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Abstract

These notes describe some results on dice comparisons when chang-
ing the numbers on the faces. We look at the question of a "best" or
"worst" die when the value of the sum of the faces is fixed. we also
look at dice who beat the standard n-die in this context.

1 Introduction

This project started as an attempt to create an activity for children about
probability and dice. It was motivated by the existence of non-transitive
dice (see for example [3, 2, 4]). Apart from the fun part of such dice,
their existence and more generally dice games [6] can illustrate Arrow’s
impossibility Theorem [1]. Traldi also gave some nice asymptotic results
[7] on the proportion of ties in some families of dice.

The idea was to elaborate some kind of tournament where each player
creates its own die by choosing the number on each face. They then play
against each other rolling their dice. With no other rules, it is obvious that
the best way to win would be to be the player choosing the highest numbers
on the faces of its die. Therefore, some conditions have to be set on the
faces to give some interesting features to the game. The author idea, and
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the point of view in these notes, is to only allow positive or non negative
numbers on the faces and to fix the value of the sum of all the faces (or
equivalently the mean of all the faces). One natural question arise then, is
there a "best" die. Here we are comparing two dice A and B by looking at
the probabilities that A rolls higher than B and that B rolls higher than
A. The existence of a "best" die is not always guaranteed as one can check
on small dice with small fixed sum value. However, when we fix the sum
to be 1 + 2 + 3 + 4 + 5 + 6 = 21, i.e. the sum of the face of the standard
die Dst = (1, 2, 3, 4, 5, 6), then you cannot beat the standard die Dst if you
only allows positive numbers. You can even see that Dst is always better
except when all your faces are in between 1 and 6 included; In that case,
you will actually be as good as Dst. Hence you need a zero to beat Dst and
we can actually see how to construct your die to be sure to beat it.

This paper presents some general considerations along these lines. We work
here with n-dice, i.e. dice with n faces and we prove some general results
about comparing n-dice when fixing the sum of the faces. For example we
prove that the n-die (0, 1, 2, 3, . . . , n−1) cannot be beaten by another n-die
where the sum of the faces is n(n − 1)/2. As noticed before, there is not
a "best" die in general. However, there is always a worst die (still fixing
the sum of the faces) which is one with 0 on each faces except one. Some
aspects of these results were already, and independently, known and studied
by Traldi [5]. In [5], the author study families of dice, fixing the maximum
value, minimum value and the sum of the faces, where there are a die which
ties with all the over dice of the family. In particular, The author give in
[5, Theorem 2] a nice characterization of such a die.

In the last section, we compare n-dice, with face sum equal to n(n+1)/2 to
the standard n-die. We give a characterization of such n-dice which beat,
loose or tie with the standard n-die, in terms of the numbers on the faces
and give then ones which has the give the higher probability to beat the
standard n-die.

Organization. The paper is organized as follow. Section 2 fixes the nota-
tions and definitions. In Section 3 we explain why the die (0, 1, 2, . . . , n−1)
is unbeatable in its class of n-dice and give some corollaries. We also look
at the worst die. Finally, in Section 4 we compare n-dice with the standard
n-die Dn,st = (1, 2, . . . , n).
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2 Definitions and notations

Let n be an integer greater than 2.

Definition 2.1. A n-die is an increasing sequence of non-negative integers
D = (f1, f2, . . . , fn) and, for i ∈ {1, 2, . . . , n} fi is the ith face of D. We
denote by Dn the set of all n-dice.

If σ ∈ N, a (σ, n)-die is a n-die D = (f1, f2, . . . , fn) such that
n∑

i=1

fi = σ.

We denote by Dn(σ) the set of all (σ, n)-dice.

Definition 2.2. Let D = (f1, f2, . . . , fn) and D′ = (f ′1, f
′
2, . . . , f

′
n) be two

dice.

We denote by γ(D,D′), respectively η(D,D′) the number of time D rolls
higher than D′, resp. D is equal to D′, when looking at all possible issues
of rolling the two dice at the same time. In other words,

γ(D,D′) =

n∑

i=1

Card
{
j | fi > f ′j

}

η(D,D′) =

n∑

i=1

Card
{
j | fi = f ′j

}

We then denote by ∆(D,D′) = γ(D,D′)−γ(D′, D) the differential between
the two dice.

Finally, we set the following notations

D � D′ if ∆(D,D′) > 0

D ≺ D′ if ∆(D,D′) < 0

D ∼ D′ if ∆(D,D′) = 0

D % D′ if ∆(D,D′) ≥ 0

D - D′ if ∆(D,D′) ≤ 0

Be aware that, in general, ≺ is not a partial order on Dn or even Dn(σ)
when σ > 2. The next proposition gives some easy properties.
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Proposition 2.3. Let D and D′ be two n-dice.

(a) 0 ≤ γ(D,D′) ≤ n2, 0 ≤ η(D,D′) ≤ n2, and −n2 ≤ ∆(D,D′) ≤ n2.

(b) η(D,D′) = η(D′, D) and ∆(D,D′) = −∆(D′, D).

(c) γ(D,D′) + γ(D′, D) + η(D,D′) = n2.

Proof. These properties are easily derived from Definition 2.2 and the fact
that there is n2 comparisons between the faces of D and the faces of D′.

3 An unbeatable die and the worst die

Let D0 = (0, 1, 2, 3, . . . , n − 1). We have D0 ∈ Dn

(
n(n−1)

2

)
and we are

going to see that D0 is unbeatable in Dn

(
n(n−1)

2

)
.

Proposition 3.1. Let D = (f1, f2, . . . , fn−1) ∈ Dn

(
n(n−1)

2

)
.

Then D - D0 and D ∼ D0 if and only if, for all i ∈ {1, 2, . . . , n}, fi ≤ n−1.

Proof. In this context, we have

γ(D,D0) =

n∑

i=1

min(fi, n).

In particular,

γ(D,D0) ≤
n∑

i=1

fi =
n(n− 1)

2
.

Moreover,

η(D0, D) = η(D,D0) =

n−1∑

i=0

Card{j | fj = i} = Card{j | fj ≤ n− 1} ≤ n

Hence, by Proposition 2.3,

γ(D0, D) = n2 − γ(D,D0)− η(D,D0) ≥ n2 − n(n− 1)

2
− n =

n(n− 1)

2
.
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In particular, γ(D0, D) ≥ γ(D,D0).

Moreover, we have γ(D0, D) = γ(D,D0) if and only if

γ(D,D0) =
n(n− 1)

2
and η(D,D0) = n,

i.e., for all i ∈ {1, 2, . . . , n}, fi ≤ n− 1.

Corollary 3.2. Let p ≥ 0, q = p + n − 1 and σ =
∑q

i=p i = n(p+q)
2 . Set

Dp,q = (p, p+ 1, . . . , q) ∈ Dn(σ) and let D = (f1, f2, . . . , fn) ∈ Dn(σ).

If, for all i ∈ {1, 2, . . . , n}, fi ≥ p, then D - Dp,q. Moreover, D ∼ Dp,q if
and only if, for all i ∈ {1, 2, . . . , n}, p ≤ fi ≤ q.

Proof. Let

D̃ = (f1 − p, f2 − p, . . . , fn − p).

Then we have that ∆(D,Dp,q) = ∆(D̃,D0,n−1) and the result follows from
Proposition 3.1.

The fact that, for any n-die D ∈ Dn

(
n(n−1)

2

)
with faces in {0, . . . , n− 1}

we have D ∼ D0, was already known by Traldi and is a consequence of
[5, Corollary 5]. Florian Galliot also suggested another nice argument.
First you need to notice the following fact. Let Xn be the set of all n-
die D = (f1, f2, . . . , fn) ∈ Dn

(
n(n−1)

2

)
such that for all i ∈ {1, 2, . . . , n},

0 ≤ fi ≤ n− 1.

Proposition 3.3. Let D = (f1, f2, . . . , fn) ∈ Xn. Let i0, j0 ∈ {1, . . . , n}
and set D̃ = (f1, . . . , fi0 + 1, . . . , fj0 − 1, . . . , fn).

If fi0 ≤ n− 2 and fj0 ≥ 1 (or, equivalently, D̃ ∈ Xn), then

∆(D,D0) = ∆(D̃,D0).

Notice that the conditions, fi0 ≤ n− 2 and fj0 ≥ 1.
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Proof. We have

γ(D,D0) =

n∑

i=1

min(fi, n)

= fi0 + fj0 +
∑

i∈{1,2,...,n}r{i0,j0}
min(fi, n)

= (fi0 + 1) + (fj0 − 1) +
∑

i∈{1,2,...,n}r{i0,j0}
min(fi, n)

= γ(D̃,D0),

and η(D,D0) = n = η(D̃,D0). Thus, by Proposition 2.3, we also have
γ(D0, D) = γ(D0, D̃). Therefore ∆(D,D0) = ∆(D̃,D0).

Corollary 3.4. Let D = (f1, f2, . . . , fn) ∈ Dn

(
n(n−1)

2

)
be such that for

all i, 0 ≤ fi ≤ n− 1.

Then D ∼ D0.

Proof. One can notice that, for any D ∈ Xn there exists a sequence of dice

D0 = X0, X1, X2, . . . , Xr = D

such that for all i ∈ {1, 2, . . . , r − 1}, Xi ∈ Xn and that Xi+1 is obtained
from Xi by adding 1 on one face and subtracting 1 to another one (for
example, one can first change the highest face till it become n, then the
second highest till it becomes n− 1, and so on). Then, by the Proposition
3.3, ∆(D,D0) = ∆(D0, D) = 0.

We finish this section by giving the worst die. Notice that the existence of
such a die doesn’t depend on the fixed value for the sum of the faces.

Proposition 3.5. Let σ ≥ 2. Set Dw = (0, 0, . . . , 0, σ) ∈ Dn(σ) and let
D ∈ Dn(σ) r {Dw}.

If n ≥ 3, then D � Dw.

Proof. set D = (f1, f2, . . . , fn). Since D ∈ Dn(σ) r {Dw}, 0 < fn < σ
and 0 < fn−1 < σ. Thus γ(D,Dw) ≥ 2(n − 1) = 2n − 2. Moreover,
γ(Dw, D) = n. Thus ∆(D,Dw) ≥ (2n− 2)− n = n− 2 > 0.
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4 Comparison with the standard die

In this section, we are interested in comparing n-dice with the standard
n-die Dn,st (or Dst when n is understood) given by Dn,st = (1, 2, 3, . . . , n)..
Notice that Dn,st ∈ Dn

(
n(n+1)

2

)
. By Corollary 3.2, we know that Dn,st

can not be beaten by a die D ∈ Dn

(
n(n+1)

2

)
with only positive faces but

we can be more precise. We give here a characterization of the n-dice
D ∈ Dn

(
n(n+1)

2

)
such that D ≺ Dn,st or D � Dst and D ∼ Dst in terms

of the faces of D.

Proposition 4.1. Let D ∈ Dn

(
n(n+1)

2

)
and let k, l, r ∈ N such that D is

given by
D = (0, 0, . . . , 0︸ ︷︷ ︸

k zeros

, f1, f2, . . . , fl︸ ︷︷ ︸
∀i, 1≤fi≤n

, g1, g2, . . . , gr︸ ︷︷ ︸
∀j, gj≥n+1

). (1)

Then,

1

2
∆(D,Dst) =

(
r(n+ 1)−

r∑

i=1

gi

)
+
k − r

2
.

Proof. We have

γ(D,Dst) = rn+

l∑

i=1

(fi − 1) = rn− l +

l∑

i=1

fi, and

γ(Dst, D) = kn+

l∑

i=1

(n− fi) = kn+ ln−
l∑

i=1

fi.
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Hence

∆(D,Dst) = γ(D,Dst)− γ(Dst, D)

=

(
rn− l +

l∑

i=1

fi

)
−
(
kn+ ln−

l∑

i=1

fi

)

= 2

l∑

i=1

fi − n(k + l) + rn− l

= 2

l∑

i=1

fi − n(n− r) + rn− (n− r − k) (because k + l + r = n)

= 2

l∑

i=1

fi − (n2 + n) + 2rn+ r + k

= 2

l∑

i=1

fi − n(n+ 1) + 2r(n+ 1)− r + k

= 2

(
l∑

i=1

fi −
n(n+ 1)

2
+ r(n+ 1) +

k − r
2

)

= 2

(
r(n+ 1)−

r∑

i=1

gi +
k − r

2

)
(since

∑l
i=1 fi +

∑r
i=1 gi = n(n+1)

2 )

and the result follows.

Remark 4.2. Let D be as in the proposition. Since for all j ∈ {1, 2, . . . , r}
gj ≥ n+ 1,

r(n+ 1)−
r∑

i=1

gi ≤ 0

and there it is an equality if and only if, for all j ∈ {1, 2, . . . , r}, gj = n+ 1.

Theorem 4.3. Let D ∈ Dn

(
n(n+1)

2

)
and let k, l, r ∈ N such that D is

given as in (1). Then,

(a) if k < r, then D ≺ Dst;

(b) if k = r, then D - Dst and D ∼ Dst if and only if for all j, gj = n+1;

(c) if k > r and for all j, gj = n+ 1, then D � Dst.
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Moreover,

max

{
∆(D,Dst) | D ∈ Dn

(
n(n+ 1)

2

)}
=

⌊
n− 1

2

⌋

and, this maximum is obtained by

(i) if there is p ∈ N such that n = 2p+1 (in that case, n(n+1)
2 = n(p+1)),

D = (0, 0, . . . , 0︸ ︷︷ ︸
p zeros

, n, n, . . . , n︸ ︷︷ ︸
p+1 times

).

(ii) if there is p ∈ N such that n = 2p, any die with p − 1 zeros and no
faces higher than n such as

D = (0, 0, . . . , 0︸ ︷︷ ︸
p−1 zeros

, p, n, n, . . . , n︸ ︷︷ ︸
p times

)

Proof. The first part is a direct consequence of Proposition 4.1 and Remark
4.2.

For the second part, let D ∈ Dn

(
n(n+1)

2

)
be a die which maximizes

∆(D,Dst) and assume the notations (1). Firstly, by Proposition 4.1 one
can notice that, if one of the gi’s is higher than n+1, then, decreasing it by
one and increasing one of the fi’s, or even changing one of the zeros into a
one, will increase ∆(D,Dst) by at least one. Thus all the gi’s must equals
n + 1 and ∆(D,Dst) = (k − r). Moreover, one can notice that k ≤ n/2.
Indeed, since all the non-zero faces of D are lower than n + 1, if k > n/2
twe get

l∑

i=1

fi + r(n+ 1) ≤ (l + r)(n+ 1) = (n− k)(n+ 1) < n(n+ 1)/2

which is absurd as D ∈ Dn

(
n(n+1)

2

)
. Hence, k − r ≤ n/2.

the odd case: Assume that n is odd and let p ∈ N∗ such that n = 2p + 1.
In that case, we have k − r ≤ p. However, for

D = (0, 0, . . . , 0︸ ︷︷ ︸
p zeros

, n, n, . . . , n︸ ︷︷ ︸
p+1 times

),

n-dice

47



we have, D ∈ Dn

(
n(n+1)

2

)
(because n(n+ 1)/2 = n(p+ 1)), k− r = p and

∆(D,Dst) = p = b(n− 1)/2c. Notice also that no other die will maximize
∆(D,Dst).

the even case: Assume now that n is even and let p ∈ N∗ such that n = 2p.
In that case, we have k − r ≤ p. If k − r = p, then, k = p and r = 0. In
particular,

n(p+ 1) =
n(n+ 1)

2
=

p∑

i=1

fi ≤ np

which is absurd. Hence, k − r ≤ p− 1. However, for any die D with p− 1
zeros and no faces higher than n such as

(0, 0, . . . , 0︸ ︷︷ ︸
p−1 zeros

, p, n, n, . . . , n︸ ︷︷ ︸
p times

),

we have, D ∈ Dn

(
n(n+1)

2

)
(because n(n + 1)/2 = np + p), k − r = p − 1

and ∆(D,Dst) = p− 1 = b(n− 1)/2c.
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