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Abstract

Material Requirements Planning (MRP), a core component of enterprise resource planning

(ERP) systems, is widely used by manufacturers to determine the production lot sizes of com-

ponents. These lot sizes are typically computed based on deterministic and dynamic demand

assumptions, while safety stocks, which hedge against demand uncertainty, are determined inde-

pendently based on different assumptions. As the lot sizes and safety stocks are not determined

simultaneously, sub-optimal decisions are often used in practice. The critical impact of invento-

ries and service levels in manufacturing motivates the study of stochastic optimization methods

for MRP. In this paper, we investigate stochastic optimization methods for MRP systems under

demand uncertainty. A two-stage and a multi-stage model are proposed to deal with the static-

static and static-dynamic decision frameworks, respectively. We first derive structural properties

of the two-stage and multi-stage models to provide insights on the differences between the plans

created with these two models. As multi-stage stochastic programs are not convenient in real-

world applications, several practical enhancements are proposed. First, to address scalability

issues, we employ heuristics in combination with advanced sampling methods. Second, to allow

real-time static-dynamic decisions, we derive a policy from the solution of the multi-stage model.
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Third, to deal with the dynamic-dynamic decision framework, we employ a rolling horizon imple-

mentation. The effectiveness and performance of stochastic optimization for MRP are validated

by numerical experiments, which demonstrate that the stochastic optimization approaches have

the potential to generate significant cost savings compared to traditional methods for production

planning and safety stocks determination.

Keywords: Material requirements planning; stochastic optimization; lot-sizing; uncertain de-

mand

History: Received: July 2019; accepted: September 2020 by Chelliah Sriskandarajah after three

revisions.

1 Introduction

The global market for enterprise resource planning (ERP) systems was worth $39.65 billion in 2019

and is expected to reach $65.20 billion by 2025 (Mordor Intelligence 2020). At the core of these

ERP systems is the Material Requirements Planning (MRP) logic. Given the demands for end

items, MRP systems compute the sizes of the lots to produce (or to order) for each component

in each period. These calculations are based on the bills of materials (BOMs), which indicate

the hierarchy of components (i.e., the structure of the product, and the number of components

required to produce each end item or subsequent component). MRP systems are often used in an

uncertain environment. However, in this context, classical MRP systems create inadequate plans

because their computations utilize demand forecasts considered as deterministic (Chevreux et al.

2018). Although these systems can redetermine the production plan relatively quickly based on

recently updated demand information, such reactive changes are far from optimal. Indeed, the new

production plan is subject to the previously implemented plan, and it lacks a proactive vision to

deal with the uncertainty in future demand. To alleviate this issue, practitioners often attempt

to improve the demand forecasting accuracy. This countermeasure alone is far from being perfect

as one cannot practically fully eliminate the forecasting errors. Hence, in addition to the effort to

improve demand forecasting accuracy, it is inevitable for manufacturing companies to rely on an

approach that can properly account for stochastic demand (Cecere 2015). Consequently, and as a

step in this direction, this paper investigates the use of stochastic optimization for MRP systems.

The problem solved by MRP systems is a multi-echelon, multi-item, lot-sizing problem (Tem-
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pelmeier and Derstroff 1996). Early implementations of MRP solved this problem item by item

with heuristic lot-sizing rules based on simple logic. For instance, the lot-for-lot rule sets the

production quantities to the requirements of each period. As these rules perform poorly in the

presence of shared resource capacities, recent implementations of MRP solve the lot-sizing prob-

lem with a mixed-integer linear program (MILP). The MILP approach is flexible enough to model

multiple extensions and constraints. These problems are commonly solved under the assumption

of deterministic demand since safety stocks are calculated separately to hedge against uncertainty.

However, the existing safety stock computation methods for multi-echelon production systems do

not consider the key decision components of MRP systems. In fact, the applicable methods (e.g.,

Graves and Willems 2008) are often designed for base stock policies. As the application of a base

stock policy follows simple rules, the level of stock can be written as a function of the stochastic

demand, and the safety stocks are computed to meet a given service level. This approach is not

suitable for advanced MRP systems, where the lot sizes must be determined in a complex environ-

ment with multiple echelons, setup costs, capacities, etc. (see Section 2). Consequently, sub-optimal

safety stock levels (not determined in conjunction with the lot sizes) are often used in practice.

These safety stock levels are computed either manually, at the master production schedule (MPS)

level, or under the assumption of a base stock policy (e.g., Graves and Willems 2008).

We consider two decision frameworks, referred to as static-static, and static-dynamic in the lot-

sizing literature (e.g., Tempelmeier 2013), and we model the production planning problem under

these decision frameworks using stochastic programming formulations. The static-static environ-

ment is encountered when a frozen period is considered. That is, the production quantities and

setups are decided at time zero (the current period prior to demand realization) and fixed for the

entire time horizon. The static-dynamic situation occurs when setups are linked to long-term de-

cisions and must be fixed, whereas production quantities can be adjusted in each period. More

precisely, the setups are decided at time zero for the entire planning horizon, whereas the produc-

tion quantities for period t+1 are decided after having observed the demands of period t. Examples

of long-term decisions linked with the setups include the planning of secondary resources, such as

the models in 3D printing, the molds in injection moldings, or the technicians who set up the pro-

duction lines. Indeed, planning these secondary resources requires knowledge of the items produced

in each period.
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The contributions of this paper are threefold. First, to tackle demand uncertainty in MRP,

we design scenario based stochastic optimization approaches for the multi-echelon multi-item ca-

pacitated lot-sizing problem (MMCLP) with lead times and stochastic demand. As these methods

account for the demand’s stochasticity in the lot-sizing model, they remove the boundary between

the lot sizes and safety stocks computations. Compared to the commonly used decomposition of the

safety stocks computation and lot sizing, these techniques provide significant cost savings and are

highly flexible. Second, the scalability problems arising with conventional stochastic programming

approaches are addressed here with efficient heuristics, advanced scenario sampling methods, two

real-time execution policies derived from the solution of the stochastic models (denoted S-Policy and

Q-policy), as well as a rolling horizon solution framework to deal with long planning horizons and

to deal with the dynamic-dynamic decision framework (Bookbinder and Tan 1988). This dynamic-

dynamic variant is the most challenging one. To the best of our knowledge, no efficient method

has been proposed for this variant of the stochastic multi-stage lot-sizing model. Third, we present

managerial insights on the stochastic optimization approaches derived from the structural results,

and we validate their effectiveness and performance through numerical experiments. Compared to

common methods in practice and the methods in the literature for production planning and safety

stocks determination, the stochastic optimization approaches based on two-stage and multi-stage

stochastic programming models show a strong potential to generate significant cost savings. Despite

additional complexity in the multi-stage models, their adaptability allows the manufacturer to gain

additional benefits in a dynamic decision environment. To the best of our knowledge, this paper is

also the first to present an extensive numerical simulation of stochastic optimization approaches for

practical multi-echelon MRP settings. The stochastic approaches proposed in this paper scale well,

and MRP software developers can directly implement these efficient methods. Since the MRP logic

is also used in Distribution Resources Planning (DRP) systems, the solution approaches presented

in this study can also be applied directly in DRP systems under demand uncertainty.

The paper presents extensive numerical experiments to validate the value of stochastic opti-

mization in MRP software. The stochastic optimization approaches are compared with classical

methods, namely, the deterministic mathematical model, and lot-sizing rules (lot-for-lot, economic

order quantity, economic order period, Silver-Meal) equipped with safety stocks. The methods

are simulated with a large number of scenarios using well-known academic benchmarks. As the
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proposed methods require no assumptions on the demand’s probability distribution, three types

of distributions are considered in the experiments: (1) to model the classical use of MRP, the de-

mands follow non-stationary Normal distributions; (2) to model slow moving items, the demands

follow Poisson distributions; (3) to model items with lumpy demands, the demands follow zero-

inflated Poisson distributions. Besides the static-static and static-dynamic decision frameworks,

the considered models are also evaluated with a rolling horizon simulation in the dynamic-dynamic

environment, where the plan is re-optimized in each period. Table 1 gives the model, solution

approaches, and evaluation methodology for each decision framework. These experiments comple-

ment the theoretical insights gained from the structural properties of the problem. It is evident that

traditional methods that determine lot sizes and safety stocks separately yield sub-optimal plans

which result in higher overall costs. Therefore, manufacturing companies should consider adopting

stochastic optimization in MRP systems to determine more cost-effective production plans which

can be executed in a dynamic fashion.

Decision framework Model Solution approaches Evaluation

Static-static Two-stage Two-stage Observe (No-replanning)

Static-dynamic Multi-stage
Two-stage heuristic, Multi-stage,

Re-solve
Fix-and-optimize, S-Policy

Dynamic-dynamic -
Two-stage heuristic, Multi-stage heuristic,

Rolling horizon simulation
Fix-and-optimize, S-Policy, Q-Policy

Table 1: Considered decision framework.

This paper is organized as follows. Section 2 gives a review of previous work on stochastic MRP

and stochastic multi-echelon lot-sizing problems. Section 3 presents stochastic optimization models

for MRP under demand uncertainty along with the structural analyses. Section 4 presents the

scenario sampling approaches, the proposed heuristics, and the order-up-to-level policy. Section 5

presents the methods used to benchmark stochastic optimization approaches and the simulation

framework. Section 6 reports the experimental results. Finally, the conclusion follows in Section 8.

2 Literature Review

Mathematical models for MRP have mostly been studied in a deterministic context (e.g., Zahorik

et al. 1984, Billington et al. 1983, Clark and Armentano 1995). However, in practice, MRP systems

are subject to diverse forms of uncertainty: demand, lead times, production yield, production
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capacity, among others (Guide and Srivastava 2000, Dolgui and Prodhon 2007). This literature

review focuses on demand uncertainty in multi-echelon production systems, where the following

three topics are successively covered: simulation studies on MRP in a stochastic demand context,

safety stocks for MRP, and stochastic optimization approaches for multi-echelon MRP.

Several authors (e.g., Bai et al. 2002, Zhao and Lee 1993, Zhao et al. 2001, Enns 2002, Kadi-

pasaoglu and Sridharan 1995, Ho and Ireland 1998) evaluate by simulation the impact of demand

uncertainty on MRP systems for multi-echelon production problems. These studies also evaluate

how the parameters (safety stocks, safety lead times, re-planning frequencies, frozen periods, sizing

rules) of classical MRP systems protect against demand uncertainty. The parameters considered

by each of these papers are summarized in Table 2. The main conclusions of these works are the

following. First, demand uncertainty and forecast errors have a significant impact on the costs and

service levels. Second, safety stocks and safety lead times (i.e., considering buffer lead times in

addition to the expected lead times) are efficient ways to protect against stochastic demand, but

the choice of one versus the other depends on the considered system. In addition, most studies

(e.g., Lagodimos and Anderson 1993, Bai et al. 2002, Zhao et al. 2001, Boulaksil 2016) advise to

place safety stocks at the end item level, but some studies disagree. For instance, Carlson and

Yano (1986) suggest holding some safety stocks for components with large setup costs. Third,

frequent re-planning with classical MRP systems is undesirable, because MRP systems are prone

to nervousness (i.e., a minor change in the data leads to large modifications of the plan), and users

tend not to trust a nervous system (Blackburn et al. 1985). Kadipasaoglu and Sridharan (1995)

and Zhao and Lee (1993) showed that frequent re-planning leads to larger costs than infrequent

re-planning and that freezing a part of the master production schedule is the most efficient way to

reduce nervousness.

Paper Counter measures

Bai et al. (2002) Frozen period, lot-sizing, safety stocks, planning horizon
Zhao and Lee (1993) Frozen period, planning horizon, re-planning frequency
Zhao et al. (2001) Safety stocks
Enns (2002) Safety stocks, safety lead times, lot-sizing
Kadipasaoglu and Sridharan (1995) Frozen period, safety stocks, lot-sizing
Ho and Ireland (1998) Lot-sizing

Table 2: Previous studies on multi-echelon MRP systems with stochastic demand.

Although multiple studies suggest using safety stocks in MRP systems with demand uncertainty,
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to the best of our knowledge, no analytical method exists to directly determine the safety stocks

in an MRP environment. In fact, the few works on safety stocks for MRP systems focus on special

cases because the behavior of an MRP system is hard to model analytically (Benton 1991). For

instance, Lagodimos and Anderson (1993) propose a safety stocks computation approach for an

MRP system with a lot-for-lot policy, constant demand, serial network, and no holding cost. Zijm

and Van Houtum (1994) consider an MRP system with an order-up-to-level policy in assembly

systems. Inderfurth (2009) studies a single-echelon MRP system with critical stock policy, where

the production quantities are computed to bring the inventory levels above some critical thresholds.

Other works on safety stocks for multi-echelon systems with non-stationary and uncertain demand

(e.g., Inderfurth and Minner 1998, Graves and Willems 2008, Graves and Schoenmeyr 2016) focus

on base stock policies. These approaches do not directly apply to the context of MRP, where the

lot-sizing decisions have a significant impact on the risk of shortage.

Instead of computing the safety stock levels analytically, Benton (1991) and Boulaksil (2016)

propose to use simulation methods. The lot-sizing problem is first solved based on the expected

demand. Then, a simulation is run, and the production quantities are adjusted to meet the desired

service level. In the same vein, Sali and Giard (2015) revised the lot-for-lot rule to deal with

uncertain demand. In their approach, lot sizes are computed to achieve the desired service level

according to the cumulative distribution of the projected inventory levels.

Stochastic optimization models remove the need for safety stocks because they account implic-

itly for the demand’s probability distributions. In other words, the computation of safety stock

levels and lot sizes are no longer isolated. Tempelmeier (2013) and Aloulou et al. (2014) review

stochastic optimization methods for lot-sizing problems with uncertain demand. Most studies (e.g.,

Brandimarte 2006) consider a single-echelon production system. To the best of our knowledge, the

only work considering stochastic optimization for multi-echelon systems is presented in Grubb-

ström and Wang (2003). The authors propose a dynamic programming approach to minimize the

net present value in the capacitated multi-echelon lot-sizing problem with stochastic demand but

without lead times. However, stochastic optimization approaches have been proposed for related

problems such as supply chain management problems (e.g., Lin and Uzsoy 2016). In addition, other

approaches than stochastic optimization have been proposed for the single item lot-sizing problem

with stochastic demand such as distributionally robust optimization (e.g., Zhang et al. 2016).
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Our work differs from the above literature in several aspects. First, to the best of our knowl-

edge, this paper is the first to investigate scenario based multi-stage stochastic optimization for

capacitated multi-echelon MRP systems with lead times and stochastic dynamic demand. These

methods are useful for practitioners since they remove the boundary between safety stocks and

lot sizes computations in MRP systems. Consequently, the proposed approaches remove the prob-

lems associated with safety stocks computations in MRP systems. In addition, we compare the

performance of a two-stage and a multi-stage formulation in static-static, static-dynamic, and

dynamic-dynamic decision framework. To alleviate the scalability issues of stochastic optimization

approaches, advanced sampling methods are considered, as well as a fix-and-optimize heuristic, and

an execution policy. Finally, computationally intensive simulations are performed to compare (in

terms of costs and key performance indicators — KPIs) stochastic models with classical approaches

such as lot-sizing rules, and deterministic models. The results show that stochastic optimization

leads to significant cost savings in MRP systems. In addition, the proposed methods are efficient

and scalable.

3 Stochastic MRP Models under Demand Uncertainty

This section describes the considered problem (Section 3.1) and the proposed stochastic optimiza-

tion formulations modeling the static-static (Section 3.2) and static-dynamic (Section 3.3) decision

frameworks. To illustrate the MMCLP, the Electronic Companion provides a small example.

3.1 MRP Under Demand Uncertainty

MRP systems are used to determine the production quantity Qit for each item i in a set I and for

each period t in the time horizonH = {1, . . . , T}. The inputs of the model include BOM, lead times,

probability distributions of the demands, and production capacities. We denote by I = Ie ∪Ic the

set of items, where Ie and Ic are the sets of end items and of components, respectively. We assume

(without loss of generality) that components have no external demand, whereas the probability

distribution D̃it of the demand is known for each end item i ∈ Ie and each period t. The BOM

gives the hierarchy of components required for each end item, that is, the number of units Rij of

item i required to produce one unit of j. In addition, each item i has a lead time Li, i.e., the

production quantity Qit is available for the next production step in period t + Li. Finally, the
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production plan must respect the capacity Ck of each resource, given the resource consumption

Kik per unit of item i for each resource k in the set K.

For each item i, inventory holding costs (hi), fixed setup costs (si), and unit production costs

(vi) are considered. In addition, backlog costs (bi) and lost sale costs (ei) are considered for the

end items. The unmet demand of item i in period t is backlogged (it can be fulfilled in subsequent

periods), but a penalty bi is incurred in each period for each unit of backlog.

Note that in the deterministic lot-sizing problem, we typically impose a constraint to ensure

that the full demand is met within the horizon. In the case of stochastic demand, however, this

constraint leads to overly conservative decisions since it requires satisfying the worst-case demand

among all scenarios. The inclusion of a lost sale penalty ei at the end of the horizon, as commonly

used in the literature (e.g., Absi et al. 2011), allows the model to make the optimal trade-off

while properly accounting for demand uncertainty. Finally, there is no constraint on the ordering

quantities of raw materials (we assume that suppliers have an infinite capacity).

3.2 Two-Stage Stochastic MRP Model for the Static-Static Framework

The stochastic formulations of MMCLP are based on the set Ω of all possible demand scenarios.

Given the probability pw of each scenario ω (with pω > 0 and
∑

ω∈Ω pω = 1), the problem is to find

the solution with the minimum expected total cost. The static-static decision framework can be

represented by a two-stage stochastic optimization model. The first-stage variables correspond to

the decisions made in period 0 (while the demand is unknown). In the static-static MMCLP, these

decisions are the setup Yit (variable equal to 1 if there is a setup, and 0 otherwise) and quantity

Qit for item i in period t. Second stage variables correspond to the inventory Iωit and backlog level

Bω
it of item i at the end of period t, observed after the realization of the demand to compute the

cost for each scenario ω. Bω
iT indicates the total remaining backlog quantity of item i for scenario

ω at the end of the horizon, and this quantity can be interpreted as the lost sale. As the setup

and quantity decisions are made before observing the demand, they are the same for all scenarios.

On the contrary, the second stage variables can be different for each scenario. The deterministic

capacitated multi-echelon lot-sizing problem is NP-hard, as it extends the capacitated lot-sizing

problem which is itself NP-hard (Bitran and Yanasse 1982). As the stochastic versions extend the

problem with multiple scenarios, it is also NP-hard.
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The problem can be formulated as the following MILP:

min
∑
ω∈Ω

pω

(∑
t∈H

∑
i∈I

(hiI
ω
it + siYit + viQit) +

∑
i∈Ie

(
t=T−1∑
t=1

biB
ω
it + eiB

ω
iT

))
(1)

s.t.

t−Li∑
τ=1

Qiτ + Ii0 −
t∑

τ=1

Dω
iτ − Iωit +Bω

it = 0 i ∈ Ie, t ∈ H, ω ∈ Ω (2)

t−Li∑
τ=1

Qiτ + Ii0 −
t∑

τ=1

∑
j∈I

Rij ·Qjτ

− Iωit = 0 i ∈ Ic, t ∈ H, ω ∈ Ω (3)

Qit ≤ MiYit i ∈ I, t ∈ H (4)∑
i∈I

KikQit ≤ Ck t ∈ H, k ∈ K (5)

Bω
it ≥ 0 i ∈ Ie, t ∈ H, ω ∈ Ω (6)

Iωit ≥ 0 i ∈ I, t ∈ H, ω ∈ Ω (7)

Qit ≥ 0 and Yit ∈ {0, 1} i ∈ I, t ∈ H. (8)

The objective function (9) is the expected total cost over all the scenarios, including inventory

costs, setup costs, unit production costs, backlog costs, and end-of-horizon lost sales costs. Con-

straints (2) set the value of the backlog and inventory quantities for the end items. These values

depend on the produced quantities and external demands. Constraints (3) set the inventory levels

of components, which depend on the internal demands. Note that backlogs are not allowed for

components since they are required for the planned production. Constraints (4) set the variable Yit

to 1 if the quantity of item i produced in period t is greater than 0. The value of Mi in constraints

(4) is an upper bound of the production quantity of item i. This upper bound can be set to the

minimum between the upper bound M1
i (defined in Equation (9)) inferred from the demands of

item i, and the upper bound M2
i (defined in Equation (10)) inferred from the production capacities:

M1
i =


maxω∈Ω

∑
t∈HD

ω
it if i ∈ Ie∑

j∈I Rij ·M1
j if i ∈ Ic

(9)
M2
i = min

k∈K|Kik>0

Ck
Kik

. (10)

The value of M1
i states that the production quantity cannot be larger than the maximum total

demand. Constraints (5) ensure that production capacities are respected.
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3.3 Multi-Stage Stochastic MRP Model for the Static-Dynamic Framework

The static-dynamic environment corresponds to a multi-stage stochastic optimization model. This

model is similar to model (1)-(8), but the production quantities are scenario-dependent, and non-

anticipativity constraints are included in the model. In the static-dynamic decision framework, the

production quantities in period t depend on the realizations of the demands in periods 1, . . . , t− 1.

Therefore, the quantity Qωit of item i produced in period t depends on the scenario ω. The non-

anticipativity constraints (11) ensure that identical decisions are made at stage t in all scenarios

indistinguishable up to stage t. Accordingly, constraints (11) enforce equal production quantities

in period t+ 1 for all scenarios ω with identical demands D1...t
ω in periods 1 to t. Contrarily to the

production quantities, the inventory and backlog levels are observed once the demands are known.

Therefore, the index t (and not t+ 1) is used in the non-anticipativity constraints:

Qωit+1 = Qω
′

it+1, Iωit = Iω
′

it , Bω
it = Bω′

it ∀ i ∈ I, t ∈ H, ω, ω′|D1...t
ω = D1...t

ω′ . (11)

3.4 Structural Properties and Managerial Insights

While the two-stage and multi-stage models correspond to distinct decision frameworks, the dif-

ferences between the production plans resulting from these models are not obvious. This section

highlights the benefits of the multi-stage model (despite its complexity) to encourage its adoption

in practice. The main findings can be summarized by stating that the multi-stage model gives

more reactivity to the production planners, with the creation of safety stocks of components and

the adjustments of the production quantities to the dynamic order decisions. These findings are

supported by Propositions 1-3, and their proofs are provided in the Electronic Companion.

Proposition 1 shows that the two-stage model leads to producing the exact amount of compo-

nents required for the production of end items. On the contrary, the multi-stage model leads to

left-overs at the end of the horizon (see Proposition 2), because the multi-stage model takes into

account the possibility of keeping components (instead of transforming them to end items) when

the demand is low. That is, the stock of components is computed to react appropriately to the

observed demand. This behavior of the multi-stage model can be assimilated with the creation of

safety stocks at the components level.
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Proposition 1. The optimal solution of the two-stage formulation for the static-static MMCLP

has zero inventory of components in the last period, except for the components whose initial stock

level is more than the amount required for the production of the end items during the complete

planning horizon.

Proposition 2. The optimal solution of the multi-stage formulation for the static-dynamic MM-

CLP can have positive component inventory levels at the end of the planning horizon.

MRP models plan the delivery of the right amount Xit at the right moment t for each product

i. In the static-dynamic context, a reduction of the lead times postpones the production quantities

decisions. Therefore, more information is available when the order is passed, and the production

quantities are adjusted to the revealed demand. Such behavior occurs in the static-dynamic decision

framework but not in the static-static. However, a reduction of the lead times in the two-stage

models can impact the production quantity due to the capacity and flow conservation constraints.

To isolate the effect of the additional information on the sizing of the lots, we consider the special

case of a single item with infinite capacity. Proposition 3 shows that a reduction of the lead time

does not change the solution in static-static, but does in static-dynamic.

Proposition 3. For the special case of MMCLP with a single item and infinite capacity, a reduction

of the lead time has no impact on the total cost in the static-static framework (the production

quantities are only shifted), as long as the initial inventory covers the demand from period 1 to the

lead time L. On the contrary, a reduction of the lead time impacts the production quantities and

the total cost in the static-dynamic decision framework.

4 Solution Approaches

This section presents solution approaches to solve the stochastic optimization models for MRP

under demand uncertainty in an efficient way. As the complete set Ω of scenarios is usually too

large, scenario sampling methods are provided in Section 4.1. Section 4.2 discusses a formulation

of the multi-stage model where the non-anticipativity constraints are modeled implicitly, as well

as a fix-and-optimize heuristic developed for this formulation. The resulting approaches signifi-

cantly reduce memory consumption and computation time. In addition, Section 4.2 introduces an

order-up-to-level policy conditional on production setups, which is derived from the multi-stage
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model. This approach alleviates the cumbersome static-dynamic decision process since it requires

no computation in the subsequent decision stages. Finally, Section 4.4 presents a rolling-horizon

heuristic to solve the problem in a dynamic-dynamic decision framework.

4.1 Demand Scenario Sampling

Solving the two-stage (resp. multi-stage) model with the set Ω of all possible scenarios leads to the

true optimal solution in the static-static (resp. static-dynamic) decision framework. However, Ω is

usually large (sometimes infinite), and solving the resulting MILP is often impossible in practice.

Consequently, the problem is approximated with samples of scenarios. This section describes the

tree structure required to generate the scenarios in the multi-stage model, before exposing three

scenario sampling techniques (used for the multi-stage and two-stage model), namely, crude Monte

Carlo (CMC), quasi-Monte Carlo (QMC), and randomized quasi-Monte Carlo (RQMC). The Elec-

tronic Companion gives more details on the generation of QMC samples as well as the algorithm

to sample with CMC, RQMC, and to generate scenario trees.

The representations of the scenarios are different in the two-stage and multi-stage models. In

the two-stage model, a scenario is a vector whose components are the demands for each end item in

each period. In the multi-stage model, the scenarios are generated with a scenario tree, as shown

in Figure 1. Each level of the tree corresponds to a period, the children of a node at level t are

possible realizations of the demands in period t + 1, and each path in the tree corresponds to a

scenario. The scenario tree ensures that the decided production quantities in period t (given the

demands in periods 1, . . . , t− 1) account for the stochastic demands in periods t, . . . , T . Indeed, in

a scenario tree, multiple demand realizations for periods t, . . . , T are available for each demand’s

realization of periods 1, . . . , t − 1. The scenario tree structure is denoted by [N1, . . . , NT ], where

Nt is the number of branches of the nodes at level t. For instance, the structure of the tree in

Figure 1 is [2, 2]. The demand realizations are sampled independently at each node of the tree.

Consequently, the multi-stage model requires sampling vectors whose components are the demands

for a single period (i.e., the dimension of the vectors is the number of end items).

Note that advanced sampling techniques are crucial for the multi-stage model, since the size of

the tree is exponential in the number of periods, and only a few demand realizations can be sampled

at each node. For more information on scenario generation in multi-stage stochastic optimization,
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the interested reader is referred to Dupačová et al. (2003), and Kaut and Wallace (2007).

t=1 t=2

ω1

ω2

ω3

ω4

Figure 1: Example of scenario tree [2, 2]

CMC samples n vectors randomly (according to the probability distribution of the demand) with

equal probability 1/n. The CMC approximation is on average equal to the true optimal expected

cost when the number of scenarios is sufficiently large. However, the variance of the approximation

is σ2/n, where σ2 is the variance of the expected optimal cost. On the other hand, RQMC finds

samples leading to approximations with theoretically lower variances than CMC. QMC and RQMC

first select a set Vn of vectors in [0, 1]d, where d is the dimension of the sampled vectors, to cover the

unit cube evenly. From Vn, the demand vectors are generated using the inverse of the cumulative

probability distribution of the demands. Like CMC, all vectors have equal probability 1/n. Two

methods exist to generate Vn, namely, lattice rules and digital nets. Rank-1 lattice rules are used

in this paper (higher rank lattices are uncommon in practice). These rules are formally defined

as Vn = {i · α/n + δ mod 1 ∀ i ∈ 1 . . . n}, where α is a generator vector, and δ is a random

point to shift the lattice. Using δ = 0 leads to QMC which is a deterministic sampling technique,

whereas RQMC uses δ > 0 to generate a random sample. The quality of the lattice is determined

by vector α. We generate α with the software Lattice Builder (L’Ecuyer and Munger 2016), which

implements multiple algorithms to build good rank-1 lattice rules.

Finally, as demands are integer, a QMC or RQMC sample can contain multiple occurrences of a

vector (even if Vn is fully projection-regular). Identical vectors are aggregated into a single one by

adding their probabilities. To better control the number of scenarios, the sample size is increased

until a predefined number n of different vectors are obtained. Such aggregations are especially

useful for lumpy demands, where the probability of having no demand is large.

4.2 Solution Approaches for the Static-Dynamic Environment

As the number of scenarios of the multi-stage model grows exponentially with the number of

periods, solving the multi-stage model is very challenging. To reduce the size of the model, the
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formulation with implicit non-anticipativity uses a single variable for each group of equal variables.

More precisely, the variable Q
D(1...t)
it+1 replaces the set {Qωit+1 | D1...t

ω = D(1 . . . t)} of variables,

which represents the quantity produced in period t in different scenarios ω with identical demands

D(1 . . . t) from periods 1 to t. Similarly, variables I
D(1...t)
it and B

D(1...t)
it replace the sets {Iωit | D1...t

ω =

D(1 . . . t)} and {Bω′
it | D1...t

ω = D(1 . . . t)}, respectively. Also, constraints (1)-(8) are generated for

each possible realization of the demands in period 1 to t (and not for each scenario), item, and

period. In addition, to further speed up the solution of the problem, the solution of the two-stage

model is used as a warm start for the multi-stage model.

Finally, we propose two heuristics for the static-dynamic framework, denoted, the two-stage

heuristic and the fix-and-optimize heuristic. The two-stage heuristic simply solves model (1)-(8),

and it ignores the dynamic production quantity decisions. Model (1)-(8) corresponds to the multi-

stage model with the following additional constraints,

Qωi,t = Qω
′

i,t ∀i ∈ I, t ∈ T , ω, ω′ ∈ Ω.

As the two-stage model is more restricted, its solution is a feasible (but not necessarily optimal)

solution in the static-dynamic context. The fix-and-optimize approach has two steps. The first

step determines the setups by solving the two-stage model. The second step solves the multi-stage

formulation, but with the setups fixed to the values found in the first step. As the non-fixed variables

in the second step (production quantities, inventory levels, backlogs, lost sales) are continuous, the

resulting model is a linear program. The Electronic Companion provides the algorithm with the

detailed steps to implement the fix-and-optimize heuristic.

The fix-and-optimize heuristic is more complex than the two-stage heuristic, and thus it requires

more computational time. However, if the two-stage and the fix-and-optimize heuristics use the

perfect set of scenarios, fix-and-optimize yields the optimal production quantities for the fixed

setups. Providing additional analytical results on the MMCLP is difficult because MMCLP is

very generic, but we analyze below the behavior of the two-stage heuristic on the special case of

MMCLP with a single item and infinite capacity. Despite being restricted to a special case, these

analytical results show that fix-and-optimize outperforms the two-stage heuristic. This special case

corresponds to the traditional context of MRP at the MPS level (i.e., the level with end-items
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only), which are used in the (rough-cut) capacity planning process.

Proposition 4 shows that the two-stage heuristic leads to overproduction when MRP is used at

the MPS level. This situation corresponds to the special case of MMCLP with a single item (and

thus a single level) and infinite capacity. In the fix-and-optimize heuristic, once step 1 is performed,

the setups are fixed to the values of the solution of the two-stage model, and we denote by σ(k)

the period in which the kth production lot is completed.

Proposition 4. For the special case of static-dynamic MMCLP with a single item, infinite capacity,

and when σ(1) equals to the lead time L, the two-stage heuristic leads to a larger or equal production

quantity completed in period σ(1) compared to fix-and-optimize.

Proof. See the Electronic Companion.

When the two-stage and the fix-and-optimize heuristics are used in a rolling horizon frame-

work, only the decisions of stage 0 (i.e., the lots completed in period σ(1) = L) are implemented.

As a consequence, using the two-stage heuristic in a static-dynamic framework can lead to over-

production.

4.3 MRP Execution Policy

The use of the multi-stage model in the static-dynamic decision framework is cumbersome because

it requires to re-solve the model in each period. To ease the process, an order-up-to-level policy

(denoted S-policy), which is conditional on the production setups, is derived from the solution of

the multi-stage model. The S-policy is based on the notion of echelon stock Eit, which denotes the

total quantity of item i in the system in period t. The echelon stock includes the stock of item

i, the components of i in the stocks of downstream items, and the quantities ordered in previous

periods but not yet produced. Before applying the policy, the setup Yit of each item i and period

t is taken from the solution of the multi-stage model, and the values of the replenishment level

Sit are inferred as follows. First, for each optimization scenario ω, the replenishment level Sωit is

calculated as Sωit = Eωit + Qωit. To compute Sit, we consider only the scenarios where Qωit is not

constrained by the capacities or flow conservation constraints (but if the quantity is constrained in

all the scenarios, then all the scenarios are considered). Sit corresponds to the average value of Sωit

in these scenarios. The strategy of averaging the quantities over the scenarios with non-binding
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capacity constraints performs well since the echelon stock levels are not ideal when the quantities

are reduced by the capacity constraints. Preliminary experiments (omitted here) showed that the

latter strategy performs better than using the maximum quantity, or averaging over all scenarios.

When applying the policy, for each period t with setup (i.e., Yit = 1), the ordered quantity

Qit of each item i is computed to bring the echelon stocks Eit to the replenishment level Sit (i.e.,

Qit = Sit − Eit if Yit = 1, and 0 otherwise). However, the quantities must respect the production

capacities and the flow conservation constraints (i.e., the stocks of components must be large enough

to produce the item). If a quantity violates the flow conservation constraint, it is reduced to the

largest feasible quantity. If a resource capacity is violated, the quantities of all items processed

with the resource are reduced by the same percentage. The Electronic Companion provides the

algorithm with the detailed steps to infer the parameters and to use the S-Policy.

Two nearest scenario policies are also investigated. In each period t, the nearest scenario policy

implements the decisions Qωit associated with the optimization scenario ω with the demands from

periods 1 to t nearest to the actual demands. A variant of this policy follows a path in the scenario

tree. In each period t, this variant implements the decisions associated with the branch of the

current path with demands in period t nearest to the actual demands. As preliminary experiments

(not presented here) showed that these policies perform poorly, they were not further considered.

Proposition 5. For the special case of the static-dynamic MMCLP with a single item and infinite

capacity, there exists an optimal S-policy.

Proof. See the Electronic Companion.

The proposed S-policy was designed by extending the optimal rule for the special case of the

MMCLP with a single item and infinite capacity (as stated in Proposition 5), thanks to the echelon

stock computation. While the S-policy is optimal for this special case, it cannot be applied directly

to the multi-echelon capacitated problem. Indeed, if the optimal replenishment quantities violate

the capacity (or if they lead to negative levels of components inventory), a decision must be made to

split the replenishment among the items. Therefore, the repairing procedure reduces the production

quantities to satisfy these constraints. However, the experimental results show that the S-policy

(which is a policy commonly used in practice) performs very well on the uncapacitated MMCLP

but not on the capacitated MMCLP.
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4.4 Rolling Horizon Framework

In practice, production planning tools are often used in a rolling horizon framework (Venkataraman

1996, Meistering and Stadtler 2017). Using the proposed methods in a rolling horizon framework

leads to heuristics for the dynamic-dynamic decision framework. In the rolling horizon framework,

the plan is optimized in period 0 by considering the first H periods, and the decisions of period 0

are implemented. Then, the demands of period 0 are revealed, and the backlogs and inventories

are observed. Considering this information, the plan is re-optimized on the horizon 1 to H + 1.

This process continues until the last period.

5 Comparison Methods and Simulation Framework

In this section, we describe the methods considered to benchmark the proposed approaches (Section

5.1) and the simulation framework considered to evaluate these approaches (Section 5.2).

5.1 Classical MRP Approaches

The proposed stochastic optimization approaches are compared with classical MRP approaches,

namely, the deterministic mathematical model, and lot-sizing rules (lot-for-lot, economic order

quantity, economic order period, Silver-Meal) equipped with safety stocks. Two approaches are

considered to include safety stocks. As suggested in the literature (e.g., Zhao et al. 2001), the first

approach assumes that the safety stocks are computed for end items only at the MPS level. The

second approach computes the safety stocks with the method introduced in Graves and Willems

(2008) for a base stock policy in multi-echelon supply chains with non-stationary demand. The

Electronic Companion gives the detailed computation steps for these classical approaches.

5.2 Evaluation Methodology

5.2.1 Evaluation Framework

To estimate the expected total costs associated with the use of a method, a simulation is per-

formed over 5,000 scenarios. These evaluation scenarios are different from the scenarios used for

optimization, but they are sampled from the same distributions.

The simulation is performed independently on each scenario ω, and it results in the implemen-

tation of a solution s with setups Ys and quantities Qs. The solution s is directly available in the
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static-static decision framework, whereas the simulation of the static-dynamic decisions plans the

production in each period based on the latest information on the demand (as explained in the next

section). The cost of s is computed using the deterministic model with scenario ω, where the setup

and quantity variables are respectively fixed to Ys and Qs.

5.2.2 Re-planning Procedure

This section explains the re-planning methodology for the static-dynamic decision framework.

The solution of an instance P of MMCLP gives the setups Yit for each item i and period t, as

well as the production quantity Qi0 in period 0. Given an evaluation scenario ω, the quantities

Qiτ to produce in periods τ > 0 are decided sequentially by taking into account the information on

the demands in periods 0, . . . , τ − 1. More precisely, Qiτ is computed from the instance Pωτ which

differs from P as follows: (1) The planning horizon becomes τ, . . . , T ; (2) The setups Yit are given

for t in τ, . . . , T ; (3) The initial inventory Iωiτ−1 and the backlog levels Bω
itτ−1 are computed based

the previously decided quantities Qi0, Q
ω
i1, . . . , Q

ω
1τ−1 and the demands Dω

i0, . . . , D
ω
iτ−1.

The considered methods require some adjustments to solve the modified instances Pωτ . The

lot-sizing rules set the quantity to 0 if there is no setup (Qit = 0 if Yit = 0), but they are applied

as described in Section 5.1 otherwise (Yit = 1). In the two-stage, multi-stage and deterministic

models, the setup variables are set to the given values, thus a linear program is solved to determine

the remaining continuous variables. To speed up the evaluation, the linear programs LPτ associated

with each instance Pωτ are adjusted (and not completely re-built) to each evaluation scenario ω.

More precisely, the values of the initial inventory levels (possibly negative) are updated, as well

as the value of Mit to account for the production of the eventual backlogs. LPτ is solved with

the barrier method because our preliminary experiments (not presented here) showed that barrier

performs faster than other linear programming solvers implemented in CPLEX for this problem.

The S-Policy requires no modification, the echelon stock is computed based on the initial state,

and the value Qωi0 is computed as described in Section 4.3.

The representation of the stochastic demand does not require any adjustment for the modified

instances Pωτ . More precisely, the lot-sizing rules and the deterministic models consider the average

demand with safety stocks, whereas the two-stage and multi-stage models use samples of scenarios.

Note that the multi-stage model considers scenario trees with structure [N1, . . . , NT−τ ], where
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[N1, . . . , NT ] refers to the structure of the optimization tree.

6 Numerical Experiments

The numerical experiments have two main objectives: (1) to evaluate the benefits of stochastic op-

timization for MRP systems when compared to classical safety stock approaches; (2) to investigate

the performance of the proposed solution approaches for MRP under demand uncertainty.

Regarding objective (1), the results show that stochastic optimization models yield significantly

lower costs than solving the deterministic model (or simple lot-sizing rules) with safety stocks. In

addition, stochastic optimization yields solutions that result in lower volatility in the overall pro-

duction cost. More precisely, adjusting the decisions when new information is available reduces the

overall cost when planning with stochastic optimization, whereas updating the decisions increases

the costs when planning with deterministic models or simple lot-sizing rules.

Regarding objective (2), the results show that 50 scenarios sampled with RQMC or QMC lead

to good approximations of the two-stage model. Consequently, solving the two-stage model does

not require a large computational effort. On the contrary, a good approximation of the multi-stage

model requires 3,200 scenarios sampled with RQMC. Therefore, the multi-stage model is harder to

solve. However, the two heuristics proposed in this work appear to be very efficient.

Table 3 summarizes the approaches evaluated in the experiments and their notations. The

methods were implemented with Python and CPLEX 12.7, and run on an Intel(R) Xeon(R)

X5675 3.07GHz processor. The code is available at https://github.com/StochasticLotSizing/

StochasticMRP.

Section 6.1 introduces the considered instances. The performance of the sampling techniques

and optimization approaches for stochastic optimization (objective 1) is shown in Section 6.2. Then,

Section 6.3 (resp. 6.4) presents the simulation results for the static-static and static-dynamic (resp.

dynamic-dynamic) decision framework that compares the proposed methods with the classical

deterministic model with safety stocks (objective 2). Finally, Section 6.5 investigates the limits of

the proposed fix-and-optimize approach on large supply chain planning instances.
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Notation Methods Section

Average The deterministic model without safety stocks 5.1
SS The deterministic model with safety stocks 5.1
LL The Lot-for-lot rule 5.1
EOQ The Economic Order Quantity approach 5.1
SM The Silver Mill approach 5.1
MPS The safety stocks computed at the Master Planning level 5.1
GS The safety stocks computed as in Graves and Willems (2008)l 5.1
2-stage The two-stage model 3.2
M-stage The multi-stage model 3.3
2-stage-H The two-stage heuristic 4.2
Fix-&-Opt The fix-and-optimize approach 4.2
S-Policy The S policy 4.3
Q-Policy The policy with fixed ordered quantity infered from the two-stage model 3.2
CMC The Crude Monte Carlo scenario sampling method 4.1
QMC The Quasi Monte Carlo scenario sampling method 4.1
RQMC The Randomized Quasi Monte Carlo scenario sampling method 4.1

Table 3: Summary of the notations used in the numerical experiments section.

6.1 MRP Instances Generation

We generate two test beds. First, the main experiments are performed with a test bed derived from

the series A of Tempelmeier and Derstroff (1996). As these instances were designed for the deter-

ministic MRP with zero lead times, they are extended (as explained in the Electronic Companion)

to include the demand’s probability distributions and lead times. Three sets of instances are con-

sidered: (1) 1,026 classical instances are generated with full factorial design from the parameters

given in Table 4; (2) 48 instances with small distribution support are generated with an assembly

BOM (see Figure 2), a binomial distribution, and with full factorial design from the parameters

(other than BOM and distribution) indicated in Table 4. (3) 20 instances with a large planning

horizon are generated with lead times randomly chosen in [0, 3], a time horizon of T̂ + 10 periods,

and various values for the other parameters. Second, to evaluate the performance of the fix-and-

optimize approach for large-scale supply chain planning problems, we generate a second test bed

from the data in Willems (2008) as explained in the Electronic Companion.

1

2 3 4

5 6 7 8 9 10

(a) Assembly

1 2 3 4

5 6 7

8 9 10

(b) General

Figure 2: Considered BOM.
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Parameters Values

BOM General; Assembly (as depicted in Figure 2)
Resource structure The items at the same echelon share the same resource
Resource utilization Uncapacitated; 90%; 50%
Time between orders 1; 4

Distribution
Lumpy; Slow Moving; or Non-Stationary with known demand rate
in {0.25; 0.5; 0.75} and coefficient of variation in {0.1; 0.4; 0.7}

Lead time
L1 (all items have a lead time of 1 period)
L2 (the lead times are equal to 1 for components, and 0 for end items)

Cost structures (ratio backlog/inventory costs) 2; 4
Echelon holding costs Constant; large added value at last steps

Table 4: Values of the studied parameters.

6.2 Effectiveness of the Sampling and Solution Approaches

This section evaluates the impact of the scenario sampling techniques and of the number of scenarios

on the two-stage and multi-stage models (Section 6.2.1). These experiments are performed with a

subset (of size 20) of the classical instances with various structures. Then, the solutions obtained

with samples of scenarios are compared with the true optimal solutions for the instances with small

distribution supports, where the set of possible demand values is small enough to generate the

full scenario set (Section 6.2.3). Finally, we evaluate with the subset (of size 20) of the classical

instances the computation times and the performance of the stochastic models and heuristics for

the static-dynamic decision framework (Section 6.2.2).

The performance of the methods is measured by the percentage gap (denoted GAP ) between

the expected total cost obtained with the method and the expected total cost obtained with the best

performing method (best among the static-static and static-dynamic framework) on the considered

instances. Unless otherwise stated, this measure is used in all the experiments.

6.2.1 Effectiveness of the Sampling Methods

Figure 3a shows the GAP of the two-stage model in the static-static environment for different

sample sizes (10, 25, 50, 100, 200, and 500) and for the CMC and RQMC scenario generation meth-

ods. Figure 3a shows that a good approximation requires a sufficiently large scenario sample. For

instance, a good approximation with CMC requires 200 scenarios. In addition, RQMC outperforms

CMC (especially with small scenario samples), whereas the performance of QMC and RQMC are

similar. Therefore, advanced scenario sampling techniques (such as RQMC) reduce the number of

required scenarios. Indeed, 50 scenarios sampled with RQMC or QMC leads to good approxima-
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Figure 3: Approximation quality with CMC, QMC, or RQMC and various numbers of scenarios.

tions, which are comparable to the solution obtained with 200 scenarios sampled with CMC.

Regarding the multi-stage model, a first set of experiments (omitted here) showed that the

scenario tree structure does not have a strong impact on the approximation quality, but scenario

trees with a large number of branches at the early stages and a reasonable number of branches at the

last stages perform better when the model is re-solved in each period (i.e., the S-policy is not used).

However, when the S-policy is used, the experiments show that a balanced scenario tree structure

is more favorable than a scenario tree with a large number of scenarios in early stages. Figure 3b

shows the GAP of the multi-stage model for various numbers (1600, 3200, 6400, 12800, and 25600)

of scenarios sampled with CMC, QMC, and RQMC, and the computational performance is provided

in the Electronic Companion. Figure 3b shows that RQMC leads to better solutions than CMC,

especially when few scenarios are considered. In fact, 3,200 scenarios sampled with RQMC generally

lead to a good approximation of the stochastic process, since considering a larger set of scenarios

does not further reduce the GAP . Finally, QMC samples the same demands in all the nodes at

the same level of the scenario tree. This leads to a poor representation of the stochastic demands

compared to RQMC. In the rest of the experiments the multi-stage model is solved with 6,400

scenarios sampled with RQMC, since it is the largest number of scenarios which allows CPLEX

to solve the entire problem to optimality within 10 hours (see the Electronic Companion). Even

though the preliminary experiments consider instances with a relatively short time horizon, the

multi-stage model can solve problems with a large time horizon by using a scenario tree with one

branch at each node for the last periods in conjunction with a rolling horizon framework.
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6.2.2 Numerical Results on Instances with a Perfect Set of Scenarios

The Electronic Companion reports the results of experiments on instances with small distribution

supports, where the scenario set can be enumerated and the size is manageable. These experiments

compare the sampling approximations with the true optimal solutions, and they show that RQMC

scenario sampling yields near-optimal solutions. In addition, these results allow computing the

expected value of perfect information (EVPI) which is equal to 55.96% and 49.77% for the static-

static and static-dynamic decision frameworks, respectively.

6.2.3 Performance Comparisons of the Stochastic Approaches

The Electronic Companion compares the performance (in terms of solution quality and computation

times) of the multi-stage model, the two-stage heuristic, and the fix-and-optimize heuristic in

the static-dynamic environment. The results show that fix-and-optimize is efficient with a GAP

of 0.30% versus 0.11% for the multi-stage model, whereas the multi-stage model is significantly

slower to solve (241 seconds versus 3010 seconds on average). The two-stage heuristic leads to

slightly larger costs, with a GAP of 0.73%, but it requires only 10.67 seconds to solve on average.

In addition, the Electronic Companion reports the results obtained by five different runs of the

methods. These results show that the methods are robust since different runs give similar results.

6.3 Effectiveness of Stochastic Models for MRP Under Demand Uncertainty

This subsection validates the effectiveness of stochastic optimization in MRP under demand uncer-

tainty when compared to classical approaches. The results for the uncapacitated case are reported

first to analyze the performance of the lot-sizing rules. Next, we report the results for the capac-

itated (more general) case, and we study the impact of the stochastic optimization approaches on

MRP instances with different characteristics. According to the results presented in Section 6.2, the

following solution approaches are considered: the two-stage model (denoted by 2-stage) and the

two-stage heuristic (denoted by 2-stage-H ) with 500 scenarios sampled with RQMC; the multi-

stage model (denoted by M-stage) and the fix-and-optimize heuristic (denoted by Fix-&-Opt) using

a scenario tree with structure [50, 8, 4, 4] (resulting in 6,400 scenarios); the S-policy determined by

the multi-stage model using a scenario tree structure [10, 10, 8, 8] (resulting in 6,400 scenarios); the

deterministic model with the average demands scenario (denoted Average), as well as the deter-

24



ministic model with safety stocks computed at the MPS level (denoted SS-MPS ), and safety stocks

computed using the guaranteed service time model (denoted SS-GS ); the lot-sizing rules with safety

stocks computed at the MPS level (LL-MPS, EOQ-MPS, EOP-MPS, SM-MPS ), and safety stocks

computed with the guaranteed service time model (LL-GS, EOQ-GS, EOP-GS, SM-GS ). However,

SS-GS is only considered in the static-dynamic framework because the safety stock of components

cannot be transformed into end items in the static-static framework. Also, the lot-sizing rules are

only considered for uncapacitated case, since preliminary experiments showed that they perform

poorly on the capacitated case.

6.3.1 Uncapacitated Production Planning

Tables 5 and 6 report the numerical results on uncapacitated instances in the static-static envi-

ronment. Table 5 gives the CPU time required to solve the problem at period 0, the GAP , the

expected cost per component (setup, inventory, backlog, lost-sale, and production), and Table 6

reports some KPIs on the resulting production plan, namely, the proportion of demand delivered

on time (fulfillment rate), backlogged, and in lost sales, as well as the average number of setups,

and the expected number of periods covered by each lot. The 2-stage approach leads to the lowest

costs (with a GAP of 3.1%), followed by SS-MPS (11.3%), and SS-GS (12.2%). Among the con-

sidered lot-sizing rules, SM-MPS and SM-GS perform the best, with a GAP of 18.9% and 19.2%,

respectively.

Tables 7 and 8 report the results for the static-dynamic environment in the same format as

Tables 5 and 6. The results show that Average, LL-GS, and LL-MPS lead to higher total costs

in the static-dynamic environment than in the static-static. For instance, Average has a GAP

of 49.6% in the static-static environment, versus 59.0% in static-dynamic. However, the safety

stocks attenuate this problem, for instance, SS-MPS performs better in static-dynamic (8.9%) than

in static-static (11.3%). Stochastic optimization approaches are superior in such circumstances,

as 2-stage-H (0.6%) outperforms 2-stage (3.1%). Tables 6 and 8 show that these approaches yield

better results with fewer setups (thus, more coverage) because producing larger lots helps to protect

against demand uncertainty. This last remark shows the importance of the integration of lot sizes

and safety stocks computations in MRP systems.
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CPU Time GAP Setup Inventory Backlog Lost sales Production
(sec.) (%) ($) ($) ($) ($) ($)

Average 0.0 49.6 7,151.6 3,528.2 1,856.1 9,707.5 3,370.3
SS-MPS 0.2 11.3 7,839.4 4,992.7 1,188.6 3,088.9 4,055.2
LL-MPS 0.2 58.3 23,761.8 2,565.3 614.2 2,093.5 4,033.4
EOQ-MPS 0.2 59.6 13,916.0 11,610.3 101.5 525.3 4,895.4
EOP-MPS 0.3 22.8 11,051.9 7,613.8 260.6 196.6 4,387.8
SM-MPS 0.5 18.9 12,523.7 5,621.6 307.7 196.6 4,387.8
LL-GS 3.7 60.1 23,775.1 2,315.0 642.8 2,554.2 3,952.3
EOQ-GS 3.7 59.3 13,766.1 11,454.8 103.0 700.6 4,822.3
EOP-GS 3.8 22.1 11,052.2 7,050.1 280.4 673.3 4,288.4
SM-GS 3.9 19.2 12,457.0 5,239.7 336.5 673.3 4,287.4
2-stage 7.7 3.1 7,077.2 5,071.0 1,807.7 1,048.8 3,983.2

Table 5: Results for the 352 uncapacitated instances in static-static environments.

Fulfillment (%) Backlog (%) Lost sales (%) No. setup Coverage

Average 82.13 10.69 7.18 24.59 2.51
SS-MPS 89.53 8.72 1.75 25.39 2.70
LL-MPS 92.97 5.23 1.80 39.47 1.26
EOQ-MPS 97.70 1.73 0.57 30.11 2.61
EOP-MPS 97.46 2.35 0.19 21.48 3.03
SM-MPS 96.37 3.43 0.20 29.88 2.04
LL-GS 92.36 5.25 2.39 39.47 1.21
EOQ-GS 97.31 1.67 1.01 29.88 2.58
EOP-GS 96.99 2.45 0.56 21.47 2.88
SM-GS 95.70 3.70 0.60 29.80 1.95
2-stage 86.83 12.18 0.99 23.16 3.12

Table 6: Results for the 352 uncapacitated instances in static-static environments.

6.3.2 Capacitated Production Planning

This section compares the performance of the methods on all classical instances. Table 9 (resp.

10) reports the average GAP s for each method on each instance type for the static-static (resp.

static-dynamic) environment, as well as the CPU time required to solve the instance in period 0.

As for the uncapacitated case, Average performs better in the static-static environment than in

static-dynamic. Moreover, these results show that stochastic optimization yield significant savings

in the operating costs of production plans in a capacitated environment, since 2-stage significantly

outperforms deterministic methods with safety stocks in static-static with an average GAP of 2.62%

versus 8.36% for SS-MPS, as well as in static-dynamic with an average 0.63% for 2-stage-H, versus

6.21% and 6.80% for SS-MPS and SS-GS respectively.

The static-dynamic use of M-stage, 2-stage-H, Fix-&-Opt, Average, SS-MPS, and SS-GS is

cumbersome because a linear program must be solved in each period. On the contrary, the static-
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CPU Time GAP Setup Inventory Backlog Lost sales Production
(sec.) (%) ($) ($) ($) ($) ($)

Average 0.0 59.0 7,151.6 3,455.9 1,950.3 10,879.0 3,304.1
SS-GS 10.6 10.0 7,779.0 4,574.1 1,255.0 3,554.5 3,904.1
SS-MPS 0.1 8.9 7,843.9 4,723.7 1,208.1 3,242.2 3,890.8
LL-MPS 0.2 64.0 23,765.8 2,291.3 691.9 3,132.2 3,833.6
EOQ-MPS 0.2 58.2 13,923.9 11,388.5 103.6 599.0 4,778.9
EOP-MPS 0.3 20.2 11,055.6 7,188.4 290.8 452.8 4,169.1
SM-MPS 0.5 16.9 12,528.2 5,223.4 344.2 469.0 4,132.8
LL-GS 3.7 64.0 23,775.1 2,182.0 700.4 3,142.7 3,820.3
EOQ-GS 3.7 57.6 13,766.1 11,280.9 106.8 725.0 4,758.2
EOP-GS 3.8 21.3 11,052.2 6,851.3 308.3 803.5 4,178.3
SM-GS 3.9 18.5 12,457.0 5,048.9 369.9 841.2 4,143.7
2-stage-H 7.7 0.6 7,077.2 4,831.8 1,831.7 1,044.6 3,891.9
S-Policy 310.2 0.6 7,322.5 4,866.0 1,719.0 857.3 3,893.4
Fix-&-Opt 232.0 0.2 7,077.2 4,988.1 1,797.4 840.8 3,924.4
M-stage 841.7 0.1 7,323.8 4,838.4 1,772.3 757.6 3,913.3

Table 7: Results for the 352 uncapacitated instances in static-dynamic environments.

Fulfillment (%) Backlog (%) Lost sales (%) No. setup Coverage

Average 80.58 11.49 7.93 24.59 2.50
SS-GS 88.35 9.55 2.10 25.23 2.61
SS-MPS 89.00 9.13 1.87 25.45 2.64
LL-MPS 91.61 5.75 2.64 39.51 1.20
EOQ-MPS 97.48 1.72 0.81 30.10 2.55
EOP-MPS 97.03 2.55 0.41 21.51 2.93
SM-MPS 95.58 3.96 0.46 29.93 1.95
LL-GS 91.34 5.78 2.88 39.47 1.19
EOQ-GS 97.23 1.69 1.08 29.88 2.55
EOP-GS 96.73 2.61 0.66 21.47 2.85
SM-GS 95.16 4.10 0.74 29.80 1.91
2-stage-H 86.71 12.33 0.96 23.16 3.08
S-Policy 87.31 11.87 0.82 23.74 3.03
Fix-&-Opt 87.09 12.18 0.74 23.16 3.17
M-stage 87.33 12.00 0.67 23.89 3.04

Table 8: Results for the 352 uncapacitated instances in static-dynamic environments.

dynamic use of the S-policy does not require additional computations. Among the real-time exe-

cution methods, the S-policy performs the best with a GAP of 1.78%. However, investing more

computation power reduces the costs, since M-stage leads to a GAP of 0.07% in the static-dynamic

decision framework.

The gap between stochastic optimization methods and classical methods is exacerbated when:

(1) The demand uncertainty is large (that is, the instances with lumpy demands, slow moving

items, low rate of known demand). For instance, the GAP of SS-MPS increases from 4.57% to

7.70%, when the rate of known demand decreases from 75% to 25%. (2) The times required

to transform the components into end items are short (that is, the instances with lead times of
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type L2). (3) The value of the items increases significantly at each production step (that is, the

instances with large echelon costs). In addition, M-stage significantly outperforms 2-stage-H in

terms of solution quality in these situations. For instance, the GAP s of M-stage and 2-stage-H

are respectively 0.05% and 1.90% for lumpy demands, versus 0.02% and 0.26% for non-stationary

demands. These experimental findings complement the structural analysis presented in Section

3.4. Although Proposition 3 concerns a specific case of MMCLP, the experiments show that the M-

stage significantly outperforms 2-stage-H for the generic MMCLP with short lead times. Similarly,

the additional benefit of the M-stage (compared with 2-stage-H) is more pronounced when the

difference between the holding costs of end items and components is large. Such situations are

typically encountered for products with high added value in the supply chain.

Finally, all the methods (except the S-policy) have lower GAP s when capacity is tight. This

is not surprising since the capacities constrain the solution. For instance, if the capacity is tight,

the best production plan would be to produce as much as possible. However, S-policy performs

poorly under tight capacities because of the greedy procedure used to repair capacity violations.

Typically, when capacity is violated, the repair procedure reduces the quantity in equal proportion

for all the items, whereas prioritizing some items might be preferable.

The Electronic Companion provides an analysis of the plans created with the considered ap-

proaches, which shows that the stocks of components are larger in the static-dynamic than in the

static-static environment. Indeed, as stated in Propositions 1 and 2, the static-dynamic framework

allocates the excess stock at the component level (with lower holding costs) when demand is low.

Since 2-stage-H overlooks the possibility to react to low demand by keeping a stock of components,

it overestimates the holding costs. Therefore, 2-stage-H creates smaller lots than M-stage and

Fix-&-Opt.

The numerical results reported in Section 6.3 show that the use of stochastic optimization in

MRP systems significantly reduces the operating costs. On the one hand, unlike the methods that

determine lot sizes and safety stocks separately, the stochastic MRP models which explicitly take

into account demand uncertainty in complex lot-sizing decisions can produce cost-effective produc-

tion plans to hedge against demand uncertainty. On the other hand, the multi-stage stochastic

model can account for the dynamic decision framework in a multi-echelon supply chain, which

allows the production planner to proactively plan and react to the observed demand.
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Average SS-GS SS-MPS 2-stage

Distribution

NonStationary 30.53 6.45 6.34 1.39
Lumpy 79.33 22.96 22.09 9.77

SlowMoving 59.67 13.19 12.78 6.52

NonStationary
25% 35.70 8.05 7.70 1.95
50% 32.35 6.77 6.74 1.41

Rate of known 75% 23.54 4.54 4.57 0.81

NonStationary
0.1 29.57 5.74 5.67 1.77
0.4 29.73 5.79 5.81 1.13

Coeff. Variation 0.7 32.30 7.82 7.53 1.27

BOM
Assembly 32.06 6.15 5.84 1.50
General 43.17 10.98 10.87 3.74

Utilization

50% 19.77 5.15 5.81 1.72
90% 43.48 8.36 7.96 3.08

Uncapacitated 49.60 12.18 11.30 3.05

TBO
1 63.37 9.43 9.24 4.70
3 11.87 7.70 7.47 0.54

Lead times
L1 34.71 6.39 6.67 1.05
L2 40.52 10.74 10.04 4.18

Echelon cost
Normal 22.92 6.71 6.90 1.52
Large 52.31 10.42 9.81 3.72

Cost structure
2 22.89 6.46 6.91 2.35
4 52.34 10.67 9.80 2.88

All instances 37.62 8.57 8.36 2.62

CPU Time 0.10 10.59 0.17 8.95

Table 9: GAPs of the methods in the static-static decision framework on the 1056 classical instances.

6.4 Rolling Horizon Simulation

In practice, production planning tools are often used in a rolling horizon framework (Chand et al.

2002). This section presents a rolling horizon simulation and studies the impact of the considered

planning horizon. The rolling horizon simulation is performed in a dynamic-dynamic decision

framework on instances with large time horizon (T = T̂ + 10 periods), and with different planning

horizons H < T . In period 0, the simulation optimizes the plan by considering the first H periods,

and it implements the resulting decisions for period 0. Then, the revelation of the real demands in

period 0 allows one to observe the backlogs and inventories. With this information, the simulation

re-optimizes the plan on the horizon 1 to H + 1. This process continues until the last period. To

keep the duration of the evaluation process reasonable, the simulation uses 100 scenarios on each

instance. Indeed, with a time horizon of 10 periods, the evaluation over 100 scenarios requires to

re-solve the problem 1,000 times per instance.
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Average SS-GS SS-MPS S-Policy 2-stage Fix-&-Opt M-stage

Distribution

NonStationary 38.82 5.31 5.00 0.93 0.26 0.03 0.02
Lumpy 103.42 18.26 15.44 5.18 1.90 0.96 0.05

SlowMoving 69.66 8.84 7.79 6.03 2.69 1.78 0.55

NonStationary
25% 45.16 6.41 5.97 1.22 0.34 0.04 0.02
50% 41.11 5.65 5.37 0.96 0.26 0.03 0.01

Rate of known 75% 30.20 3.86 3.67 0.60 0.16 0.02 0.02

NonStationary
0.1 38.10 4.37 3.90 0.81 0.31 0.01 0.00
0.4 38.69 4.87 4.71 1.05 0.32 0.04 0.01

Coeff. Variation 0.7 39.68 6.67 6.40 0.91 0.14 0.04 0.03

BOM
Assembly 44.50 5.34 4.50 0.96 0.50 0.20 0.12
General 50.50 8.27 7.92 2.60 0.75 0.35 0.01

Utilization

50% 29.19 3.98 4.08 3.83 0.56 0.27 0.01
90% 54.27 6.49 5.61 0.90 0.73 0.33 0.10

Uncapacitated 59.03 9.94 8.92 0.60 0.59 0.22 0.09

TBO
1 79.84 6.31 5.17 2.34 1.05 0.44 0.07
3 15.16 7.29 7.25 1.22 0.20 0.11 0.07

Lead times
L1 44.12 5.80 5.61 1.16 0.29 0.17 0.08
L2 50.88 7.81 6.80 2.39 0.96 0.38 0.06

Echelon cost
Normal 30.50 5.94 5.33 2.04 0.26 0.15 0.08
Large 64.50 7.67 7.08 1.51 1.00 0.40 0.05

Cost structure
2 29.79 4.87 4.71 1.56 0.61 0.26 0.05
4 65.21 8.74 7.70 1.99 0.64 0.29 0.09

All instances 47.50 6.80 6.21 1.78 0.63 0.27 0.07

CPU Time 0.10 10.59 0.17 1064.03 8.95 234.16 3240.36

Table 10: GAPs of the methods in the static-dynamic decision framework on the 1056 classical instances

The following methods are considered in the rolling horizon framework: Average, SS-MPS, and

SS-GS with a planning horizon of (T̂ + 5) periods; 2-stage-H1, 2-stage-H3, and 2-stage-H5 denote

respectively the two-stage heuristic with time-horizons of (T̂ + 1), (T̂ + 3), and (T̂ + 5) periods;

Fix-&-Opt-H1, Fix-&-Opt-H3, and Fix-&-Opt-H5 denote the fix-and-optimize heuristic with time-

horizons of (T̂ +1), (T̂ +3), and (T̂ +5) periods. Following the results presented in Section 6.2, the

fix-and-optimize heuristic uses a scenario tree structure [50, 8, 4, 4] for the first four levels, whereas

the nodes of subsequent levels have one branch. We also evaluate two policies which do not require

to solve a mathematical model in each period. In S-Policy-H6, the S-Policy is inferred (as explained

in Section 4.3) from the solution of the fix-and-optimize heuristic with a planning horizon of (T̂ +6)

periods. The model is first solved on the planning horizon 0 . . . (T̂ + 6), and the resulting S-policy

is executed in periods 0 . . . 2. Then, the model is solved with the planning horizon 3 . . . (T̂ + 9),

and the S-Policy is executed in periods 3 . . . 5. This process continues until the end of the horizon.
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In Q-Policy-H6, the two-stage model is solved over a planning horizon of (T̂ + 6) periods, and the

resulting production quantities are implemented for the first 3 periods. Then, the two-stage model

is re-solved by shifting the planning horizon by 3 periods (similarly to S-Policy-H6). In addition, to

compare the static-static decision framework and the rolling horizon approach, Average, SS-MPS,

and 2-stage are simulated in the static-static decision framework (i.e., the plan remains fixed).

However, 2-stage is solved with 100 scenarios only at each iteration, because the two-stage model

with 500 scenarios per iteration requires too much memory on these instances. Though the multi-

stage model could be applied in a rolling-horizon framework, the evaluation over a large number of

scenarios is not considered because it requires a significantly higher computation time.

Tables 11 and 12 report the detailed costs and the KPIs (in the same format as Table 5 and 6).

The results show that the benefit of stochastic optimization in MRP is even more pronounced in the

dynamic-dynamic environment than in the static-static and static-dynamic environments, as the

resulting plans lead to significantly lower costs than classical methods. The methods based on safety

stocks such as SS-MPS generally yield better results in the static-static decision framework than

in the rolling horizon framework. On the contrary, the results show that the stochastic approaches

perform better in a rolling horizon framework than in the static-static framework. For instance,

2-stage-H5 in the rolling horizon framework outperforms 2-stage in the static-static framework.

As expected, using a large planning horizon leads to lower costs. For instance, the GAP of the

fix-and-optimize method decreases from 13.7% to 1.5% when the planning horizon increases from

(T̂ + 1) to (T̂ + 5). Finally, Q-Policy-H6 outperforms S-Policy with GAP s of 3.6% versus 5.2%. As

mentioned earlier, S-Policy does not perform well in presence of capacity. However, on the subset

of 12 uncapacitated instances, S-Policy outperforms Q-Policy (3.9% versus 4.4%).

6.5 Numerical Tests on Large-Scale Supply Chain Instances

This section evaluates the performance and the limits of Fix-&-Opt for large-scale supply chain

management problems with the instances derived from the real-world instances of Willems (2008).

These instances include both the production (MRP) and distribution (DRP) systems, and they

are also used in recent academic works (e.g., Kumar and Aouam 2019). We run Fix-&-Opt with

100 scenarios in the first step, and a scenario tree with structure [50, 8, 4, 4] in the second step.

We limit the CPU time of step 1 to one hour to avoid excessive computing requirements. Table
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Framework Method GAP Setup Inventory Backlog Lost sales Production
(%) ($) ($) ($) ($) ($)

Static-static
Average 24.9 16,861.7 11,241.2 4,520.2 9,868.0 6,432.3
SS-MPS 10.0 19,902.2 12,949.8 3,274.3 2,212.4 7,207.9

for entire horizon 2-stage 6.6 17,382.1 12,527.6 4,915.3 1,781.7 7,175.2

Rolling horizon

Average H5 43.8 20,422.0 8,382.4 7,639.3 15,626.8 6,115.2
SS-GS H5 18.7 20,108.9 11,165.3 5,821.7 3,714.7 6,811.8
SS-MPS H5 24.2 20,094.3 10,453.6 5,887.6 6,650.4 6,620.2
2-stage H1 17.2 26,315.4 6,733.0 8,976.4 3,197.6 6,662.0
Fix-&-Opt H1 13.7 25,956.9 7,452.5 7,758.7 1,923.1 6,756.4
2-stage H3 5.1 19,898.8 9,871.1 5,707.8 2,388.4 6,700.1
Fix-&-Opt H3 3.2 19,403.4 10,627.1 5,431.8 1,298.7 6,819.1
2-stage H5 3.3 19,049.8 9,510.0 5,779.0 2,638.8 6,701.5
Fix-&-Opt H5 1.5 18,810.9 10,572.8 4,997.4 1,365.5 6,823.5
S-Policy H6 5.2 18,523.0 11,241.4 4,855.2 1,913.3 6,769.3
Q-Policy H6 3.6 18,774.0 10,684.3 4,994.1 1,926.2 6,816.5

Table 11: Results of the rolling horizon simulation on instances with large horizon

Framework Method Fulfillment (%) Backlog (%) Lost sales (%) No. setup Coverage

Static-static
Average 74.6 16.2 9.2 53.7 2.7
SS-MPS 80.9 16.9 2.2 57.7 2.7

for entire horizon 2-stage 79.3 18.7 2.1 42.3 3.4

Rolling horizon

Average H5 64.0 26.7 9.3 50.6 2.2
SS-GS H5 74.3 23.7 2.0 53.2 2.6
SS-MPS H5 72.0 24.0 4.0 52.3 2.5
2-stage H1 71.6 25.9 2.5 60.5 2.0
Fix-&-Opt H1 74.1 24.2 1.7 57.8 2.2
2-stage H3 74.5 23.1 2.4 46.8 2.7
Fix-&-Opt H3 77.2 21.2 1.6 44.4 2.9
2-stage H5 75.7 21.6 2.7 44.0 2.8
Fix-&-Opt H5 78.4 20.1 1.6 42.7 3.0
S-Policy H6 77.7 19.9 2.4 44.6 2.9
Q-Policy H6 78.7 19.3 2.0 43.9 2.9

Table 12: Results of the rolling horizon simulation on instances with large horizon

13 reports the number of items |I| and periods |T | in each instance, as well as the CPU time, the

integrality gap (for step 1 only), and the number of variables and constraints in each step. Table

13 shows that the proposed approach performs well since it can solve realistic instances with up

to 58 items and 17 periods. For a few instances, CPLEX cannot solve to optimality the two-stage

model corresponding to the first step. However, the gap determined by the approach is relatively

small (less than 4% in all the instances).
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SC I T

Step 1 Step 2

CPU (s) CPLEX Gap No. Var. No. Const. CPU (s) No. Var. No. Const.

1 8 7 2.06 0.00 1,777 899 2.15 99,135 69,671
2 13 9 2.25 0.00 4,185 2,115 11.52 57,025 8,434
3 17 11 434.05 0.00 3,776 1,949 21.04 69,023 8,652
4 22 9 48.27 0.00 8,044 4,078 17.82 113,240 2,397
5 27 11 3,600.02 0.04 9,704 4,960 36.72 150,137 3,466
6 28 9 3,600.01 0.01 11,134 5,638 17.50 162,372 5,057
7 38 9 14.61 0.00 1,071 677 16.66 406,801 355,047
8 40 17 3,617.53 0.00 3,698 2,262 377.48 212,873 85,713
9 49 11 3,600.07 0.01 27,987 14,110 102.52 384,769 27,332
10 58 5 1.05 0.00 1,232 751 9.07 567,705 464,947

Table 13: Computation time for Fix-&-Opt heuristic on large instances

7 Future Research Directions

This paper shows that stochastic optimization approaches can significantly reduce the production

costs for companies relying on MRP systems in the static and dynamic decision frameworks. The

fix-and-optimize heuristic is proven to be efficient for the more complex static-dynamic framework

and could be used to solve realistic size MRP instances. The scalability of the approaches can

be further enhanced in the following ways. In the first step of the fix-and-optimize heuristic,

approaches based on a shifting window (Toledo et al. 2015) can find good quality solutions for the

two-stage model in reasonable time. In the second step, scenario-wise or stage-wise decomposition

methods can circumvent the issue related to the exponential growth in the number of scenarios.

Several stage-wise decomposition approaches exist for multi-stage stochastic optimization, such

as nested Benders decomposition, Benders decomposition with block separation (Golari et al. 2017),

stochastic decomposition (Sen and Zhou 2014), among others. Stochastic dual dynamic program-

ming (SDDP) is particularly appealing for the static-dynamic decision framework since it avoids

the exponential growth of the scenario tree. Provided that the demand probability distributions

are stage-wise independent, the considered problem can be decomposed into a series of decision

problems (one for each decision stage). SDDP solves the problem stage by stage, and it approx-

imates the future costs with a set of cuts. Besides, Rebennack (2016) proposes to combine the

nested Benders decomposition method with SDDP to incorporate additional sources of uncertainty

that are too complex to model with SDDP (e.g., stage-wise dependent random parameters).

Progressive hedging (PH) decomposes the problem per scenario. For instance, Huang and Zheng

(2020) use PH to solve a preventive maintenance scheduling problem. To decompose the problem
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per scenario, PH relaxes the non-anticipativity constraints, but it penalizes their violations with a

penalty similar to a Lagrangian multiplier. PH can remove the memory issue encountered in the

second step of fix-and-optimize since the scenarios are solved one by one. While PH cannot solve

the original MMCLP since the setup variables are integer (thus the problem is not convex), it can

find the optimal solution to the second step of the fix-and-optimize approach.

In addition, the study of the complex dynamic-dynamic decision framework is an interesting

avenue for future research. For instance, recent developments of the SDDP approach can handle

integer recourse variables (Zou et al. 2018, 2019). A different approach is to use decision rules

to transform the multi-stage model into a two-stage one. However, the design of such rules is

complex for the MMCLP because of the capacity constraint. Such rules could also be combined

with Lagrangian decomposition (Daryalal et al. 2020).

8 Managerial insights and conclusions

Manufacturers are widely using MRP systems to plan their production. The most recent MRP

systems use mathematical programs to compute the lot sizes under the assumption of a deter-

ministic demand, and separately computed safety stocks to hedge against uncertainty. To jointly

optimize the decisions on the lot sizes and safety stocks, this paper investigates the use of stochastic

optimization in MRP systems. More precisely, we provide a two-stage and a multi-stage formula-

tion for the multi-echelon multi-item capacitated lot-sizing problem encountered in MRP systems.

The two-stage model assumes that production quantities are fixed for the entire horizon. On

the contrary, the multi-stage model represents the static-dynamic decision framework, where the

production quantities are sequentially determined in each period.

The experimental results show that computing safety stocks separately from the lot sizes re-

sults in solutions that are far from being optimal. Therefore, our results suggest that manufacturing

companies should consider adopting stochastic optimization approaches that integrate the compu-

tations of lot sizes and safety stocks in a single framework, which potentially leads to significant cost

savings. Contrarily to the analytical computation of safety stocks, the scenario based stochastic

optimization approach is highly flexible as it can include various manufacturing constraints, such

as planned substitutions and component routing, and it does not require restrictive assumptions

on the probability distribution. In addition, the scenario based approach can accommodate other
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sources of uncertainty including lead times and process duration.

While the two-stage model corresponding to the static-static environment can be directly im-

plemented in MRP systems, the multi-stage model requires heavy computational time. Thus, to

efficiently determine MRP production plans, the two heuristics proposed in this work can be em-

ployed in conjunction with an order-up-to-level policy derived from the solution of the stochastic

MRP model to make real-time recourse decisions during the static-dynamic execution. These ap-

proaches are efficient and easy to implement since they are designed to work with standard MILP

solvers.
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