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ABSTRACT: This study addresses a multi-product multi-period lot-sizing problem with stochastic yield and
capacity. Typically, random yield is the result of defective items, whereas the capacity is uncertain due to
machine breakdowns. Considering both stochastic yield and capacity leads to a complex problem, since these
two uncertainty types are in conflict. Indeed, the planners tend to produce large batches to overcome random
yields, but the resulting plan might not be feasible due to random capacity. We provide an analytical expression
for the service level function. A dynamic programming algorithm is also proposed to find the optimal released
quantities. We validate the proposed methodology with a numerical example.
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1 INTRODUCTION

To respond to today’s competitive business world,
companies tend to increase the size of their prod-
uct assortments, launch new products frequently, and
adjust their production processes constantly (acquire
new equipment). In these conditions, production sys-
tems can become very difficult to manage due to the
lack of regularity and consistency in the production
process, making it very difficult for manufacturers to
ensure product-process quality. To face these chal-
lenges, inventory control systems must be able to cope
with uncertainties from both process (e.g., equipment
failure) and product quality. The goal of this work is
to provide a methodology to size the production lots
in a multi-item multi-period production line subject
to break-down and defective items. In inventory con-
trol, machine breakdowns leads to stochastic resource
capacity, whereas bad product quality leads to ran-
dom yield.

One of the first studies on inventory control with
imperfect item quality and its effect on production
run time and economic production quantity (EPQ)
was (Karlin et al. 1958). However, despite the large
amount of works following this seminal work, there is
a lake of study considering both random yield and ca-
pacity. The joint consideration of these uncertainties
is critical since they are conflicting. Indeed, compa-
nies tends to produce large lot-size to hedge against
yield uncertainty. This large lot sizes lead to a tight
usage of the production capacity, which is not desir-
able when the capacity is unknown.

The only works considering jointly these two types

of uncertainties are limited to single period models
(Schemeleva et al. 2018). To avoid nervousness, com-
panies manage their production plan with a frozen
horizon. In this context, companies multi-periods
problem, where the uncertainties in a period results
in over and under productions that affects future pe-
riods.

This study, we consider a single machine production
line which operates with a lot for lot policy to satisfy
the demand of each item in each period. Multi-item
production planning requires the known sequence of
products; there are some works in literature that pro-
pose a method for schedule the production sequence
(e.g., Dolgui et al. 2005; Schemeleva et al. 2018,
2012), regarding to focus on the lot sizing in this pa-
per, we assume that the sequence is predefined and
known. Based on our reviews, lot sizing under yield
and capacity uncertainties is consider as a single pe-
riod problem; it means that at the end of the period
there are maybe backlog or inventory which are ig-
nored totally in the probable next period. In this
regard, in this study we consider backlog/inventory
in all periods. In other word, if there is a shortage
in a period we add it to the next period demand and
if there is inventory we reduce the next period de-
mand. The goal of the study is to maximize the total
service level which is probability of meet the demand
of all item in all period at the end of the horizon.
We also assume that in each stage of planning the re-
leased quantity is frozen and the next stage is planned
based on non-changeable decided released quantities
of previous stages.

The contributions of this paper include a mathemati-
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cal analysis of the multi-item lot-sizing under stochas-
tic yield and capacity. This analysis leads to the def-
inition of the service level function, that incorporates
the probabilistic backlog/inventory from one period
to the next. In addition, we propose a dynamic pro-
gramming algorithm that find the optimal released
quantities, along with some efficient speed up strate-
gies. We evaluate the impact of the multi-period
model compare to single period. Finally, we provide
some managerial insights.

The rest of this study is as follows: Section2 re-
views the literature, section3 introduces the consid-
ered problem and gives the proposed mathemati-
cal model, section5 presents the employed optimiza-
tion approach, section6 presents the empirical valida-
tion of proposed methodologies and section7 discusses
about conclusion of work.

2 LITERATURE REVIEW

Inventory control plays a crucial role in the manage-
ment of a production system since it impacts the cus-
tomer satisfaction and the supply chain costs. Indeed,
an improper inventory policy may lead to shortage of
products or needless stocks, and both are costly for
companies. Therefore, there is a significant motiva-
tion for developing efficient and cost-effective inven-
tory policy/methods.

There is a vast literature on lot-sizing problem un-
der uncertainty, and various uncertain parameters
have been considered such as demand, yield, lead
time or capacity. Review papers on this topic in-
clude (Aloulou et al. 2014; Dolgui and Prodhon 2007;
Yano and Lee 1995). In the recent review of (Aloulou
et al. 2014) on non- deterministic lot-sizing models,
the authors classified such problems based on: the
number of periods, the number of products, the num-
ber of machines, the uncertain parameters, and the
modelling approaches. The present work focuses on
multi-period, multi product, single machine, under
uncertain yield and capacity. Therefore, the review
below focuses on these two types of uncertainties.

Since the seminal paper of (E. Silver 1976) where the
traditional EOQ model is extended with yield uncer-
tainty, an extensive amount of research has been done
on lot sizing problems with random yields (e.g., Ger-
chak and Grosfeld-Nir 1998; Gerchak et al. 1994; In-
derfurth 2009; Khan et al. 2010; Yano and Lee 1995).
There exists three approaches to represent random
yield in a production context. A first stream of re-
search (e.g., Agnihothri et al. 2000; Dolgui and Proth
2010; Haji et al. 2008; Li et al. 2008; Papachristos and
Konstantaras 2006; Wang and Gerchak 2000) consid-
ers that the fraction of defective items is known, and
the problem is deterministic. A second stream of re-
search (e.g., Singh et al. 1988; Teunter and Flapper

2003) represents random yield as Bernoulli process,
where a certain fraction of goods is defective, and the
number of defective items depends on the lot size.
The third research stream (e.g., Maddah and M. Y.
Jaber 2008; Salameh and M. Jaber 2000) models ran-
dom yield with a geometric distribution, where the
manufacturing system becomes out of control with a
given probability, and all produced items are defec-
tive. However, yield uncertainty does not necessarily
result from bad product quality, but it can also arise
due to shortage from the suppliers (e.g., Güllü et al.
1999; Moon et al. 2012).

Random capacity is a practical issue in different types
of industries such as high-tech industries like semi-
conductor industry (Geng and Jiang 2007). (Wang
and Gerchak 1996a) illustrate the possible impacts of
variable capacity on the optimal solution in the con-
tinuous lot sizing problem. The uncertainty on the ca-
pacity has various causes, such as unexpected break-
downs and unplanned maintenance, material short-
ages; an uncertain duration of repair, even when the
repair is planned and strikes (Ciarallo et al. 1994;
Wang and Gerchak 1996a). Among these causes, ma-
chine breakdowns attracted the most attention in the
literature (e.g., Chakraborty et al. 2009; Chiu 2010;
Giri and Dohi 2004; Lin and Gong 2006). The math-
ematical modelling of machine breakdown is usu-
ally based on two factors, namely, the mean time
to/between failure (MTTF/MTBF) and mean time
to repair. For instance, (Lin and Gong 2006) con-
sidered the EPQ model with random breakdownsand
constant repair times. Similarly, (Giri and Dohi 2004;
Giri and Yun 2005) examined the optimal lot-sizing
problem with at most two failures during the plan-
ning period (both failures and repair times follow a
general (arbitrary) distribution.

Very few papers (Dolgui et al. 2005; Jain and E. A.
Silver 1995; Schemeleva et al. 2018, 2012; Wang
and Gerchak 1996b) consider simultaneously random
yields and capacity. (Wang and Gerchak 1996b) pro-
posed a stochastic dynamic programming for the sin-
gle item case, to minimize the expected total cost
(i.e., production, holding, and shortage cost). (Jain
and E. A. Silver 1995) investigated the case where
suppliers allow to reserve a dedicated capacity level
by paying a premium charge. These assumptions il-
lustrated the independence of the optimal order size
and the random capacity. (Dolgui et al. 2005) study
a sequencing and lot sizing problem for a multi-item
single-period production system under uncertainties.
The goal of their problem is maximizing service level,
and they use dynamic programming for finding the so-
lution of lot sizing part of the model. This work was
extended in (Schemeleva et al. 2012) and (Schemeleva
et al. 2018), where the author propose a memetic al-
gorithm for lot sizing (production planning) part and
a heuristic method without decomposition the two
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sub-problems.

To conclude this literature review, despite its rele-
vance in practice, very few studies considered random
yield and capacity simultaneously. As these two un-
certainty types are in conflicts, it is crucial to manage
them simultaneously. Indeed, companies tend to pro-
duce pore than required to overcome random yield
issues, but a random capacity should not be used
tightly. The few studies on lot-sizing with random
yield and capacity are limited to one period. To the
best of our knowledge, the multi-period multi-item
lot sizing problem with random yield and capacity
uncertainties has never been study in the literature.

3 PROBLEM STATEMENT

This section gives a formulation of the considered
problem. Table 1 summarizes the notations used in
the rest of the paper. Note that we adopt the follow-
ing convention. M1...m,1...n denotes a m × n matrix,
Mi,1...n (resp. M1...m,i) denotes the ith lines(resp.
column) denotes the ith lines, and Mi,j denotes an
elements of the matrix. Finally, Mi,1→n denotes the
sum of the components in the vector Mi,1...n.

We consider a multi-item multi-period lot sizing prob-
lem with stochastic yield and stochastic capacity.
Given the demand Dit for each item i in period t
of the planning horizon, the considered problem is to
determine the production quantity xit to released for
each items i in each period t, in order to maximize
the service level.

The production must respect the capacity of the bot-
tleneck resource. More precisely, there is C time ca-
pacity in each period, and the production of one unit
of item i consumes ki time of the capacity. However,
the machine can breakdown during operation, and
it becomes unusable during a random repair time.
Similarly to (Dolgui et al. 2005), we assume that the
failure and repair incidents follow independent expo-
nential distributions, with mean time between failures
1/U and mean time to repair 1/Ū .

In addition, the machine can produce defective items.
More precisely, we assume that each item i is of good
quality with probability pi. Therefore, the actual pro-
duced quantities yit is lower than or equal to the re-
leased quantity xit.

Because of these uncertainties, the produced quantity
might not meet the demand, and there can be backlog
and inventory. In other words, the unmet demand in
period t can be met in period t+ 1.

The decision framework assumes that the production
quantities are decided for the entire horizon, and they
are frozen.

i = 1, ..., n Index for items
t = 1, ..., T Index for period

pi
Probability to produce a
good item of type i

ki
Capacity consumption per
unit of item i

C
Production capacity per pe-
riod

Dit
Demand of item i in period
t

1/U Mean time between failures
1/Ū Mean time to repair
γ1...n Vector of the items sequence

R1...t
Repair time from period 1 to
t

x1...n,1...T
Matrix of released quantities
for all items and all periods

y1...n,1...T

Matrix of processed quanti-
ties for all items and all pe-
riods

z1...n,1...T

Matrix of produced quanti-
ties for all items and all pe-
riods

P bit(D̃it|x1...i1...t−1)

Probability to have a to-
tal demand D̃it (including
backlog and inventory) in
period t given the released
quantities.

p(zit ≥ D̃it|x1...i,1...t)
Probability to meet the de-
mand given the released
quantities.

py=
it (zit|yit)

Probability to yield exactly
zit good quality items, given
the processed quantities

py>it (zit|yit)
Probability to yield at least
zit good quality items, given
the processed quantities

pc=it (yit|x1...it)

Probability to process ex-
actly yit item i in period
t given the released quanti-
ties.

pc>it (yit|x1...it)

Probability to process at
least yit item i in period
t given the released quanti-
ties.

pcy=
it (zit|xit)

Probability to yield exactly
zit good quality items, given
the released quantities

pcy>it (zit|xit)
Probability to yield at least
zit good quality items, given
the released quantities

pr(R ≤ K̄|K)
Probability to have a repair
time R lower than K̄, with a
required operation time K.

Table 1 – Notations
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In the rest of this paper, we make a distinction be-
tween the quantity released, processed and produced.
The released quantities (x1...n,1...t) is the amount of
item the planner asked to produced. The quantity
processed (y1...n,1...t) is the quantity that can be pro-
cess by the machine with its actual capacity. The
quantity produced (z1...n,1...t) is the amount of item
process that are of good quality.

The objective is to maximize the service level S,
which is defined as the probability to meet the de-
mand for all items in all period. That is

S =

n∏
i=1

T∏
t=1

p(zi1→t ≥ Di1→t|x1...i1...t), (1)

where p(zi1→t ≥ Di1→t|x1...i1...t) is the probability
that the total produce quantities zi1→t from period 1
to t is larger than the total demand of these periods.

4 MATHEMATICAL ANALYSIS

The service level can be decomposed based on three
stochastic parameters

p(zi1→t ≥ Di1→t|x1...i1...t) =

Di1→t∑
D̃it=Di1→t−xi1→t−1

(pbit(D̃it|x1...i1...t−1)

(

xit∑
ỹit=0

py>it (D̃it|yit)× pc=it (yit|x1...it))),

(2)

where p(zit ≥ D̃it|yit) is the probability to produce at

least D̃it good items of type i given that yit items of
type i are processed in period t, pc=it (yit|x1...it) is the
probability to process yit given the quantity released
in period t, and pb(D̃it|x1...i1...t−1) is the probability

to have a total demand D̃it (including backlog and
inventory) in period t .

This function tries to maximize the probability of
meeting demand of item i from period one to the pe-
riod t when all i− 1 released quantities are planned.
The total demand D̃it can vary from subtraction of
sum of the demands of item i from first period to
period t (Di1→t) from the total released quantity of
item i until end of period t−1 (xi1→t−1), which means
all released items have good quality and there maybe
inventory from the previous periods, to sum of the de-
mands of item i from first period to period t, which in-
dicates a large backlog. The probability of this value
depends on the previous periods released quantities,
then base on this value, the function calculate the
probability of the meeting this demand with the pre-
assumed released quantity of the item i in period t.

It should be noted that for the first period, there is
no variation for the total demand and it is fixed as

the initial demands of each item, so we have to delete
the external summation and replace D̃it with Dit.

Basically, the larger are the sizes of the lots, the larger
is the value of pyit(zit ≥ D̃it|yit), and the smaller is
pc=it (yit|xit) since there may be less capacity to pro-
duce the last lots.

We detail below the computation of these three prob-
ability functions.

4.1 Yield uncertainty

The probability to pyit(zit|yit) to yield exactly zit good
quality items when yit items i are processed can be
computed with Bernoulliâs formula:

py=
it (zit|yit) = Czityit (1− pi)(yit−zit)pziti , (3)

where pi is the given perfection probability.

The probability to yield more than zit item i in period
t if yit items are processes is

py>it (zit|yit) =

yit∑
a=zit

Cayit(1− pi)
(yit−a)pai (4)

And the probability to yield more than zit item i in
period t if x1...it items are released is

pcy>it (zit|x1...it) =

xit∑
yit=0

py>it (zit|yit)× pc=it (yit|x1...it)

(5)

Similarly,

pcy=
it (zit|x1...it) =

xit∑
yit=0

py=
it (zit|yit)× pc=it (yit|x1...it)

(6)

4.2 Capacity uncertainty

The processing of items i starts only once the first
i − 1 lots are completed. More precisely, yit items
i are processed in period t if the repairing time Rt
respects the capacity constraint

j=i−1∑
j=1

kjxjt + yitki +Rt ≤ C (7)

where ki is the capacity consumption per unit of item
i, and C is the capacity per period.

For sake of clarity, we define:

K = K(x1...i−1t, yit)) =
∑

j∈1...i−1

kjxjt + kiyit (8)
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and

K̄ = K̄(x1...i−1t, yit) = C −K(x1...i−1t, yit)) (9)

The probability pc>it (yit|x1...it) to process more than
yit items i in periods t coincides with the probability
pr(Rt < K̄|K) to have less than K̄ units of repair
time in period t if the required processing time is K.
That is,

pc>it (yit|x1...it) = pr(Rt < K̄)|K) (10)

If the time to failure and repair time follow an expo-
nential distribution, (Dolgui et al. 2005) showed that
such a repair time probability can be computed as
follows:

pr(Rt ≤ K̄|K) =

1− e−(KU+K̄Ū)
∞∑
ν=1

[
(KU)ν

ν!

ν−1∑
j=0

(K̄Ū)j

j!
]

(11)

where 1
U is the mean time between failures, and 1

Ū
is the mean time to repair. As mentioned in (Dolgui
2002), the infinite sum in (9) can be approximated
with a large enough number, since the function con-
verge quickly.

Finally, the probability pc=it (yit|x1...it) to process pre-
cisely yit items i in period t. can be inferred from
pc>it (yit|x1...it) as follows:

pc=it (yit|x1...it) =pc>it (yit|x1...it)

− pc>it (yit + 1|x1...it)
(12)

In the case of yit = xit, if pc>it (yit|x1...it) would be
equal to 1, we set pc=it (yit|x1...it) for yit = xit equal
to 1 and for all yit ≤ xit the value of the probability
will ignore and consider it as 0.

4.3 Backlog and inventory uncertainty

The backlog/inventory level in period t can be com-
puted from the backlog/inventory level in period t−1.
More precisely, the flow conservation constraint can
be expressed as follows

D̃it = D̃it−1 − zit−1 +Dit (13)

Equation (14) gives a recursive formula to com-
pute the actual requirements (including back-
log/inventory) in period t, where s1 refers to the pro-
duction in period t − 1, and s2 refers to the actual
requirements in period t− 1.

pbit(D̃it|x1...i1...t−1) =∑
s1,s2|s2−s1+Dit=D̃it

pcy=
it−1(s1|x1...it−1)pbit−1(s2|x1...i1...t−2)

(14)

For the first period equation 14 must be changed as
equations 15 and 16.

pbi1(D̃i1 = Di1|∅) = 1 (15)

pbi1(D̃i1 6= Di1|∅) = 0 (16)

The computation can be simplified as follows.

pbit(D̃it|x1...i1...t−1) =
s1=xit−1∑
s1=0

pcy=
it−1(s1|x1...it−1)pbit−1(D̃it −Dit + s1|x1...i1...t−2)

(17)

The values of xit are limited to predefined intervals
[xit, x

+
it] which are computed based on a user defined

minimum service level βi.

x+
it = min{x̄it, bxit + (C −

n∑
j=1

kjxj,t)/kic} (18)

where xit is the minimum lot size of item i such that
pcy>it (zit ≥ Dit|xit) ≥ βi, and x̄it is the minimum lot
size of item i such that pcy>it (zit ≥ Dit|xit) ≥ 1− ε for
a sufficiently small ε.

5 OPTIMIZATION APPROACH

We propose below a dynamic programming algorithm
to compute the released quantities. In each stage, the
algorithm computes the cost Hi(V

i
1...T ) of the optimal

released quantities to complete the first i lots before
the vector of times V i1...T in each period.

Hi(V
i
1...T ) = max

{ n∏
i=1

p(zi1→T ≥ Di1→T |x1...i1...T )

|
i∑

j=1

kjxjτ = Vτ , xjt ∈ [xjt, x̄jt], τ ∈ 1 . . . t
}

(19)

with

p(zi1→T ≥ Di1→T |x1...i1...T ) =

T∏
t=1

p(zi1→t ≥ Di1→t|x1...i1...t)
(20)

The cost Hi(V
i
1...T ) of the optimal lots sizes up to

item i with completion times vector V i1...T , can be
computed from the optimal cost of the previous stage
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H(i−1)(V
(i−1)′
1...T ) :

Hi(V
i
1...T ) = max{H(i−1)(V

(i−1)′
1...T )×

p(zi1→t ≥ Di1→t|x1...i1...t)

|kjxjτ = (Vjτ − V ′(j−1)τ ),

xjτ ∈ [xjτ , x̄jτ ],

V ′(i−1)τ ∈ [V ′(i−1)τ , V̄
′
(i−1)τ ],

(Vjτ − V ′(j−1)τ ) ∈ [wjτ , w̄jτ ],

τ ∈ 1 . . . T ,

j ∈ 1 . . . i}

(21)

where

V it =

i∑
j=1

wjt (22)

V̄it = min{Tt −
n∑

j=i+1

wjt,

i∑
j=1

w̄jt} (23)

wjt = kjxjt (24)

w̄jt = kjx
+
jt (25)

The initial state V 0
1...T = 0 . . . 0, and H0(V 0

1...T ) = 1.

5.1 Speedup strategy

This section provide the complexity of the proposed
dynamic program, and it shows that the number of
states grows exponentially with the number of pe-
riod. To circumvent this issue, we propose to prune
the states based on a lower bound and dominance
properties.

A lower bound on the service level: Such a
lower bound can be computed with a heuristic. To do
so, we use the method proposed in ... for a the sin-
gle period lot-sizing with random yield and capacity.
This method is applied successively on each period,
and this yield a set of released quantity xh1...n,1...T .

The service level associated with xh1...n,1...T is com-
puted with equation (6). The resulting service level
is sub-optimal, but this lower bound allows to prune
a large number of node.

Dominated states: A state V i1...T dominates the
state Wi1...T , if V i1...T ≤ Wi1...T and Hi(V

i
1...T ) ≥

Hi(Wi1...T ).

Algorithm 1 Dynamic programming algorithms

Set V 0
1...T = 0 . . . 0, and H0(V 0

1...T ) = 1
for all items i ∈ {1 . . . n} do
for all V i1...T such that Vit ∈

[
V it, V̄it

]
do

Hi(V
i
1...T ) = 0

for all xi1...T such that xit ∈ [xit, x̄it] do

for all states V
(i−1)
1...T such that V

(i−1)
1...T +

K(xi1...T ) = V i1...T do

if H(i−1)(V
(i−1)
1...T ) × p(zi1→T ≥

Di1→T |x1...i1...T ) ≥ Hi(V
i
1...T ) then

Hi(V
i
1...T ) = H(i−1)(V

(i−1)
1...T ) ×

p(zi1→T ≥ Di1→T |x1...i1...T )
end if

end for
end for

end for
Remove states based on the lower bound and
dominance properties;

end for

6 NUMERICAL EXAMPLE AND ANALY-
SIS

6.1 INSTANCE GENERATION

The optimization procedure is applied on the follow-
ing small example.

We assume a single-machine line that produces two
types of item (n=2) during two periods (T=2).Each
period duration is equal to 1.2 hours (C = 1.2).The
other feature of the problem is also known as fol-
lows(the times are given in hours).

• The initial demand of the items (Dit)
D11 = 2, D12 = 1, D21 = 1, D22 = 3

• The processing time for each type of items
k1 = 0.17, k2 = 0.09

• The mean time between failures (MTBF)
U = 0.6667

• The mean time to repair (MTTR)
Ū = 4

• Probability of defectiveness for each type of items
p1 = 0.85, p2 = 0.83

• Sequence of producing lots
γ = {γ1 = 1, γ2 = 2}

It is considered that probability of minimum service
for all lots in all periods is equal to 0.93 (β1 = β2 =
β3 = β4 = 0.93). As it is obvious to maximize the
service level we should obtain at least the produced
quantities (zit) as same as demand quantities for each
item at the end of each period.
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The objective is to determine the optimal lot sizes xit
when we know the sequence in order to maximize the
probability of equation 13.

In the optimization algorithm, the items appears as
the stages of dynamic programming and number of
stages varies by the number of items. The number of
periods has impact on the number of states in each
stage and also the complexity of computation of each
loop in the algorithm.

6.2 EXPERIMENTAL RESULTS

With considering probability of minimum service
level as 0.93 for items and using equation (18) we
can obtain xit ∈ [xit, x

+
it] interval as:

x11 ∈ [3, 6], x12 ∈ [2, 4], x21 ∈ [2, 5], x22 ∈ [5, 8]

To be able to apply optimization procedure the com-
ponents of dynamic programming (equation 19 to 25)
are calculated in the table 2.

This instance has two stages. The first stage is pro-
ducing item 1 and the second is producing item 2.
Below, all possible released quantities and states of
each stage based on the xit and Vit bounds are shown.

Stage 1:

x11...2 ∈ {[3, 2], [3, 3], [3, 4], [4, 2], [4, 3], [4, 4], [5, 2], [5, 3],

, [6, 2], [6, 3], [6, 4]}

V 1
1...2 ∈ {[0.51, 0.34], [0.51, 0.51], [0.51, 0.68], [0.68, 0.34],

[0.68, 0.51], [0.68, 0.68], [0.85, 0.34], [0.85, 0.51], [0.85, 0.68],
[1.02, 0.34], [1.02, 0.51], [1.02, 0.68]}

stage 2:

x21...2 ∈ {[2, 5], [2, 6], [2, 7], [2, 8], [3, 5], [3, 6], [3, 7], [3, 8],
[4, 5], [4, 6], [4, 7], [4, 8], [5, 5], [5, 6], [5, 7], [5, 8]}

V 2
1...2 ∈ {[0.69, 0.79], [0.69, 0.88], [0.69, 0.97], [0.69, 1.06],

[0.69, 1.05], [0.69, 1.14], [0.69, 1.13], [0.78, 0.79], [0.78, 0.88],
[0.78, 0.97], [0.78, 1.06], [0.78, 0.96], [0.78, 1.05], [0.78, 1.14],
[0.78, 1.13], [0.87, 0.79], [0.87, 0.88], [0.87, 0.97], [0.87, 1.06],
[0.87, 0.96], [0.87, 1.05], [0.87, 1.14], [0.87, 1.13], [0.96, 0.79],
[0.96, 0.88], [0.96, 0.97], [0.96, 1.06], [0.96, 0.96], [0.96, 1.05],
[0.96, 1.14], [0.96, 1.13], [0.86, 0.79], [0.86, 0.88], [0.86, 0.97],
[0.86, 0.96], [0.86, 1.05], [0.86, 1.14], [0.86, 1.13], [0.95, 0.79],
[0.95, 0.88], [0.95, 0.97], [0.95, 1.06], [0.95, 0.96], [0.95, 1.05],
[0.95, 1.14], [0.95, 1.13], [1.04, 0.79], [1.04, 0.88], [1.04, 0.97],
[1.04, 1.06], [1.04, 0.96], [1.04, 1.05], [1.04, 1.14], [1.04, 1.13],
[1.13, 0.79], [[1.13, 0.88], [1.13, 0.97], [1.13, 1.06], e[1.13, 0.96],
[1.13, 1.05], [1.13, 1.14], [1.13, 1.13], [1.03, 0.79], [1.03, 0.88],
[1.03, 0.97], [1.03, 1.06], [1.03, 0.96], [1.03, 1.05], [1.03, 1.14],
[1.03, 1.13], [1.12, 0.79], [1.12, 0.88], [1.12, 0.97], [1.12, 1.06],
[1.12, 0.96], [1.12, 1.05], [1.12, 1.14], [1.12, 1.13], [1.2, 0.79],
[1.2, 0.88], [1.2, 0.97], [1.2, 1.06], [1.2, 0.96], [1.2, 1.05],
[1.2, 1.14], [1.2, 1.13]}

The dynamic programming algorithm calculation be-
gins with setting V 0

1...2 = [0, 0], and H0(V 0
1...2) = 1;

Then it continues by considering first stage or item,
i.e i = 1. The first selected state of first stage in
the set of possible state is V 1

1...2 = [0.51, 0.34] and
H1([0.51, 0.34]) = 0 is set for this state.

Procedure is started with x11...2 = [3, 2], since this is
the first stage of dynamic programming there is just
one state for the V 0

1...2 which is equal to [0,0], so it
should be checked if K([3, 2] = [0.51, 0.34] with using
equation 8.K[3, 2] = 0.17 ∗ [3, 2] = [0.51, 0.34] which
is equal to V 1

1...2 = [0.51, 0.34].

The next step is to check if H0([0, 0]) × p(z11→2 ≥
D11→2|[3, 2]) ≥ H1([0.51, 0.34]) is satisfied or not;
where H0([0, 0]) is equal to 1. According to equa-
tion 20, p(z11→2 ≥ D11→2|[3, 2]) has 2 component as
follows:

p(z11→2 ≥ D11→2|[3, 2]) =
∏2
t=1 p(z11→t ≥

D11→t|x1...11...t)

where for t=1, p(z11→1 ≥ D11|[3]) should be calcu-
lated.

p(z11→1 ≥ D11|[3]) = pb11(D11|∅)×(∑3
y11=0 p

y>
11 (D11|y11)× pc=11 (y11|[3])

)
Refer to the equation 15, pb11(D11 = 2|∅) = 1.

Calculation of py>11 (D11|y11) needs using equation 4
as well, and the result is py>11 (2|0) = 0, py>11 (2|1) =
0, py>11 (2|2) = 0.7225, py>11 (2|3) = 0.9393.

Use of equations 10, 11 and 12 to calculate
pc=11 (y11|[3]) results in pc=11 (0|[3]) = 0, pc=11 (1|[3]) = 0,
pc=11 (2|[3]) = 0, pc=11 (3|[3]) = 1.

At last:

p(z11→1 ≥ D11→1|[3]) = 1× (0× 0 + 0× 0 + 0.7225×
0 + 0.9393× 1) = 0.9393

The next is calculation of p(z11→2 ≥ D11→2|[3, 2])
value.

p(z11→2 ≥ D11→2|[3, 2]) =

3∑
D̃12=3−3(

pb12(D̃12|[3])
(∑2

y12=0 p
y>
12 (D̃12|y12)× pc=12 (y12|[2])

))
To compute the probabilities of actual requirements
(pb12(D̃12|[3])) of the period to equation 15, 16 and 17
are used. So

p(z11→2 ≥ D11→2|[3, 2]) = 0.6141×(1×0+1×0+1×
1)+0.3251×(0×0+0.85×0+0.9775×1)+0.0574×(0×
0+0×0+0.7225×1)+0.0034×(1×0+1×0+0×1) =
0.9734
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i t wit w̄it
∑i
j=1 w̄jt C −

∑2
j=i+1 wjt V it V̄it

1 1 0.51 1.02 1.02 1.02 0.51 1.02
2 0.34 0.68 0.68 0.75 0.34 0.68

2 1 0.18 0.45 1.47 1.2 0.69 1.2
2 0.45 0.71 1.39 1.2 0.79 1.2

Table 2 – Calculation of the components of dynamic programming

Finally, These calculation result in:

p(z11→2 ≥ D11→2|[3, 2]) = p(z11→1 ≥ D11→1|[3]) ×
p(z11→2 ≥ D11→2|[3, 2]) = 0.9393× 0.9734 = 0.9143

Which results in H1([0.51, 0.34]) = 0.9943.

It means that the H1([0.51, 0.34]) is updated to
0.9143. The steps of algorithm should be applied on
all other x11...2 for V 1

1..2 = [0.51, 0.34] and also for all
other V 1

1..2. The H1(V11..2) for all possible states of
producing item 1 is in the vector below:

H1(V 1
1..2) = [0.9143; 0.9337; 0.9381; 0.9822; 0.9868;

0.9878; 0.9966; 0.9975; 0.9977; 0.9994; 0.9996; 0.9996]

If we assume that periods are independent (single pe-
riod model) the released quantities for lots are:

x11 = 5, x12 = 3, x21 = 3, x22 = 6

When we consider this amount as production quanti-
ties in multi-period model the service level will be:
0.9913. We set this value as a lower bound for
Hi(Vi1..T ) and delete the states with H lower than
this bound for the next item in algorithm. So the
new set of states of stage 1 and their related H value
are:

V 1
1...2 ∈ {[0.85, 0.34], [0.85, 0.51], [0.85, 0.68], [1.02, 0.34],

[1.02, 0.51], [1.02, 0.68]}

H1(V 1
1..2) = [0.9966; 0.9975; 0.9977; 0.9994; 0.9996; 0.9996]

Since some of the V 1
1..2 are removed by the lower

bound, the V 2
1..2 must be also updated.

V 2
1...2 ∈ {[1.03, 0.79], [1.03, 0.88], [1.03, 0.97], [1.03, 1.06],

[1.03, 0.96], [1.03, 1.05], [1.03, 1.14], [1.03, 1.13], [1.12, 0.79],
[1.12, 0.88], [1.12, 0.97], [1.12, 1.06], [1.12, 0.96], [1.12, 1.05],
[1.12, 1.14], [1.12, 1.13], [1.2, 0.79], [1.2, 0.88], [1.2, 0.97],
[1.2, 1.06], [1.2, 0.96], [1.2, 1.05], [1.2, 1.14], [1.2, 1.13]}

Then all steps of algorithm should be done for the
next stage i = 2. The H2(V 2

1..2) values for all V 2
1..2

are in the vector below:

H2(V 2
1..2) = [0.9494; 0.9629; 0.9665; 0.9675; 0.9504;

0.9638; 0; 0.9506; 0.9867; 0.9904; 0.9914; 0.9916; 0.9876;
0.9914; 0; 0.9878; 0.9521; 0.9656; 0.9692; 0.9702; 0.9523;

0.9658; 0; 0.9523]

The optimal answer is max of H2(V 2
1..2), so:

customer service =H2([1.12, 1.06]) = 0.9916

And the released quantities are :

x11 = 5, x12 = 2, x21 = 3, x22 = 8

6.3 Analysis and comparison

In this study we develop a multi-item multi-period
stochastic lot sizing under yield and capacity uncer-
tainties,in literature the models proposed for lot siz-
ing under yield and capacity uncertainties are single-
period horizon such as (Dolgui et al. 2005; Schemeleva
et al. 2018, 2012),regarding to the literature which
indicate single-period method is popular in the prob-
lem, here,we compare our model which consider the
backlog/inventory in multi-period horizon production
with a single-period horizon one in which the condi-
tions and assumptions are the same. For compari-
son we use the example which is given in section 6.1.
The considered example include two periods. First
we solve the problem as a multi-period horizon and
then for single-period method we divided the horizon
to the two independent period and ignore the back-
log/inventory assumption.

The table 3 illustrates the results. In the table the
multi period method refers to the method in this
study assuming backlog/inventory and single period
method refers to model which ignore this assumption.

The table 3 indicates that the results for the first pe-
riod are precisely the same in the both methods,it is
found out easily, the reason is that there is no back-
log/inventory in the beginning of the first period.The
difference is in the second period. In multi-period
horizon, the probability of maximizing service level is
higher than single period. It should be noted, since
in the multi-period method the periods are depended
it’s not possible to compute the each period service
level.

If we produce as amount as optimal quantities in the
single-period horizon, in the multi-period horizon the
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multi period method single period method

items i
periods t 1 2 1 2

1 x11 5 x12 2 x11 5 x12 3
2 x21 3 x22 8 x21 3 x22 6

period service level - - 0/9926 0/9873

total service level 0/9913 0/9800

Table 3 – Results of comparison of two methods

probability of satisfying the demand, objective func-
tion value would be equal to 0.9913. The result shows
that the objective value (service level) wouldn’t be
optimal.

As it is mentioned before, here backlog/inventory
means that the production quantity is less or more
than enough, in other words if we may obtain more
good items than the demand quantity we keep re-
maining to the next period or if we may get less than
the demand quantity we add the backlogs to the de-
mand of the same item in the next period. That is
why we could get higher probability of service level
in comparison with single period horizon.

Overall, this work in comparison with the lot sizing
problem in literature results in a higher probability of
satisfying demands, but it needs more time to solve
the problem. It worth to mention the instance in this
study is very small, if this method is applied on a
larger problem the efficiency will be more obvious.

7 CONCLUSIONS

In this research, a multi-item multi-period lot sizing
problem for a single-machine production line consid-
ering random yield and random capacity was stud-
ied.In which the uncertainties rise from item imper-
fection and machine breakdowns. A predefined item
sequences and backlog/inventory allowance are as-
sumed in the production line. The problem is to es-
timate the optimal lot size of each item to maximize
the probability of having a sufficient number of good
quality items by the end of a given planning hori-
zon, i.e. maximize the overall customer service level.
Regarding the similarity of the problem to the well-
known knapsack problem, dynamic programming was
employed to estimate the optimal lot sizes to be pro-
duced. As we went deep into the arts this problem
has not been studied in the literature sufficiently spe-
cially for the multi-period horizon.

In order to validate the model and the proposed
optimization approach, a numerical example was il-
lustrated. Later, a comparison between this study,
multi-period stochastic lot sizing and single-period
stochastic lot sizing was drawn. The obtained re-
sults demonstrate the better efficiency of considering

multi-period than single-period setting which is effect
of considering backlog/inventory.

This research can be extended in some direction
as follow: Extending the approach to solve simi-
lar problems considering other objective functions
such as minimizing production cost and also Im-
plementing other optimization approaches such as
(meta)heuristics to empower the model to solve the
large problems.
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Güllü, R., E. Önol, and N. Erkip (1999). “Analy-
sis of an inventory system under supply uncer-
tainty”. In: International Journal of Production
Economics 59.1-3, pp. 377–385.

Haji, R., A. Haji, M. Sajadifar, and S. Zolfaghari
(2008). “Lot sizing with non-zero setup times for
rework”. In: Journal of Systems Science and Sys-
tems Engineering 17.2, p. 230.

Inderfurth, K. (2009). “How to protect against de-
mand and yield risks in MRP systems”. In: Inter-
national Journal of Production Economics 121.2,
pp. 474–481.

Jain, K. and E. A. Silver (1995). “The single period
procurement problem where dedicated supplier
capacity can be reserved”. In: Naval Research Lo-
gistics (NRL) 42.6, pp. 915–934.

Karlin, S., H. Scarf, and K. J. Arrow (1958). Stud-
ies in the mathematical theory of inventory and
production. Stanford University Press.

Khan, M., M. Jaber, and M. Wahab (2010). “Eco-
nomic order quantity model for items with im-
perfect quality with learning in inspection”. In:
International journal of production economics
124.1, pp. 87–96.

Li, Q., H. Xu, and S. Zheng (2008). “Periodic-review
inventory systems with random yield and de-
mand: Bounds and heuristics”. In: IIE Transac-
tions 40.4, pp. 434–444.

Lin, G. C. and D.-C. Gong (2006). “On a production-
inventory system of deteriorating items subject

to random machine breakdowns with a fixed re-
pair time”. In: Mathematical and Computer Mod-
elling 43.7-8, pp. 920–932.

Maddah, B. and M. Y. Jaber (2008). “Economic or-
der quantity for items with imperfect quality: re-
visited”. In: International Journal of Production
Economics 112.2, pp. 808–815.

Moon, I., B.-H. Ha, and J. Kim (2012). “Inventory
systems with variable capacity”. In: European
Journal of Industrial Engineering 6.1, pp. 68–86.

Papachristos, S. and I. Konstantaras (2006). “Eco-
nomic ordering quantity models for items with
imperfect quality”. In: International Journal of
Production Economics 100.1, pp. 148–154.

Salameh, M. and M. Jaber (2000). “Economic pro-
duction quantity model for items with imperfect
quality”. In: International journal of production
economics 64.1-3, pp. 59–64.

Schemeleva, K., X. Delorme, and A. Dolgui (2018).
“Evaluation of solution approaches for a stochas-
tic lot-sizing and sequencing problem”. In: Inter-
national Journal of Production Economics 199,
pp. 179–192.

Schemeleva, K., X. Delorme, A. Dolgui, and F. Gri-
maud (2012). “Multi-product sequencing and
lot-sizing under uncertainties: A memetic algo-
rithm”. In: Engineering Applications of Artificial
Intelligence 25.8, pp. 1598–1610.

Silver, E. (1976). “Establishing the order quantity
when the amount received is uncertain”. In: IN-
FOR: Information Systems and Operational Re-
search 14.1, pp. 32–39.

Singh, M., C. Abraham, and R. Akella (1988). “Plan-
ning for production of a set of components when
yield is random”. In: Fifth IEEE/CHMT In-
ternational Electronic Manufacturing Technol-
ogy Symposium, 1988,’Design-to-Manufacturing
Transfer Cycle. IEEE, pp. 196–200.

Teunter, R. H. and S. D. P. Flapper (2003). “Lot-
sizing for a single-stage single-product produc-
tion system with rework of perishable production
defectives”. In: Or Spectrum 25.1, pp. 85–96.

Wang, Y. and Y. Gerchak (1996a). “Continuous re-
view inventory control when capacity is vari-
able”. In: International Journal of Production
Economics 45.1-3, pp. 381–388.

— (1996b). “Periodic review production models
with variable capacity, random yield, and un-
certain demand”. In: Management science 42.1,
pp. 130–137.

— (2000). “Input control in a batch production sys-
tem with lead times, due dates and random
yields”. In: European Journal of Operational Re-
search 126.2, pp. 371–385.

Yano, C. A. and H. L. Lee (1995). “Lot sizing with
random yields: A review”. In: Operations Re-
search 43.2, pp. 311–334.


