA-lab's built-in bridge to DSM2 protocol. For this, a radio-frequency emitter is used. Furthermore, the manipulator arm is controlled by the DS35 Digital Super Sub-Micro Servo [START_REF] Alvarez-Munoz Received The | Electronics, from the Autonomous University of Puebla, Mexico and the Ph.D. degree in 2017 in Automatic Control from GIPSA-Lab from the University of[END_REF]. To transmit the control signals to the manipulator, Spektrum DSM2 transmitters are connected to the ground station through another built-in bridge. An overview of the whole hardware architecture is presented in Fig. 4.

Experimental scenario

A set of experiments is carried out in order to compare the performance of the proposed control with and without accounting for the torque generated by the manipulator, scenario 1 and scenario 2, respectively. The parameters of 

Experimental results in scenario 1

Fig. 5 shows the general performance of the aerial system under the disturbances coming from the manipulator arm when the arm torque estimation is not taken into account.

The figure shows the angular and linear positions of the quadcopter during the experiment. Note that even when the quaternion parametrization is considered, Euler angles given in (28) are used in order to have a better perspective of the behavior of the system. In this case, attitude stabilization is guaranteed, but the movement of the manipulator causes stability issues for both attitude and linear position.

Experimental results in scenario 2

Fig. 6 shows the angular and linear positions of the quadrotor as well as the computed manipulator torques. The arm perturbations are compensated through the dynamic model and it results in a general stabilization improvement of the quadrotor compared to the precedent approach. In addition, the importance of this approach is that the precision of the angular position knowledge is enhanced, which guarantees a better torque estimation.

Results analysis and statistical study

In order to compare the obtained results of the proposed methods and the flight performance of the aerial vehicle under the disturbances coming from the movement of the manipulator arm, a statistical error study is carried out. For this, the experiments described before were performed 8 times.

Fig. 8, Fig. 9 and Fig. 7 show the linear position errors, the Normal Gaussian distribution errors and the attitude errors for scenarios 1 and 2, respectively.

In order to calculate the attitude error, 2 arccos q0 was used, where • represents the norm and q0 was defined as before. The obtained results show that the average attitude error when the dynamic method estimation is applied is reduced, compared with that obtained when the classical approach is implemented.

Since the attitude stabilization of the aerial robot is enhanced with the usage of the proposed method, then the linear position stabilization is equally improved, as it is shown in the linear position errors computation.

To have another perspective of the obtained results, the Normal Gaussian distribution errors are computed. For this, the linear position errors data were used. Then, from the obtained distributions it is clear that when the dynamic method estimation for the arm manipulator torque is used, the average error value is closer to 0. Furthermore, the area covered by the distributions when the classical approach is used is bigger, consequently, the probability of error increases.

In general, the stabilization of the system is improved and guaranteed with the use of the dynamic model and the nonlinear observer. Table 2 shows the different average error values for the set of experiments. The first column shows the attitude average value error, the second, third and fourth columns show the average error value for the x, y and z -axis. Since the experiment was repeated 8 times using the different approaches, this Table gives a better perspective of the stabilization improvement for both quadrotor attitude and linear positions, showing the effectiviness of the proposed approach.

Conclusions

In this paper, a novel model for a quadcopter carrying a manipulator arm was proposed. In addition, a control law Fig. 6: General behaviour of the system during the experiment using dynamic method estimation torque compensation and the nonlinear observer.

was designed to asymptotically stabilize the attitude and position of the system. Moreover, this work has presented a method for aiding the solution through the design of a feed-forward term which allows the estimation of the moments and torques exerted by the manipulator. Since input constraints exist in the actuators, the control law takes into account the actuator's saturations. Experimental results and a statistical study show the effectiveness of the proposed control law in facing the disturbances coming from the manipulator. In a future work, experimental mass estimation and outdoor picking up and delivery of an object will be pursued. 

APPENDIX 8 Proof of the Theorem

Consider the candidate Lyapunov function V , which is positive definite. where J is defined as before, and κ > 0 must be determined. The derivative of (36) after using ( 6) and ( 7) is given by V = ω T J ˙ ω -2κ q0

V = 1 2 ω T J w + κ((1 -q0) 2 + q T v qv) = 1 2 ω T J w + 2κ(1 -q0) (36) 
= ω T (-ω × J ω + Γ + Γarm + ΓG) + κq T v ω = w1(Γ1 + Γarm 1 ) + κq1ω1 The same argument is applied to V2 and V3, (37) becomes

V = V1 + V2 + V3 = -(λ1ω 2 1 + λ2ω 2 2 + λ3ω 2 3 ) ≤ 0 (47) 
In order to complete the proof, the LaSalle Invariance principle is invoked. All the trajectories converge to the largest invariant set Ω in Ω = {(qv, ω) : V = 0} = {(qv, ω) : ω = 0}. In the invariant set, J ω = -[λ1ρ1q1 λ2ρ2q2 λ3ρ3q3] T = 0 that is, Ω is reduced to the origin. This ends the proof of the asymptotic stability of the closed loop system.

Fig. 1 :

 1 Fig. 1: Manipulator arm with three degrees of freedom.

Fig. 2 :

 2 Fig. 2: Schematic configuration of a quadrotor carrying a manipulator arm.

  ), a (1,2,3) , b (1,2,3) , c (1,2,3) > 0 tuning parameters such that (a, b, c)1 > (a, b, c)2 + (a, b, c)3, (a, b, c)2 >(a, b, c)3, stabilizes globally and asymptotically the quadcopter translational dynamics at the origin.

  the control laws are selected according to the characteristics of the quadrotor actuators and the condition for the manipulator arm. For the attitude control law (21) and the position control law given in (34), where max|Γarmi| = 0.0858N m and δi = 0.1, the next parameters values are proposed: M11,21,31 = 0.1, M12,22,32 = 0.5, λ1,2 = 0.015, λ3 = 0.013, ρ1,2 = 10.5 and ρ3 = 11. For the control (34), a1 = b1 = 2.3, c1 = 1.65, a2 = b2 = 1.2, c2 = 0.55, a3 = b3 = 0.1, c3 = 0.015 and r1,2,3 = 5. The experiments consist in two parts. First, the links of the manipulator arm are initialized to θai = (0 • 90 • 0 • ) T and the quadrotor is driven to the position p d = (0 0 1) T . At time 20s, θai = (40 • 30 • 0 • ) T . At time 25s, θai = (-30 • 70 • 25 • ) T . At time 30s, θai = (10 • 20 • 35 • ) T . Finally, at time 35s, θai = (0 • 90 • 60 • ) T and the quadrotor lands.

Fig. 4 :Fig. 5 :

 45 Fig. 4: Block diagram of the system.

Fig. 7 :

 7 Fig. 7: Attitude error and attitude average error value during the different experiments.

Fig. 8 :

 8 Fig. 8: Position errors during the different experiments.

Fig. 9 :

 9 Fig. 9: Error Gaussian Normal distributions.

V1+

  w2(Γ2 + Γarm 2 ) + κq2ω2 V2 + w3(Γ3 + Γarm 3 ) + κq3ω3 V3 (37) V is the sum of the three terms ( V1, V2, V3). First V1 is analyzed. From Γ1 in (21) and equation (37), one gets V1 = ω1(-σM 12 (Γarm 1 + σM 11 (λ1[ω1 + ρ1q1])) + Γarm 1 ) + κq1ω1 (38) if we choose δ1 < M12 -M11, σM 12 is always operating in its linear region so V1 becomes V1 = -ω1σM 11 (λ1[ω1 + ρ1q1]) + κq1ω1 (39) Assume that |ω1| > 2ρ1, that is ω1 ∈]2ρ1, +∞[. Since |q1| ≤ 1, it follows that |ω1 + ρ1q1| ≥ ρ1 + for any > 0 sufficiently small. Therefore, ω1 + ρ1q1 has the same sign as ω1. From equation (39) and the norm condition on the quaternion, V1 takes the following form V1 = -ω1σM 11 (λ1[ω1 + ρ1q1]) + κω1q1 ≤ -|ω1|σM 11 (λ1(ρ1 + )) + κ|ω1| (40) Taking κ < min(M11, λ1ρ1 + ) (41) one can assure the decrease of V1, i.e. V1 < 0. Consequently, ω1 enters Φ1 = {ω1 : |ω1| ≤ 2ρ1} in finite time t1 and remains in it thereafter. In this case, (ω1 + ρ1q1) ∈ [-3ρ1, 3ρ1]. Let M11 verify the next inequality M11 ≥ 3λ1ρ1, equation (41) then becomes: κ < λ1ρ1 + (42) For t2 > t1, the argument of σM 11 will be bounded as follows |λ1(ω1 + ρ1q1)| ≤ 3λ1ρ1 ≤ M11 (43) Consequently, σM1 operates in a linear region Γ1 = -λ1[ω1 + ρ1q1]

Table 1 :

 1 Characteristics and parameters of the nanohexacopter and the manipulator.

	System	Description	Value	Units
		Mass (m)	280	g
		Distance (d)	10.7	cm
		Battery	7.4	V
		Carrying capacity	80	g
	Quadcopter	Inertial moment x (J φ )	0.0056	Kg • m 2
		Inertial moment y (J θ )	0.0056	Kg • m 2
		Inertial moment z (J ψ )	0.0087	Kg • m 2
		Constant (b)	2615.23	N/s
		Constant (k)	257.80	N/s
		Mass manipulator ma	35	g
	Manipulator	Length 1st link l1	5	cm
		Length 2nd link l2	5	cm
		Length 3rd link l3	8.4	cm

Table 2 :

 2 Average error values for the experiments.

	Average error value	Orientation	Pos x	Pos y	Pos z
		1.5312	0.0375	0.0777	0.0468
		1.5411	0.0361	0.0762	0.0690
	Scenario 1	1.4901	0.0341	0.0681	0.0335
		1.4320	0.0683	0.0728	0.0552
		1.3941	0.0525	0.0679	0.0592
		1.4480	0.0507	0.0538	0.0347
		1.4175	0.0489	0.0674	0.0404
		1.4520	0.0542	0.0702	0.0532
	Total average error	1.4632	0.0477	0.0692	0.049
		0.6223	0.0294	0.0283	0.0230
		0.6034	0.0231	0.0344	0.0239
	Scenario 2	0.6197	0.0251	0.0323	0.0278
		0.5714	0.0214	0.0234	0.0229
		0.6524	0.0269	0.0289	0.0189
		0.6277	0.0247	0.0277	0.0245
		0.5998	0.0225	0.0239	0.0239
		0.6308	0.0279	0.0302	0.0246
	Total average error	0.6159	0.0251	0.0286	0.0236
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