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Input-output linearization of nonlinear time-varying
delay systems: the single-input single-output case

Ihab Haidar, Florentina Nicolau, Jean-Pierre Barbot,
Woihida Aggoune ∗

August 30, 2019

Abstract

This paper deals with the input-output linearization of nonlinear time-
varying delay systems. We introduce an extension of the Lie derivative
for time-varying delay systems and derive sufficient conditions for the
existence of a causal and bounded nonlinear feedback linearizing the input-
output behavior of the system. Sufficient conditions ensuring the internal
stability after output stabilization are also presented. Finally, several
examples illustrating our main results are discussed.

Keywords: Nonlinear control systems, delay systems, input-output lin-
earization, Lie derivative.

1 Introduction

The problem of static linearization is an important tool in nonlinear control
theory and consists in transforming the nonlinear system dynamics into a linear
one such that linear control laws can be used in order to achieve the desired
control properties. Two types of feedback linearization can be distinguished:
input-state linearization and input-output linearization. In the first case, we
need a state transformation (playing the role of a change of coordinates) and a
static feedback transformation (that changes coordinates in the control space in
a way which is state dependent) that bring the original system into an equivalent
linear one. In the case of input-output linearization, the output is connected
to the control only indirectly through the state and to achieve input-output
linearization, a direct relation between the input and the output of the system
must be found and, after the application of a suitable feedback transformation,
the input-output map of the feedback modified systems has to be linear.

The problems of input-state and input-output linearization are well know
for nonlinear control systems without delays (see, e.g., [12, 15], for input-state
linearization, and [9, 3, 14], for input-output decoupling and linearization). Var-
ious aspects of those problems have been studied in the literature using different
approaches and some of those approaches have been extended to encompass non-
linear control systems with constant delays (see, e.g., [1, 2], for the algebraic
approach, and [8, 19, 20], for the geometric one).

∗The authors are with Quartz EA 7393, ENSEA, 6 Avenue du Ponceau
95014, Cergy-Pontoise Cedex, France, {ihab.haidar, florentina.nicolau, barbot,
woihida.aggoune}@ensea.fr
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However in the particular case of nonlinear time-varying delay control sys-
tems, which is the subject of this paper, the problem is still largely open. Our
goal is thus to propose a solution for the problem of input-output linearization
for single-input single-output nonlinear time-varying delay systems, to discuss
how our solution differs and how it reminds that for the constant-delay case
and finally, to understand the problems that may arise when constructing a
feedback transformation for delay systems. The multi-input multi-output case
is more involved and will be considered in a future paper (see [18] for the case of
two-input two-output time-varying delay systems). Preliminary results leading
to this paper appeared in [10, 11].

Like for systems without delays, the input-output linearization of time-delay
systems can be accomplished by successive differentiation of the output until the
input appears in the resulting derivative equation (the number of times that we
need to differentiate will be called relative degree) and, then, by applying a feed-
back transformation for which the input-output map of the feedback modified
systems is linear. The particularity of time-delay systems resides in the result-
ing input-output relation which is a recursive equation involving (in addition to
the current and past values of the state) not only the input at the current time,
but also its past values. Thus, the main difficulty is the construction of a causal
and bounded linearizing feedback. We give sufficient conditions ensuring those
properties, explain how to verify them, and compare them with those presented
in the literature for the constant-delay case [8, 7, 19, 20]. The interest of the
paper is also to understand the role played by the time-varying delay. An ex-
tension of the Lie derivative to the time-varying case has to be defined. The
particularity is that the consecutive derivatives of the considered time-varying
delay appear explicitly in the Lie derivatives as well as in the expression of the
linearizing feedback.

Input-output linearization is useful to study the asymptotic stability of time-
varying delay systems. But, unlike for systems without delay, even if a full
input-output linearization has been achieved (i.e., the relative degree equals the
state dimension), the internal stability is not guaranteed after output stabiliza-
tion. This problem is deeply studied in [7] in the case of constant-delay systems.
In that paper, the authors prove that, in the case of fully linearization and under
some assumptions on the internal state dynamics, when the output is asymptot-
ically driven to zero, both the state and the control tend to zero asymptotically.
Here, we develop sufficient conditions ensuring the internal stability in both
cases (of a complete, respectively, of a partial input-output linearization).

The paper is organized as follows. In Section 2, we present some notations
and recall the definition of the Lie derivative for time-varying delay systems
(introduced by the authors in [11]). In Section 3, we present our main results
and compare them to the existing ones for the constant-delay case. Several
examples are discussed in Section 4. The proofs are given in Section 5.

2 Notations, definitions and problem statement

Throughout, Rn denotes the n-dimensional Euclidean space with norm ‖ · ‖ and
R+ the set of non-negative real numbers. Given θ̄ > 0 and q ∈ N, we denote
by C = (C([−qθ̄, 0],Rn), ‖ · ‖∞) the Banach space of continuous functions from
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[−qθ̄, 0] into Rn, with the norm ‖ · ‖∞ defined by

‖ϕ‖∞ = sup
θ∈[−qθ̄,0]

‖ϕ(θ)‖, ϕ ∈ C.

We denote by U = U([−θ̄,+∞),R) the set of measurable inputs from [−θ̄,+∞)
into R.

Definition 1 (δ-operators and their properties). Let θ̄ > 0 and θ : R 7→ (0, θ̄]
be a sufficiently smooth function which is supposed to be known1 and satisfying
dθ
dt ≤ 1. over R+ and satisfies dθ

dt < 1. Consider the recursive relation

τi+1(t) = τi(t)− θ ◦ τi(t), for i ≥ 0,

where τ0(t) = t. We denote by δi the time delay operator that shifts the time
from t to τi(t) and which is defined as

δ0σ(t) = σ(t) and δiσ(t) = σ(τi(t)), for i ≥ 0,

where σ is a function defined on an interval containing [t−iθ̄, t]. The application
of δi on a composed function is given by

δiϕ(t, σ(t)) = ϕ(τi, δ
iσ(t)) = ϕ(τi, σ(τi)), for i ≥ 0. (1)

Applied on the product of two functions, this delay operator acts as the following

δiϕ(t) · σ(t) = (δiϕ(t)) · (δiσ(t)), for i ≥ 0, (2)

i.e., the delay spreads to the right. If brackets are present, i.e., we have (δiϕ(t))σ(t),
then the delay affects only the first function (here ϕ).

We introduce the δ and δ≥i operators which are defined, respectively, by

δσ(t) = (σ(t), δ1σ(t), · · · , δqσ(t)),
δ≥iσ(t) = (δiσ(t), · · · , δqσ(t)),

(3)

where 0 ≤ i < q and q is the maximal order of the delay operator acting on σ.
Finally, we introduce the advance operator denoted by δ−i that shifts the time

from t to τ−1
i (t) and which is defined by

δ−iσ(t) = σ(τ−1
i (t)), for i ≥ 0.

Similarly to the δ-operator, we define

δ−σ(t) = (δ−1σ(t), · · · , δ−qσ(t)). (4)

Remark 1. If the delay operator δi is applied on the composition of two func-
tions of one variable, relation (1) writes

δiϕ ◦ σ(t) = δiϕ(σ(t)) = ϕ(δiσ(t)), for i ≥ 0.

1This assumption could be weaken by supposing that the delay function has an observable
dynamics.
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Remark 2. The condition dθ
dt < 1 on the derivative of the delay function is

important for causality reasons. Without that assumption, when dealing with
time-varying delay systems, we would obtain a contradiction with the fact that
the information available at t is not available at t+ ε. Usually, in the literature,
this condition is stated as dθ

dt ≤ 1. In this paper, the case dθ
dt = 1 is also excluded.

Condition dθ
dt < 1, together with the fact that the delay function is completely

known, allows to define the inverse function τ−1
i of τi over R+, for i ≥ 0. This

is a ”future function” which can be interpreted as follows: τ−1
i (t1), for some

fixed t1 ≥ 0, is the future instant t2 verifying τi(t2) = t1 (and we clearly have
t2 > t1).

In this paper, we study input-output linearization of single-input single-
output nonlinear time-varying delay systems of the form

ẋ(t) = f(δx(t), t) + g0(δx(t), t)δ0u(t) + g1(δx(t), t)δ1u(t), ∀t ≥ 0,

y(t) = h(δx(t), t),

x(s) = x0(s), ∀s ∈ [−qθ̄, 0],

u(s) = u0(s), ∀s ∈ [−θ̄, 0],

(5)

where x(t) ∈ Rn, the vector fields f, g0, g1 : Rn(q+1) × R+ → Rn and the func-
tion h : Rn(q+1) × R+ → R are sufficiently smooth. The integer q corresponds
to the maximal delay order explicitly involved in f , g0, g1 and h (but it does
not mean that f , g0, g1 and h have necessarily the same delay orders). Ac-
cording to (3), δx(t) = (δ0x(t), · · · , δqx(t)) denotes the δ-operator associated
to a sufficiently smooth time-varying delay function θ : R → (0, θ̄] satisfying
d
dtθ(t) < 1, for all t ∈ R, and where θ̄ is a positive real number. The initial
condition x0 belongs to C([−qθ̄, 0],Rn) and the input u : [−θ̄,+∞) → R is a
Lebesgue measurable function. We also assume that system (5) is forward com-
plete; this assumption guarantees the existence of solutions on [0,+∞) for each
fixed determined u.

To achieve input-output linearization (the problem that we are studying
here), we must find a direct relation between the input and the output of the
system by successive differentiation of the output until the input appears in the
resulting derivative equations. An important tool when differentiating is the Lie
derivative. Let us next define the Lie derivative for time-varying delay systems
which is a generalization of that presented in [5, 19] for constant-delay systems.

Definition 2 (Lie derivative). Let f : Rn(q+1) × R+ → Rn be a smooth vector
field whose components are functions of (δx(t), t), and h : Rn(q+1) × R+ → R a
real valued function of (δx(t), t). The Lie derivative of h along f at (δx(t), t) is
defined as

Lfh(δx(t), t) =

q∑
i=0

∂h

∂δix
τ̇iδ

if(δx(t), t) +
∂h

∂t
(δx(t), t). (6)

Notice that (6) is also an extension of the Lie-Backlünd derivative intro-
duced in [4] in a control theory context. The difference resides in our con-
sideration of time-varying delays which leads to multiplicative coefficients (the
time-derivative of the recursive delay function τi) affecting the operator δi.
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Observe that, by taking the Lie derivative of h along f , we introduce new
delays (via the term δif). In the above definition q denotes the maximal delay
order explicitly involved in f or h, but the number of new delays introduced
in Lfh is related to the maximal delay order appearing in h only. Since Lfh
is a real-valued function with delays, the above operation can be recursively
repeated for higher order as

Lkfh(δx(t), t) =

kq∑
i=0

∂Lk−1
f h

∂δix
τ̇iδ

if(δx(t), t) +
∂Lk−1

f h

∂t
(δx(t), t), for k ≥ 2.

We also need to define a reduced Lie derivative.

Definition 3 (Reduced Lie derivative). Let g : Rn(q+1)×R+ → Rn be a smooth
vector field and h : Rn(q+1) × R+ → R a real valued function. The reduced Lie
derivative of h along g is defined as

Lgh(δx(t), t) =

q∑
i=0

∂h

∂δix
τ̇iδ

ig(δx(t), t). (7)

Contrary to (6), the partial derivative of h with respect to t is not present
in (7). If h does not depend explicitly on t, then Lgh coincide with Lgh. Notice
also that, in the case of time-varying delay systems, the Lie derivatives Lfh and
Lgh will always depend explicitly on t through the terms τ̇i.

As indicated by the notations, in our study the reduced Lie derivative (7)
will always be computed for the control vector fields g0 and g1, while the Lie
derivative (6) will always be associated to the drift f .

Similarly to control systems without delays, the time-derivative of Lkfh, for
k ≥ 0, can be written as follows:

dLkfh

dt
=

m∑
i=0

∂Lkfh

∂δix

dδix

dt
+
∂Lkfh

∂t
= Lk+1

f h+ Lg0L
k
fhu+ Lg1L

k
fhδ

1u, (8)

where m is the highest delay order of Lkfh (in this case m = kq). Note that,

in order to be able to compute the time-derivatives of δix, for 0 ≤ i ≤ m,
equation (8) should be defined only for t ≥ τ−1

m (0).
Recall that the operator δ spreads to the right (see equation (2)), thus

Lg0L
k
fhu involves as many delayed controls as the delays present in the function

Lkfh. Indeed, according to the definition of the reduced Lie derivative, we have:

Lg0L
k
fhu =

m∑
i=0

∂Lkfh

∂δix
τ̇i(δ

ig0)) · (δiu).

A similar remark can be made for Lg1L
k
fhδ

1u, but now the number of delayed

controls is no longer m, but m + 1 (because Lg1L
k
fh acts on a control that is

already delayed):

Lg1L
k
fhδ

1u =

m∑
i=0

∂Lkfh

∂δix
τ̇i(δ

ig1) · (δi+1u).
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Therefore, the reduced Lie derivatives Lg0L
k
fh and Lg1L

k
fh associated to the

control vector fields g0 and g1, respectively, can be seen as δ-polynomials and
can be developed with respect to the operator δi as follows:

Lg0L
k
fh(δx(t), t) =

m∑
i=0

ai0(δx(t), t)δi, Lg1L
k
fh =

m+1∑
i=1

ai1(δx(t), t)δi,

where

ai0(δx(t), t) =
∂Lkfh

∂δix
τ̇i(δ

ig0(δx(t), t)), 0 ≤ i ≤ m,

and

ai1(δx(t), t) =
∂Lkfh

∂δi−1x
τ̇i−1(δi−1g1(δx(t), t)), 1 ≤ i ≤ m+ 1.

Combining these two δ-polynomials, we define

a(δ] = a0(δx(t), t)δ0 + · · ·+ am+1(δx(t), t)δm+1, (9)

where a0 = a0
0, ai = ai0 + ai1, for 1 ≤ i ≤ m, and am+1 = am+1

1 . The δ-
polynomial a(δ] is an element of the ring of differential time-varying delay op-
erators (see [21] for more details about the algebraic properties of that ring).
Equation (8) can then be rewritten as follows:

dLkfh

dt
= Lk+1

f (δx(t), t) + a(δ]u(t), t ≥ τ−1
m (0). (10)

Before formalizing the problem of input-output linearization, a definition of
the relative degree in the case of time-varying delay systems is needed. This can
be done in the same way as for the finite dimensional case (see, e.g., [13]): the
relative degree of an output h corresponds to the number of times that we have
to differentiate h with respect to time t before the input or the delayed input
appears.

In this paper, we do not deal with singularities and we make the following
assumption:

Remark 3. When we say that a function does not vanish, we mean that it is
nonzero for any t ≥ 0.

Definition 4 (Relative degree). The relative degree of the output h of system (5)
is the positive integer ρ defined as follows:{

Lg0L
k
fh(δx(t), t) = Lg1L

k
fh(δx(t), t) = 0, 0 ≤ k < ρ− 1,

(Lg0L
ρ−1
f h, Lg1L

ρ−1
f h)(δx(t), t) 6= (0, 0),

for any (δx(t), t) ∈ Rn × Rnq(ρ+1) × R+.

Since, in the time-varying delay case, the Lie derivatives depend explicitly on
time, the relative degree may also be time-dependent. Here, due to Remark 3,
this cannot occur (i.e., the relative degree is uniform with respect to t).

From now on, we denote by a(δ] the δ-polynomial associated to the ρ-th
time-derivative of h, that is

h(ρ) = Lρfh+ a(δ]u,

where
a(δ] = Lg0L

ρ−1
f h+ Lg1L

ρ−1
f h.
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Definition 5 (Minimal and maximal degree). We call minimal degree of a(δ]
the order of its first coefficient non identically zero, i.e., the integer j such that

aj(δx(t), t) 6= 0, (11)

ai(δx(t), t) ≡ 0, ∀ i < j.

The highest delay order of a(δ] is called the maximal degree and is denoted by
m + 1 (where the integer m can be expressed in function of ρ and the highest
delay order q involved in the system: m = qρ).

Observe that h(ρ) is actually defined for t ≥ τ−1
m (0). Throughout, we will

use the notation t0 = τ−1
m (0).

Definition 6 (Input-output linearization). We say that the problem of input-
output linearization is solvable for system (5) if the output h admits a finite
relative degree ρ and if there exists a causal and bounded feedback u verifying

a(δ]u(t) = −Lρfh(δx(t), t) + δjv(t), ∀ t ≥ τ−1
j (t0), (12)

where j is the minimal degree of a(δ], and v is the new control (assigned with
respect to the properties that we want to achieve). If such u exists, then the
feedback modified system satisfies:

y(ρ)(t) = δjv(t), ∀ t ≥ t0.

Moreover, the system is said input-output linearizable with delay if j > 0 (re-
spectively, without delay if j = 0).

The input-output linearization usually leads to the existence of an unob-
servable part (called zero-dynamics) of system (5). Thus, a condition on the
zero-dynamics is needed in order to guarantee the internal stability of the sys-
tem. We stress that even in the case of a complete linearization (i.e., ρ = n), we
may also have an implicit relation between u and δiu, for j ≤ i ≤ m, (relation
which is called internal input dynamics in the literature, see [8]). By conse-
quence, two main problems may arise when constructing a feedback u from an
equation of form (12). The first problem is the boundedness of u which comes
from the zero-dynamics or the internal input dynamics or both at once. The
second one is the causality of u that stems from the fact that the drift may
involve more delays than the control vector fields or vice versa. In the next
section we give sufficient conditions allowing to solve these problems. Under
those conditions, we design new coordinates allowing the transformation of (a
part of) system (5) into the ρ-th order linear input-output system

żi(t) = zi+1(t), 1 ≤ i ≤ ρ− 1,
żρ(t) = δjv(t),

(13)

where zi = Li−1
f h, for 1 ≤ i ≤ ρ. The fact that in (12) we consider δjv (instead

of v, which would also lead to a linear input-output map, but without delay)
will be justified in the sequel. If we replace δjv by v in (12), i.e., u should be
computed from

a(δ]u(t) = −Lρfh(δx(t), t) + v(t), (14)

then the control would act instantaneously on the system and no predictor would
be needed for the construction of a feedback v for the z-system (for instance, if
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the aim is to design a stabilizing feedback for (13)), but when designing a feed-
back u from equation (14), a j-order predictor (i.e., a predictor over [t0, τ

−1
j (t0)])

would have to be implemented for the x-system. Here, we simply chose to make
the predictor over the linear z-system (rather than on the nonlinear x-system).
In that case, we suppose that the system is in free evolution over [t0, τ

−1
j (t0)]

and that the feedback v (which has to be computed for t ≥ t0) affects the system
starting from the instant τ−1

j (t0) only. This remark explains two points: first,

the reason for which (12) is defined for t ≥ τ−1
j (t0), and second, why condi-

tion (11) is needed starting from τ−1
j (t0) only. Remark that, even if we place

the predictor over the z-system, the computation of a feedback u may request
a 1-order predictor (over [t0, τ

−1
1 (t0)]) on the x-system (this may happen, for

instance, when g1 6= 0). Finally, notice that if trajectory planning is intended,
the artificial delay in the control v does not generate any technical problem
because, in that case, we dispose entirely of the desired trajectory.

3 Main results

3.1 Input-output linearization

In this section, we give the main result of the paper: we design new coordinates
and a causal and bounded feedback that linearizes the input-output behavior
of the original system. To that end, we introduce the following conditions, that
will be discussed in details after stating our main theorem:

(C1) - Relative degree: The output h has a finite relative degree ρ ≤ n.

(C2) - New coordinates: There exists a smallest integer 0 ≤ ` ≤ m such

that the matrix

(
∂Lkfh

∂δ`xi

)
, for 0 ≤ k ≤ ρ− 1 and 1 ≤ i ≤ n, is of full rank (equal

to ρ) at any (δx(t), t) ∈ Rn × Rnq(ρ+1) × R+.
Introduce the z-variables zi(t) = Li−1

f h(δx(t), t), for t ≥ t0 and 1 ≤ i ≤
ρ, and complete them (which is always possible) by n − ρ functions ξi(t) =
φi(δx(t), t), for ρ + 1 ≤ i ≤ n, such that the Jacobian matrix

(
∂Φ
∂δ`x

)
, where

Φ = (h, . . . , Lρ−1
f h, φρ+1, . . . , φn), is of full rank (equal to n) at any (δx(t), t) ∈

Rn × Rnq(ρ+1) × R+.

(C3) - Causal and bounded inversion: There exist ξ-coordinates, a
continuous function Ψ such that

δ`x(t) = Ψ(δz(t), δ−z(t), δξ(t), δ−ξ(t), δ≥`+1x(t), t), ∀t ≥ t0, (15)

and a constant µ > 0 such that if ‖δ≥`+1x(t)‖ < µ, then

‖δ`x(t)‖ ≤ α1‖(δz(t), δ−z(t))‖+α2‖(δξ(t), δ−ξ(t))‖+α3‖δ≥`+1x(t)‖, ∀t ≥ t0,
(16)

where α1 > 0, α2 > 0 and 0 < α3 < 1/(q(ρ+ 1)− `). Recall that δ− and δ≥`+1

were defined in Section 2.
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(C4) - Causal feedback: The Lie derivative Lρfh and the coefficients of
the δ-polynomial a(δ] verify

∂Lρfh

∂δix
≡ 0 and

∂ak

∂δix
≡ 0, (17)

for j ≤ k ≤ m+1 and 0 ≤ i ≤ j−1 if g0 6= 0 (respectively, 0 ≤ i ≤ j−2 if g0 ≡ 0).

(C5) - Bounded feedback: Let v : [τj(t0),+∞)→ R be such that

−Lρfh(δx(t), t) + δjv(t)

aj(δx(t), t)
is bounded over [τ−1

j (t0),+∞) (18)

and u be a solution of (12) for that v. Suppose that u is bounded over
[τm+1−j(t0), t0] and that there exists a constant c > 1 such that

sup
t≥τ−1

j (t0)

∥∥∥∥ ai(δx(t), t)

aj(δx(t), t)

∥∥∥∥ ≤ 1

c(m+ 1− j)
, ∀i > j. (19)

Theorem 1. Consider system (5) and suppose that conditions (C1)-(C5)
are satisfied. Then, system (5) is input-output linearizable via the causal and
bounded feedback transformation (12) and (a part of) it can be transformed into
the ρ-th order linear input-output system (13). Moreover, if ρ = n, then the
system is fully input-output linearizable with delay and if, in addition, j = 0,
then the system is fully input-output linearizable without delay.

Theorem 1 gives only sufficient conditions. We do not claim that our condi-
tions are also necessary, see Section 4, where we give several examples that do
not satisfy the conditions of Theorem 1.

Conditions discussion

We next discuss the role and the importance of each condition. Condition (C1)
requires that the relative degree of h is smaller or equal to n. It is clear that if
this is not the case, system (5) is not input-output linearizable (in fact, a part
of the system is not controllable).

Contrary to the cases of control systems without delays and constant-delay
control systems (see Section 3.3, where we give a comparison of our results with
the constant-delay case), condition (C1) may not be sufficient to define a local
change of coordinates and additional conditions (given by (C2) and (C3)) may
be needed.

It is important to note that by a change of coordinates (or a coordinate trans-
formation), we do not mean (like for systems without delays) a diffeomorphism
between x and the new state (z, ξ), see condition (C2). In fact the coordinate
transformation map Φ : Rn × Rnq(ρ+1) × R+ 7→ Rn of (C2), that allows us to
construct the new variables z transforming a part of system (5) into the ρ-th
order linear system (13), is never a diffeomorphism. However, condition (C2),
together with (C3), enables us to come back from the (z, ξ)-state space into
the x-state space by expressing the delayed states δ`xi, for a certain delay order
0 ≤ ` ≤ m, as functions of the new state, their delays and advances, and possi-
ble delayed state δpx, where p ≥ `+ 1 (hence the name ”causal inversion”) and
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to preserve (in the x-state space) properties (like boundedness) that hold in the
(z, ξ)-state space. As we will see below, conditions (C2) and (C3) play a crucial
role in the verification of (C5) ensuring the boundedness of the input-output
linearizing feedback.

A less restrictive condition than (C2) would be to assume the existence of

delay orders `1, . . . , `n such that 0 ≤ `i ≤ m and the rank of the matrix
(

∂φk
∂δ`ixi

)
,

for 1 ≤ k ≤ ρ, 1 ≤ i ≤ n, equals ρ, and for each δ`ixi we have a causal inversion
(i.e., in (15)-(16), we should take δ≥L+1x, where L = max1≤i≤n `i instead of
δ`x). This would considerably complicate the notations and in order to simplify
the understanding of the paper, we assume that the more restrictive condition
(C2) holds.

We stress that condition (C3) (in particular relation (15) which should hold
for all t ≥ t0) supposes indirectly that z and ξ are completely known over
[τq(ρ+1)(t0), t0] and that their maximum delay order cannot exceed q(ρ + 1).
This does not necessarily mean that all their components should be known over
[τq(ρ+1)(t0), t0]. Throughout this paper, we suppose that the maximum delay-
advance order in (z, ξ) cannot exceed q(ρ+ 1).

Conditions (C4) and (C5) deal with the construction of a causal and
bounded feedback. (C4) should be understood as follows: at an instant t ≥ t0,
we have to assign to system (5) either u(t), if g0 6= 0, or δ1u(t), if g0 ≡ 0, and, in
both cases, the construction of u is obtained from (12) by applying the advance
operator δ−j and thus shifting the coefficients of the δ-polynomial as well as
Lρfh of order j in the future. In the case when u(t) acts on the system (i.e.,
g0 6= 0), the causality condition (17) guarantees that the value of u(t) depends
only on the current and past values of the state; thus no causality problem can
be produced when introducing in (5) the control u so obtained. In the case when
only the delayed input appears (i.e., g0 ≡ 0 and, of course, g1 6= 0), the causality
condition provides that the value of u(t), computed from the feedback equation,
depends on the past, current and 1-advance values of the state. Again, when
introducing in (5) the associated δ1u(t), no causality problem appears. Never-
theless, in this later case, a predictor is needed in order to compute the control
as a function of the future values of the state. Finally, observe that when j = 0,
there is no causality problem (and thus there is no condition to be checked).

We will see, when proving Theorem 1, that condition (C5) guarantees that
the feedback u stays bounded when property (18) holds. Thus an important
issue is how to verify this property and next we explain how to do it. In fact,
(18) can be verified in the (z, ξ)-coordinates. This does not necessarily implies
its validity in the x-coordinates (recall that, in the time-varying delay context,
the change of coordinates map does not define a diffeomorphism). Nevertheless,
thanks to property (16) given by (C3), under some additionnal assumptions
(see Proposition 1 below), the boundedness in (z, ξ)-coordinates implies the
boundedness in x-coordinates. In the following proposition, we use the notation

ε =
1− α3(q(ρ+ 1)− `)

(2q(ρ+ 1) + 1) max{α1, α2}
µ, (20)

where the parameters `, µ, α1, α2, and α3 are given by (C2)-(C3).

Proposition 1. Suppose that conditions (C1)-(C3) hold. If

sup
t≥τq(ρ+1)(t0)

{‖z(t)‖, ‖ξ(t)‖} < ε and sup
τq(ρ+1)(t0)≤t≤t0

‖x(t)‖ < µ,
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then x(·) stays bounded by µ over [t0,+∞).

3.2 Stability of the closed loop system

In this section, we study the stability of the closed loop system. In addition to
(C1)-(C5), we suppose that the following conditions are satisfied:

(C6) - Equilibrium: System (5) satisfies

f(0, t) = 0, and h(0, t) = 0, ∀t ≥ 0.

where the 0-argument of f and h corresponds to the (q + 1)-tuple (0, · · · , 0).

(C7) - Total causal inversion: We suppose that (C3) holds, with the
ξ-coordinates and the function Ψ such that

δ`x(t) = Ψ(δz(t), δ−z(t), δξ(t), δ−ξ(t), t), ∀t ≥ t0, (21)

and that the dynamics of ξ do not contain advances in the ξ-states, i.e., ξ̇ is of
the form ξ̇(t) = G(δz(t), δ−z(t), δξ(t), δv(t), t).

Condition (C7) is quite restrictive: it supposes that all components of the
state δ`x(t) are explicit functions of δz(t), δ−z(t), δξ(t), δ−ξ(t), t), for all t ≥ t0.
This condition is important when dealing with the stability of the zero dynam-
ics, but it is not necessary in the sens that only the x-components present in
the functions φi(δx(t), t), for ρ+ 1 ≤ i ≤ n, defining the ξ-variables (see condi-
tion (C2)) have to be explicit functions of δz(t), δ−z(t), δξ(t), δ−ξ(t), t), for all
t ≥ t0 (see Section 4, for an example illustrating the nonnecessity of (C7)).

In the case when ρ < n, by applying feedback (12) and introducing the new
(z, ξ)-coordinates, system (5) is decomposed into two parts: a ρ-th order linear
z-subsystem and a nonlinear ξ-subsystem (zero-dynamics) which may contain
delayed and advanced states. Under assumptions (C1)-(C7), system (5) can
be transformed, for t ≥ t0, as follows:

ż(t) = Az(t) +Bδjv(t), ∀t ≥ t0
ξ̇(t) = G(δz(t), δ−z(t), δξ(t), δv(t), t), ∀t ≥ t0
y(t) = Cz(t),

(22)

where the matrices A, B and C are associated to form (13). Note that the
initial condition of (22) is defined through that of the initial problem (5) (see
the remark explaining condition (C3) after the statement of Theorem 1).
Let

δjv(t) =

{
k1z1(t) + · · ·+ kρzρ(t), t ≥ τ−1

j (t0),

0 t0 ≤ t ≤ τ−1
j (t0),

(23)

where ki, for i = 1, . . . , ρ, are chosen in such a way that A+BK has ρ different
eigenvalues with strictly negative real parts, where K = (k1, . . . , kρ). In this
case, the resulting closed loop subsystem

ż(t) = (A+BK)z(t), (24)
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is asymptotically stable. Therefore, under this choice of v, the state z(t) tends
asymptotically to zero when t tends to +∞. Even if the input-output behavior
can be stabilized by a feedback, the internal dynamics may be unstable and the
global system cannot be stabilized.

In order to characterize the internal stability of the closed loop system,
we have to recall the definition of input-to-state stability for time-delay sys-
tems (see, e.g., [6, 16, 22]). We will also need the following function classes:
a function γ : R+ → R+ is said to be of class K∞ if it is continuous, strictly
increasing and γ(0) = 0. A continuous function β : R+ × R+ → R+ is said to
be of class KL if β(·, t) is of class K∞ for each t ≥ 0, β(s, ·) is decreasing to zero
for each s > 0 and β(s, t)→ 0 as t→ +∞.

Definition 7. Consider the time-delay system

ξ̇(t) = G(δξ(t), w(t)), ∀t ≥ 0, (25)

where ξ(t) ∈ Rn is the state of the system, w(t) ∈ Rm is an exogenous input,
the dynamics G is continuously differentiable and such that G(0, 0) = 0. Sys-
tem (25) is said to be uniformly input-to-state stable if there exist a KL function
β and a K∞ function γ such that, for any initial time t0 ≥ 0, any initial state
ξt0 = ϕ ∈ C([−qθ̄, 0],Rn) and any measurable, locally essentially bounded input
w, the solution ξ(t) exists for all t ≥ t0 and furthermore, it satisfies

‖ξ(t)‖ ≤ β(‖ξt0‖∞, t− t0) + γ(‖w[t0,t)‖∞), ∀t ≥ t0.

In our case, we apply the above definition to the zero-dynamics ξ̇(t) =
G(δz(t), δ−z(t), δξ(t), δv(t)) of (22), for which the exogenous input is w(t) =
(δz(t), δ−z(t), δv(t)). Notice, however, that w(t) is not exogenous for the global
system.

Proposition 2. Consider system (22). Let v, given by equation (23), be such
that the matrix A + BK in (24) is Hurwitz. If the zero-dynamics is uniformly
input-to-state stable then system (22) is locally asymptotically stable around the
origin.

Proof. The proof derives straightforwardly from Definition 7. �

Remark 4. The uniform input-to-state stability of the zero dynamics is not
necessary if only the boundedness of the input is requested. For example, if the
unstable part of the zero dynamics does not affect (or at least not significantly)
the feedback control, which linearizes the system, then the input-output behavior
is stable. Such a remark relaxes the conditions of Proposition 2, but this is far
from the scope of the paper.

The following proposition gives sufficient conditions guaranteeing the local
asymptotic stability of the equilibrium point in x-coordinates.

Proposition 3. Consider system (5) and suppose that conditions (C1)-(C7)
are satisfied. Let u verifying equation (12) with v, given by (23), and such
that the matrix A + BK in (24) is Hurwitz. Suppose that the zero-dynamics
is uniformly input-to-state stable. If ‖z(t)‖ < ε1 over [τq(ρ+1)(t0), τ−1

j (t0)], and
‖ξ(t)‖ < ε1 and ‖x(t)‖ < µ over [τq(ρ+1)(t0), t0], for a suitable constant ε1, then

lim
t→+∞

x(t) = 0.

The constant ε1 of the above proposition depends on the parameters defined
by conditions (C2) and (C3), see the proof of Proposition 3.
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3.3 Constant-delay case: comparison with the existent lit-
erature

A first attempt to extend the geometric tools of Lie derivative and Lie bracket
to constant-delay systems has been given in [19, 20], where sufficient input-
output linearizing conditions have been developed for single-input single-output
constant-delay systems. Some of those conditions have been relaxed in [7, 8], in
the case of fully linearizable time-delay systems.

It may be interesting to give a comparison of our conditions (simplified for
the constant-delay case and for autonomous vector fields f, g0, g1 and output
h) with the results of the above cited papers. We will next briefly recall their
results, but let us first underline that in [7, 8, 19, 20], only the case of non-
delayed input (i.e., g1 ≡ 0) has been considered.

In addition to the existence of a relative degree ρ ≤ n, conditions like

∂Lρ−1
f h

∂x
g0(δx(t)) 6= 0, and

∂Lρ−1
f h

∂δix
δig0(δx(t)) = 0, ∀i ≥ 1, (26)

for any δx(t) ∈ Rnq are required in [19, 20]. It is evident that under (26), the
boundedness and causality properties of the control u (discussed after Defini-
tion 6) are no longer problematic. Indeed, if (26) holds, then (12) gives

u(t) =
−Lρfh(δx(t), t) + v(t)

a0(δx(t))
, t ≥ t0, (27)

which is clearly causal, and bounded when the right hand side of (27) is bounded.
Condition (26) has been relaxed in [8], where only the less-restrictive relation

∂Lρ−1
f h

∂x
g0(δx(t)) 6= 0, (28)

for any δx(t) ∈ Rnq, has been required. In this case, the control u is given by
a recursive equation like (12) with j = 0. Thus, the boundedness (but not the
causality) of the control u becomes questionable. Under condition (28) and in
the case of fully linearization (i.e., ρ = n), the internal stability (i.e., the state
and input stability), is then deeply studied and solved in [8].

Unlike for delay-free systems, even if a fully input-output linearization has
been achived, the internal stability is not guaranteed after output stabilization.
Sufficient conditions ensuring that property (after output stabilization) are given
in [7, 8]. These conditions are similar to what is requested by the statement of
Proposition 3, but without any additional condition on the boundedness of the
input. In fact, in [8], the authors show that, in the case of fully linearization
and under some assumptions on the internal state dynamics, when the output
is asymptotically driven to zero, both the state and the control tend to zero
asymptotically. The proof of this result lies particularly in the fact that the
delay is constant. The possibility of extension to the time-varying delay case is
not so evident and will be treated elsewhere.

We will next explain why our conditions are less-restrictive comparing to
what is done in [8, 7, 19, 20]. Condition (C1) demands that either Lg0L

ρ−1
f h 6= 0

or Lg1L
ρ−1
f h 6= 0, that is to only have (compare with (26)-(28)):

∂Lρ−1
f h

∂δix
δigj(δx(t)) 6= 0, for some i ≥ 0 and 0 ≤ j ≤ 1.
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Of course, in addition to (C1), further conditions like (C3)-(C5) are needed.
Indeed, as explained in Section 2, in general, condition (C1) alone does not
allow the construction of a bounded and causal feedback u from (12) that
input-output linearizes the system. Conditions (C4) and (C5) guaranty the
boundedness (additional condition on the zero-dynamics is needed in the case
of partial linearization) and causality properties of u, while (C2) and (C3) are
used in order to verify (C5). Another important point is that, in the case of
constant delays, conditions like (C2) are not needed since, in that case, (C1)
is sufficient for the existence of a local coordinate transformation. In fact, it is
easy to prove that in that case and for autonomous vector fields f, g0, g1 and
output h, condition (C2) is a straightforward consequence of (C1), see [19, 20]
for a related result. For time-varying delays, the fact that the Lie derivatives
are not autonomous (due to the presence of the terms τ̇i) complicates the proof.

4 Examples

In this section, we discuss several examples illustrating Theorem 1. The pre-
sented examples are separated into two categories: the first one showing that
our conditions are sufficient (Examples 1, 2 and 3) and the second one proving
that they are not necessary (Example 4) .

Example 1 (satisfying Theorem 1). Consider the nonlinear time-varying delay
system

ẋ1(t) = x2(t) + 1
3δ

1x2(t)
ẋ2(t) = δ1x2

3(t) + δ1u(t)
ẋ3(t) = −x3(t)− x1(t)
h(t) = δ1x1(t), ∀t ≥ 0,

(29)

with initial condition x0 ∈ C([−θ̄, 0],R3) and u ∈ U . The delay function θ(·) is
chosen in such a way that |θ̇| < 1

4 . Here, we have

g0 = (0, 0, 0)T , g1 = (0, 1, 0)T , and f = (x2 +
1

3
δ1x2, δ

1x2
3,−x3 − x1)T ,

and the maximum delay order is q = 1. We can easily verify that all assumptions
of Theorem 1 are all fulfilled. Indeed:

Condition (C1): A straightforward computation gives

Lg1h = 0, Lfh = τ̇1δ
1x2 +

1

3
τ̇1δ

2x2, Lg1Lfh = τ̇2
1 δ

2 +
1

3
τ̇1τ̇2δ

3

and

L2
fh = τ̈1δ

1x2 +
1

3
τ̈1δ

2x2 + τ̇2
1 δ

2x2
3 +

1

3
τ̇1τ̇2δ

3x2
3.

Thus, condition (C1) is satisfied and the relative degree is ρ = 2.
Condition (C2): By introducing

z1 = δ1x1, z2 = τ̇1δ
1x2 +

1

3
τ̇1δ

2x2, (30)

and choosing
ξ = δ1x3, (31)
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the rank of ∂Φ
∂δ1x is equal to 3 at any (δx(t), t) ∈ R9×R+, thus (C2) holds with

` = 1.
Condition (C3): From (30)-(31), we obtain

δ1x1 = z1, δ1x2 =
1

τ̇1
z2 −

1

3τ̇1
δ2x2, δ1x3 = ξ, ∀ t ≥ t0, (32)

with t0 = τ−1
2 (0). In addition, for any µ > 0, we have

‖δ1x(t)‖ ≤ α1‖z(t)‖+ α2‖ξ(t)‖+ α3‖δ2x(t)‖, ∀t ≥ t0,

with α1 = 3, α2 = 1 and α3 = 4
9 , and (C3) is valid.

Condition (C4): The feedback equation is given by

a(δ]u = τ̇2
1 δ

2u+ kτ̇1τ̇2δ
3u = −L2

fh+ δ2v(t), t ≥ τ−1
2 (t0).

We are in the case where j = 2 and g0 ≡ 0. Since the coefficients of the

δ-polynomial do not depend on the state and that
∂L2

fh

∂x ≡ 0, it follows that
condition (C4) is valid.

Condition (C5): One can easily verify that the a(δ]-polynomial satisfies
condition (19). Thus, it remains to check the boundedness of

−L2
fh+ δ2v(t)

τ̇2
1

∀ t ≥ τ−1
2 (t0). (33)

As mentioned in Section 3, the boundedness will be verified in the (z, ξ)-coordinates.
By consequence, we have to check if

− τ̈1τ̇1 z2 − τ̇2
1 δ

1ξ2 − kτ̇1τ̇2δ2ξ2 + δ2v(t)

τ̇2
1

,

stays bounded for every t ≥ τ−1
2 (t0). System (29) can be written in the (z, ξ)-

coordinates as follows
ż1(t) = z2(t)

ż2(t) = δ2v(t)

ξ̇(t) = −τ̇1(t)ξ(t)− τ̇1(t)z1(t)

y(t) = z1(t), ∀t ≥ t0.

Let v be as in equation (23), thus guaranteeing that the state (z1(t), z2(t)) con-
verges asymptotically to zero when t tends to +∞. Since τ̇1 is bounded over
[0,+∞), it follows that w(t) = −τ̇1(t)z1(t) (which is seen as an external exoge-
nous input of the zero-dynamics ξ̇(t) = −τ̇1(t)δξ(t)− w(t), for t ≥ t0) tends to
0 when t tends to +∞. Knowing that the zero-dynamics is uniformly input-to-
state stable (because the unforced zero-dynamics ξ̇(t) = −τ̇1(t)ξ(t) has a globally
exponentially stable equilibrium point at ξ = 0 and G(ξ, z1, t) = −τ̇1(t)ξ−τ̇1(t)z1

is continuously differentiable and globally Lipschitz, uniformly in t, see [17]),
then ξ(t) tends to 0 when t tends to +∞. Since (C3) is valid for any arbitrary
value of µ, by Proposition 1, we have that x stays bounded for t ≥ t0. It follows
that (33) is bounded in the x-coordinates as well and, finally, that (C5) holds.
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Example 2 (not satisfying the causality condition (C4)). Consider the follow-
ing time-varying delay system

ẋ1(t) = x2
2(t)u(t)

ẋ2(t) = u(t)
ẋ3(t) = x1(t)
h(t) = x3(t) + δ4x2(t),

(34)

for which x0 ∈ C([−4θ̄, 0],R3) and u0 ∈ U are given. We will show that (34) is
not input-output linearizable via a causal and bounded feedback and that it is not
in conformity with Theorem 1. We have g0 = (x2

2, 1, 0)T , g1 ≡ 0, f = (0, 0, x1)T

and the δ-polynomial is given by

a(δ] = τ̇4δ
4. (35)

Thus the feedback u has to verify the following relation

x1(t) + τ̇4(t)δ4u(t) = δ4v(t), t ≥ τ−1
4 (0). (36)

It is clear that condition (C4) is violated since ∂Lfh/∂x1 = 1 6= 0 and the
causality problem becomes now clear. Indeed, the computation of u(t) from (36)
depends on the future of x1. However, from the first equation of (34), we see
that u acts instantaneously on x1 which prevents us to assign u(t) computed
by (36) to (34).

Example 3 (not satisfying the bounded feedback condition (C5)). This ex-
ample shows that if inequality (19) of condition (C5) is not satisfied, then even
for a very simple choice of a bounded v, there is no bounded feedback u satisfy-
ing (12). For simplicity, we suppose that the delay is constant and equal to 1.
Consider

ẋ1(t) = x3(t)− 2x2(t)
ẋ2(t) = (1 + x2

1(t))δ1u(t)
ẋ3(t) = (1 + x2

1(t))u(t)
h(t) = x1(t),

(37)

with x(0) = 0 and u(t) = 1, for t ∈ [−θ̄, 0]. Notice that in this example only the
control is delayed. We have

a(δ]u(t) = (1 + x2
1(t))u(t)− 2(1 + x2

1(t))δ1u(t). (38)

Remark from the latter equation, that (19) is not satisfied. Now, suppose that
we want to stay at x1(t) = 0 for all t ≥ 0. Hence u has to verify

u(t)− 2δ1u(t) = 0, t ≥ 0, (39)

i.e., in this case v = 0. It follows from (39) that, over [0, θ̄], the control u should
be equal to 2. Similarly, we should have u(t) = 4 over [θ̄, 2θ̄]. By repeating this
reasoning, we find recursively that over the interval [nθ̄, (n+ 1)θ̄], the control u
should be equal to 2n+1. Then, there is no bounded u satisfying (39).

Example 4 (Non-necessity of conditions (C3) and (C7)). The non-necessity
of condition (C7) can be easily seen through Example 1. Indeed, even if we
cannot express δ1x as a pure function of (z, ξ), like in expression (21) required
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by (C7), we can always write the (z, ξ)-dynamics. In fact, condition (C7) can
be relaxed by supposing that only the x-states which appear in the dynamics of ξ
should respect (21). Concerning condition (C3) we give the following example.
For simplicity, we consider a constant-delay nonlinear system:

ẋ1(t) = 2δ1x2(t) + δ1u(t)

ẋ2(t) = arctan(x1(t))− u(t)

y(t) = x1(t) + δ1x2(t), ∀t ≥ 0,

with initial conditions x0 ∈ C([−θ̄, 0],R2) and u0 ∈ U . We have g0 = (0,−1)T ,
g1 = (1, 0)T , f = (2δ1x2, arctan(x1))T . A straightforward computation shows
that Lg0h = Lg1h = 0, Lfh = arctan(δ1x1) + 2δ1x2, a(δ] = Lg0Lfh+Lg1Lfh =

−2δ1 + 1
1+(δ1x1)2 δ

2 and L2
fh = 2 arctan(δ1x1) + 2 δ2x2

1+(δ1x1)2 . Condition (C1) is

satisfied, with ρ = 2, the feedback u has to verify the following relation

−2δ1u(t)+
1

1 + (δ1x1)2
δ2u(t) = −2 arctan(δ1x1)−2

δ2x2

1 + (δ1x1)2
+δ1v(t), t ≥ 3θ̄,

(40)
and it is immediate that the causality condition (C4) is valid. The new coordi-
nates

z1 = x1 + δ1x2, z2 = arctan(δ1x1) + 2δ1x2, ∀t ≥ t0,

satisfies condition (C2) with ` = 1. Remark that from the above two equations,
we can never express δ1x in function of δz(t), δ−z(t) and δ≥2x(t), thus condi-
tion (C3) is not satisfied. Finally, notice that even if (C3) does not hold, the
boundedness condition (C5) is satisfied for this example and its verification is
obvious.

5 Proofs

5.1 Proof of Theorem 1

We assume that system (5) satisfies conditions (C1)-(C5). Introduce, as ex-
plained when stated (C2), the new variables zi = Li−1

f h, for 1 ≤ i ≤ ρ. For
t ≥ t0, we obtain:

żi = zi+1, 1 ≤ i ≤ ρ− 1,

żρ = Lρfh+ Lg0L
ρ−1
f hu+ Lg1L

ρ−1
f hδ1u = Lρfh+ a(δ]u(t),

System (5) is input-output linearizable if the feedback u verifying

a(δ]u(t) = −Lρfh(δx(t), t) + δjv(t), t ≥ τ−1
j (t0),

is bounded and causal. Those properties are guaranteed by the two lemmas
stated and proven below. According to Lemma 1, if condition (C5) is verified,
then the feedback u stays bounded when property (18) is satisfied. Lemma 2
states that (C4) is actually a sufficient condition for the causality of u. There-
fore, by applying (12), the input-output map becomes z(ρ) = h(ρ) = δjv(t) and
systems (5) is thus input-output linearizable by a causal and bounded feedback.
If ρ = n, then the system is fully input-output linearizable. If, moreover, j = 0,
it is fully input-output linearizable without delay (with delay, otherwise).
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Lemma 1. Suppose that condition (C5) holds. Then, for every t ≥ t0, we have

‖u(t)‖ ≤ 1

c− 1
sup

τm+1−j(t0)≤s≤t0
‖u(s)‖+ c

c− 1
sup

s≥τ−1
j (t0)

∥∥∥∥∥−L
ρ
fh(δx(s), s) + δjv(s)

aj(δx(s), s)

∥∥∥∥∥ .
Proof. Throughout the proof, by abuse of notation, we write ai(t) (respectively
Lρf (h)(t)) instead of ai(δx(t), t), for 0 ≤ i ≤ m+ 1, (respectively Lρfh(δx(t), t)).
If the minimal degree j of the δ-polynomial a(δ] is such that j ≥ 1, we start by
introducing a new time-scale t̃ that allows us to shift the time in such a way
that δju(t) becomes u(t̃). In order to do that, remark that τi(·) is a strictly
increasing function of t, for 1 ≤ i ≤ m+ 1. Indeed, it is easy to verify that

τ̇i+1(t) = τ̇i(t)(1− θ̇(τi(t))), for 1 ≤ i ≤ m+ 1,

from which we can deduce, by induction, that τ̇i+1(t) > 0, for every t ≥ 0. This
allows us to define a new time-scale t̃ = τj(t), for t ≥ 0.

By introducing t̃ = τj(t), equation (12) reads

ãj(t̃)u(t̃) + · · ·+ ãm(t̃)δm+1−ju(t̃) = −L̃ρfh(t̃) + v(t̃), ∀t̃ ≥ t0, (41)

where L̃ρfh(t̃) = Lρfh(τ−1
j (t̃)) and ãi(t̃) = ai(τ−1

j (t̃)), for j ≤ i ≤ m + 1, and
condition (19) becomes

sup
t̃≥t0

∥∥∥∥ ãi(t̃)ãj(t̃)

∥∥∥∥ ≤ 1

c(m+ 1− j)
, j < i ≤ m+ 1. (42)

From the assumptions made on the delay function θ(·) (in particular, θ(t) > 0
and θ̇(t) < 1, for every t ≥ 0), one can easily prove (the proof is left to the reader)
the existence of a strictly increasing sequence (Tk)k≥0 such that

T0 = t0, Tk = Tk+1 − θ(Tk+1), ∀k ≥ 0,

and Tk → +∞ with k.
The idea of the proof of Lemma 1 is to give a bound for u(t̃), for t̃ belonging

to the sequence of intervals [Tk, Tk+1], and, show that, when k goes to infinity,
this bound is finite.

Denote

M = sup
t̃≥t0

∥∥∥∥∥−L̃
ρ
fh(t̃) + v(t̃)

ãj(t̃)

∥∥∥∥∥ .
Since τi, 1 ≤ i ≤ m+ 1, is an increasing function (as we have just proven), over
[T0, T1], we have (recall that T0 = T1 − θ(T1) = τ1(T1)):

τ1(t̃) ∈ [τ1(T0), τ1(T1)] = [τ1(T0), T0],

and we can easily verify that

τi(t̃) ∈ [τi(T0), τi(T1)] ⊂ [τi(T0), T0], ∀1 ≤ i ≤ m+ 1− j.

Then, from relation (41), it follows that, for every t̃ ∈ [T0, T1], we have

‖u(t̃)‖ ≤ ‖ ã
j+1

ãj
u(τ1(t̃))‖+ · · ·+ ‖ ã

m+1

ãj
u(τm+1−j(t̃))‖+M

≤
(
‖ ã

j+1

ãj
‖+ · · ·+ ‖ ã

m+1

ãj
‖
)

sup
τm+1−j(T0)≤s≤T0

‖u(s)‖+M.
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Now, recall that according to our assumptions, there exists a constant c > 1
such that relation (42) holds for all t̃ ≥ t0, thus for t̃ ∈ [T0, T1] also. Hence,

‖u(t̃)‖ ≤ 1

c
sup

τm+1−j(T0)≤s≤T0

‖u(s)‖+M.

The latter inequality allows to estimate u(t̃) over [T0, T1]. As above, over [T1, T2],
we have τ1(t̃) ∈ [τ1(T1), τ1(T2)] = [τ1(T1), T1], and, in the general case, τi(t̃) ∈
[τi(T1), τi(T2)] ⊂ [τi(T1), T1], for all 1 ≤ i ≤ m + 1 − j. Then, for every t̃ ∈
[T1, T2], we obtain

‖u(t̃)‖ ≤
(
‖ ã

j+1

ãj
‖+ · · ·+ ‖ ã

m+1

ãj
‖
)

sup
τm+1−j(T1)≤s≤T1

‖u(s)‖+M

≤ 1

c
sup

τm+1−j(T0)≤s≤T1

‖u(s)‖+M

≤ 1

c

(
sup

τm+1−j(T0)≤s≤T0

‖u(s)‖+ sup
T0≤s≤T1

‖u(s)‖

)
+M

≤ 1

c

(
1 +

1

c

)
sup

τm+1−j(T0)≤s≤T0

‖u(s)‖+

(
1 +

1

c

)
M.

By an induction argument, for k ≥ 2, we deduce that over [Tk, Tk+1], we have

‖u(t̃)‖ ≤ 1

c

(
i=k∑
i=0

(
1

c

)i)
sup

τm+1−j(T0)≤s≤T0

‖u(s)‖+M

i=k∑
i=0

(
1

c

)i
.

Recall that the constant c is such that c > 1. Thus, for all t̃ ≥ t0 we have

‖u(t̃)‖ ≤ 1

c− 1
sup

τm+1−j(T0)≤s≤T0

‖u(s)‖+
c

c− 1
M.

Lemma 2. If condition (C4) holds then the feedback u, solution of (12), is
causal.

Proof. Let us first suppose that g0 6= 0. Applying the operator δ−j on both
sides of (12), gives

(δ−jaj(t))u(t)+· · ·+(δ−jam(t))δm+1−ju(t) = −δ−jLρfh(t)+v(t), ∀t ≥ t0. (43)

As for the proof of Lemma 1, for simplicity of notation, we omit the state
dependency of the coefficients ai as well as of Lρfh. From equation (43), the
input that we have to assign to system (5) is given by

u(t) =
−δ−jLρfh(t) + v(t)

δ−jaj(t)
−

m+1∑
k=j+1

(
δ−jak(t)

δ−jaj(t)

)
δk−ju(t), ∀t ≥ t0.

We see clearly, that condition (17) avoids the existence of advanced states in
the later equation, and then no causality problem can appear in this case.
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Let us now assume that g0 ≡ 0 (and g1 6= 0). In this case, we have to
assign δ1u(t) to system (5), for t ≥ t0. Thus, applying the operator δ−j+1 on
both sides of (12), we obtain that

δ1u(t) =
−δ−j+1Lρfh(t) + δ1v(t)

δ−j+1aj(t)
−

m+1∑
k=j+1

(
δ−j+1ak(t)

δ−j+1aj(t)

)
δk−j+1u(t), ∀t ≥ τ−1

1 (t0).

Condition (17) avoids the existence of advanced states in the later equation.

5.2 Proof of Proposition 1

Let (Tk)k≥0 be the time sequence introduced in the proof of Lemma 1. Since τi
is an increasing function, for i ≥ 0, then over [T0, T1] we have

τi(t) ∈ [τi(T0), τi(T1)] ⊂ [τq(ρ+1)(T0), T0], ∀ `+ 1 ≤ i ≤ q(ρ+ 1),

where the integer ` is defined by (C2). Knowing that over [τq(ρ+1)(T0), T0] we
have ‖x(t)‖ < µ, then, thanks to inequality (16) of (C3), for every t ∈ [T0, T1],
we have:

‖δ`x(t)‖ ≤ α1‖(δz(t), δ−z(t)‖+ α2‖δξ(t), δ−ξ(t)‖+ α3‖δ≥`+1x(t)‖.

From which we obtain, knowing that

sup
t≥τq(ρ+1)(T0)

{‖z(t)‖, ‖ξ(t)‖} < ε,

where ε is given by (20), together with the fact that the maximum delay-advance
order in (z, ξ) cannot exceed q(ρ+1) (see the discussion of condition (C3) after
the statement of Theorem 1), that

‖δ`x(t)‖ < (2q(ρ+ 1) + 1) max{α1, α2}ε+ α3(q(ρ+ 1)− `)µ.

Hence,
‖δ`x(t)‖ < µ, ∀t ∈ [T0, T1].

Using the same reasoning, we can straightforwardly prove that ‖δ`x(t)‖ < µ over
[Tk, Tk+1], for every k ≥ 1. Therefore, ‖δ`x(t)‖ = ‖x(τ`(t))‖ < µ, for t ≥ t0,
and since τ`(t) < t, it follows immediately that the trajectories of system (5) lie
inside the ball B(0, µ) for every t ≥ t0.

5.3 Proof of Proposition 3

The proof is inspired from [7]. Let λ1, · · · , λρ be the eigenvalues of the matrix
A+BK associated to (24). Recall that we have supposed that all of them are
different. In addition, assume, without any loss of generality, that λ1 is the
largest eigenvalue. Let P be a change of basis matrix diagonalizing A + BK
and denote M = ‖P‖‖P−1‖+ 1. Let ε1 be any positive constant such that

max{Mε1, β(ε1, 0) + γ(Mε1)} ≤ 1− α3(q(ρ+ 1)− `)
(2q(ρ+ 1) + 1) max{α1, α2}

µ,
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where l, µ, α1, α2 and α3 are given by conditions (C2)-(C3) and β(·) and γ(·)
are given by Definition 7 applied to the zero-dynamics (which is assumed to be
uniformly input-to-state stable).

For t ≥ τ−1
j (t0), the dynamics of the z-subsystem is given by ż = (A+BK)z

and is governed by a Hurwitz matrix. Thus, for t ≥ τ−1
j (t0), we have

z(t) = e(A+BK)(t−τ−1
j (t0))z(τ−1

j (t0)) = PeD(t−τ−1
j (t0))P−1z(τ−1

j (t0)),

where D is the diagonal matrix associated to A+BK, and we deduce

‖z(t)‖ ≤ (M−1)eλ1(t−τ−1
j (t0))‖z(τ−1

j (t0))‖ ≤ (M−1)‖z(τ−1
j (t0))‖, ∀t ≥ τ−1

j (t0).

Now recall (as explained at the end of Section 2) that the z-subsystem is
in free evolution over [t0, τ

−1
j (t0)] and the feedback v(t) =

∑ρ
i=1 kizi(t) starts

acting on the system from the instant τ−1
j (t0). Thus, for every 1 ≤ i ≤ q(ρ+ 1),

the delayed z-states verify the following inequality

‖δiz(t)‖ ≤ max

 sup
[τq(ρ+1)(t0),τ−1

j (t0)]

‖z(t)‖, (M − 1)‖z(τ−1
j (t0))‖

 , ∀t ≥ t0.

Since, by hypothesis, ‖z(t)‖ < ε1 over [τq(ρ+1)(t0), τ−1
j (t0)], then

‖δiz(t)‖ < Mε1, ∀t ≥ t0,

for all −q(ρ+ 1) ≤ i ≤ q(ρ+ 1). By consequence, for every t ≥ t0, we have

‖(δz(t), δ−z(t))‖ = ‖z(t), δ1z(t), · · · , δq(ρ+1)z(t), δ−1z(t), · · · , δ−q(ρ+1)z(t)‖
≤ (2q(ρ+ 1) + 1) max−q(ρ+1)≤i≤q(ρ+1) ‖δiz(t)‖
≤ (2q(ρ+ 1) + 1)Mε1.

(44)
On other hand, since the zero-dynamics is input-to-state stable for the (exoge-
nous) input w(t) = (δz, δ−z), according to Definition 7, for every t ≥ t0, we
have

‖ξ(t)‖ ≤ β(‖ξt0‖∞, t− t0) + γ(‖z[τq(ρ+1)(t0),t)‖∞)

≤ β(ε1, 0) + γ(Mε1).
(45)

Thus, for every 1 ≤ i ≤ q(ρ + 1), the delayed ξ-states verify the following
inequality for all t ≥ t0

‖δiξ(t)‖ ≤ max{‖ξt0‖∞, β(‖ξt0‖∞, 0) + γ(‖z[τq(ρ+1)(t0),t)‖∞)}
≤ max{ε1, β(ε1, 0) + γ(Mε1)}.

(46)

By consequence, for every t ≥ t0, we have

‖(δξ(t), δ−ξ(t))‖ = ‖ξ(t), δ1ξ(t), · · · , δq(ρ+1)ξ(t), δ−1ξ(t), · · · , δ−q(ρ+1)ξ(t)‖
≤ (2q(ρ+ 1) + 1) max{ε1, β(ε1, 0) + γ(Mε1)}.

(47)
Consider the same time intervals (Tk)k≥0 as in Lemma 1 and using the same
reasoning as in the proof of Proposition 1, we have (thanks to condition (C3))
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that for every t ∈ [T0, T1]

‖δ`x(t)‖ ≤ α1‖(δz(t), δ−z(t)‖+ α2‖δξ(t), δ−ξ(t)‖+ α3‖δ≥`+1x(t)‖
≤ (2q(ρ+ 1) + 1) max{α1, α2}max{Mε1, β(ε1, 0) + γ(Mε1)}
+α3(q(ρ+ 1)− `)µ
< µ.

Using the same reasoning, we can straightforwardly prove that ‖δ`x(t)‖ < µ
over [Tk, Tk+1], for every k ≥ 1. Thus, under the assumption given by (16), the
trajectories of system (5) lie inside the ball B(0, µ) for every t ≥ τ`(t0). Thus,

lim
t→+∞

‖x(t)‖ ≤ µ. Knowing the exponential stability of the z-subsystem, we

have lim
t→+∞

z(t) = 0. On the other hand, from the input-to-state stability of the

zero dynamics, lim
t→+∞

ξ(t) = 0. Thus,

lim
t→+∞

‖x(t)‖ ≤ α3 lim
t→+∞

‖x(t)‖.

Using the fact that α3 < 1 (recall that α3 is such that 0 < α3 < 1/(q(ρ+1)−`),
see condition (C3)), we have lim

t→+∞
x(t) = 0.

6 Conclusion

In this paper, we have considered the problem of input-output linearization of
single-input single-output nonlinear systems with time-varying delays appearing
in the state, the input and the output. Sufficient conditions have been developed
in order to guarantee the existence of a causal and bounded feedback linearizing
the input-output map of the feedback modified system. We have discussed and
presented sufficient conditions ensuring the stability of the feedback modified
system. In a future work, the input-output linearization and decoupling of
multi-input multi-output systems will be studied.
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