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Ramp–cliff patterns visible in scalar turbulent time series have long been suspected
to enhance the fine-scale intermittency of scalar fluctuations compared to longitudinal
velocity fluctuations. Here, we use the wavelet transform modulus maxima method
to perform a multifractal analysis of air temperature time series collected at a
pine forest canopy top for different atmospheric stability regimes. We show that the
multifractal spectra exhibit a phase transition as the signature of the presence of strong
singularities corresponding to sharp temperature drops (respectively jumps) bordering
the so-called ramp (respectively inverted ramp) cliff patterns commonly observed
in unstable (respectively stable) atmospheric conditions and previously suspected to
contaminate and possibly enhance the internal intermittency of (scalar) temperature
fluctuations. Under unstable (respectively stable) atmospheric conditions, these ‘cliff’
singularities are indeed found to be hierarchically distributed on a ‘Cantor-like’ set
surrounded by singularities of weaker strength typical of intermittent temperature
fluctuations observed in homogeneous and isotropic turbulence. Under near-neutral
conditions, no such a phase transition is observed in the temperature multifractal
spectra, which is a strong indication that the statistical contribution of the ‘cliffs’
is not important enough to account for the stronger intermittency of temperature
fluctuations when compared to corresponding longitudinal velocity fluctuations.

Key words: atmospheric flows, fractals, intermittency

1. Introduction

Central to biosphere–atmospheric exchanges, a scalar advected by a turbulent
flow in the atmospheric surface layer, the so-called scalar turbulence, has been the
subject of increasing research interest at the frontiers of different disciplines of

† Email address for correspondence: Sylvain.Dupont@inrae.fr
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the geosciences and the environmental sciences, including meteorology, climatology,
hydrology, oceanography and ecology (Sreenivasan 1991; Katul et al. 2013). In
particular, scalar turbulence at the vegetation canopy–atmosphere interface has
attracted a great deal of attention in the past decades (Finnigan 2000; Harman &
Finnigan 2008; Belcher, Harman & Finnigan 2012), as it explains heat and mass
exchanges between the canopy and the above atmosphere.

Compared to surface boundary-layer flow, canopy flow (velocity) shows some
similarities with a plane mixing-layer flow resulting from the interaction between
a slower and a faster flow, within and above the canopy, respectively, where
Kelvin–Helmholtz instabilities develop, reducing the flow anisotropy (Raupach,
Finnigan & Brunet 1996; Katul & Chang 1999). Hence, canopy turbulence is
a combination of mixing-layer-type coherent structures scaling with the vorticity
thickness at the canopy top, surface-layer-type coherent structures whose length
scales vary with distance from the surface and residual small wake eddies developing
behind canopy elements (Poggi et al. 2004; Dupont & Patton 2012). Near the
canopy top, velocity fluctuations exhibit scale invariance from scales smaller than the
mixing-layer-type coherent structures where turbulence is produced, to scales larger
than the dissipation scale; while deeper within the canopy, this scale invariance is
often weakened by the presence of specific-scale wake eddies developing behind
canopy geometries with a dominant length scale such as a tree trunk diameter (Poggi
et al. 2004; Cava & Katul 2008; Dupont et al. 2012). With thermal instability, the
canopy-top wind shear is weakened, and the shear-driven eddies are progressively
replaced by buoyantly driven eddies in unstable conditions or damped in stable
stratification (Dupont & Patton 2012).

Similar to scalar turbulence in common turbulent flows, the time series of active
and passive scalar fields collected near the canopy top (e.g. temperature, particle or
chemical species concentration, etc.) show both a larger intermittency at fine scales as
compared to the longitudinal wind velocity (Schmitt et al. 1996), and the ubiquitous
presence of ramp–cliff patterns (Paw U et al. 1992; Katul et al. 2006, 2013). The
larger intermittency manifests itself by more intense and sporadic scalar fluctuations
at small scales, leading statistically to a larger spectrum of singularities (multifractals),
therefore contradicting the famous Kolmogorov (Kolmogorov 1941)–Obukhov
(Obukhov 1949)–Corrsin (Corrsin 1951) (KOC) universal scaling of scalar fluctuations
at high moment order q, i.e. for large fluctuations. The ramp–cliff patterns refer
to gradual rises (respectively decreases) with weak scalar fluctuations over scales
commensurate with the canopy height, followed by relatively sharp drops (respectively
jumps) depending on whether the canopy is a source (respectively a sink) of the scalar
under consideration. These structures have been the subject of intensive research due
to their significant contribution to scalar turbulent fluxes (Gao, Shaw & Paw U 1989;
Katul et al. 2013). Initially interpreted as the signature of convective plumes (Taylor
1958), these ramp–cliff patterns have been systematically observed from field and
numerical experiments irrespective of the sign of the thermal stability, and whether
the canopy is a source or a sink of the scalar (Gao et al. 1989; Paw U et al. 1992;
Fitzmaurice et al. 2004). These patterns appear related to the coherent structures
developing at the canopy top, corresponding to the anisotropic forcing of scalar
fluctuations. By analogy with the surface renewal theory (Higbie 1935), a ramp–cliff
pattern observed in scalar time series is interpreted as the result of a parcel of fluid
coming from the above bulk fluid that remains in contact with the canopy top where
scalar sources (sinks) are located, increasing (decreasing) progressively the amount of
scalar in the fluid parcel, before being replaced by another fluid parcel (Paw U et al.
1995; Katul et al. 2006).
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Phase transition in the temperature multifractal spectra

These ramp–cliff patterns are usually invoked as the possible cause of the larger
fine-scale intermittency of scalar turbulence (Sreenivasan 1991; Sreenivasan & Antonia
1997; Shraiman & Siggia 2000; Warhaft 2000; Falkovich, Gawedzki & Vergassola
2001; Katul et al. 2003; Zorzetto, Bragg & Katul 2018), and thus the breakdown
of the KOC scaling law of scalar fluctuations. Direct numerical simulations (Frisch,
Mazzino & Vergassola 1998; Celani et al. 2000; Celani, Mazzino & Vergassola 2001;
Iyer et al. 2018) and laboratory experiments (Warhaft 2000; Moisy et al. 2001) have
further evidenced the role of cliff structures in saturating the scaling exponent of scalar
fluctuations to a constant value for high moment order q, the so-called phenomenon
of intermittency saturation. Hence, conversely to the traditional picture of the scale
by scale cascade of energy from the large-scale anisotropic forcing (integral scale) to
the viscous dissipation scale, with a rapid loss of the forcing anisotropic character
during the process, in the presence of ramp–cliff structures, it is often suggested that
the cascading process may be short circuited with some coupling between large and
small scales, the latter still carrying some signature from the forcing scale (Katul et al.
2003; Zorzetto et al. 2018).

Despite considerable theoretical (Lvov, Procaccia & Fairhall 1994; Chertkov 1997;
Pumir, Shraiman & Siggia 1997; Yakhot 1997; Balkovsky & Lebedev 1998; Falkovich
et al. 2001), numerical (Meneveau, Lund & Cabot 1996; Higgins, Parlange &
Meneveau 2003; Watanabe & Gotoh 2004; Xu et al. 2014) and experimental efforts
(Sreenivasan 1991; Frisch 1995; Sreenivasan & Antonia 1997; Pope 2000; Warhaft
2000; Moisy et al. 2001), some debate remains concerning the statistical contribution
of the ramp–cliff structures to the scalar intermittency at fine scales. In particular, an
important issue left open is, to which extent these coherent structures indeed contribute
to the larger deviation from the KOC universal scaling of the structure function
exponent of scalars compared to that of the longitudinal velocity, larger deviation
indicating a more intermittent scalar bulk turbulence field. In other words, does the
presence of ramp–cliff patterns in scalar signals explain the larger intermittency at
fine scales of the scalar fluctuations compared to that of the longitudinal velocity
fluctuations?

Here, the impact of ramp–cliff structures on the fine-scale intermittency of scalar
fluctuations is experimentally investigated using a high-frequency air temperature
(θ ) measured at the top of a forest canopy for different thermal stratifications, and
compared with the intermittency of the longitudinal velocity fluctuations (u) recorded
at the same location. To that purpose, a multifractal analysis of the θ and u signals
is performed in order to characterize the scaling properties of θ and u fluctuations
according to the magnitude of the fluctuations (moment order), and to highlight the
strength of the strongest singularities (cliff) across scales. The signal singularities are
located using a wavelet transform and the statistical singularity strengths are deduced
from the slopes of the local maxima of the wavelet transform modulus across scales
using the wavelet transform modulus maxima (WTMM) method.

The structure of the paper is as follows. In § 2, the measurements and multifractal
analysis are described. In § 3, the multifractal characteristics (scaling exponents,
singularity spectra) of the air temperature (θ ) and longitudinal velocity (u) at canopy
top are compared for different stability regimes, with observation of the saturation
of the scaling exponent of θ for high moment order and non-neutral conditions.
Then, in § 4, we discuss this saturation behaviour in regards to the presence of cliff
singularities in the signal, suggesting an analogy with an ordered–disordered phase
transition at a critical moment order, where the ordered phase is dominated by ‘cliff’
singularities and the disordered phase by a large spectrum of singularity strengths.
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S. Dupont and others

The absence of saturation in near-neutral conditions while θ fluctuations are still more
intermittent than u fluctuations leads us to conclude that the statistical contribution
of the ‘cliffs’ is not significant enough to explain the stronger intermittency of θ
fluctuations. Finally, in § 5 the outcomes of the study are summarized and concluding
remarks presented.

2. Material and method
2.1. Measurements

The air temperature and the three wind velocity components were measured during the
summer 2016 within the atmospheric surface layer, near the top of a maritime pine
forest (z= 9.85 m), using a three-dimensional sonic anemometer (Gill R3) sampling
at 20 Hz. The forest plot was located at the Salles Integrated Carbon Observation
Station (ICOS) (44◦29′ N, 0◦57′ W), in Les Landes region, in southwestern France.
The forest was characterized by a mean tree height of h = 8.4 m and a leaf area
index of approximately 3.2. This latter parameter indicates a canopy sufficiently
dense to induce a mixing-layer-type flow at its top. The ground surface was flat in
all directions, and the forest was wide enough to have negligible fetch effect in all
wind directions. The recorded wind velocity components were rotated horizontally so
that the longitudinal velocity (u) represents the horizontal component along the mean
wind direction. To account for a possible error in the vertical orientation of the sonic
anemometer, a second rotation was performed around the transverse axis to ensure a
zero mean vertical velocity (w). The air temperature (θ ) was deduced from the sonic
anemometer speed of sound.

Following standard quality controls, a total of 27 time series (runs), of 217 data
points each (∼109 min), were selected for both θ and u. These runs covered
different thermal stratifications, also referred to as stability regimes, ranging from
unstable, near neutral to stable conditions, where the stability was defined from the
stability parameter ζ = z/L at the canopy top, as commonly used in atmospheric
surface-layer studies. Here, L is the Obukhov length (Obukhov 1946) defined as
L = −u3

∗
T/(κgw′T ′), where u∗ is the friction velocity characterizing the momentum

absorbed by the vegetated surface, T is the air temperature, g the gravitational
acceleration and w′T ′ the kinematic sensible heat flux; L characterizes the height above
which buoyant production (or destruction) of turbulent kinetic energy dominates the
mechanical production. The sign of L reflects the direction of the heat flux, positive
for daily unstable conditions with an upward heat flux, and negative for nocturnal
stable conditions with a downward heat flux. In near-neutral conditions, the thermal
stratification of the atmosphere is negligible and |L|→∞, leading to |ζ |→ 0. For the
range of stability conditions considered here, the mechanical production of turbulence
is expected to always dominate the buoyant production or destruction.

To both investigate high-order moments and preserve turbulence stationarity, a
time series length compromise of ∼109 min was reached. The time series included
approximately 200 to 1400 integral scales of u and θ (Lu and Lθ , respectively)
and 2300 to 7000 integral scales of w (Lw), varying with the stability. The wavelet
transform of the signals was performed with the third derivative of the Gaussian
wavelet, as described further, to remove the signal large-scale trends (third-order
polynomial trends). To further ensure the similarity of turbulent eddies along the time
series and their stationarity, we only kept those with a small variability of ζ . Unstable
and stable runs were also selected under clear sky conditions and at the same time
during the day, around midday and early night, respectively, to keep close radiation
forcing and atmospheric boundary-layer conditions for runs of the same stability.
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Phase transition in the temperature multifractal spectra

The Taylor hypothesis of frozen turbulence is usually applied to local point
measurements to convert temporal to spatial scales (Kaimal & Finnigan 1994),
assuming that velocity fluctuations are much smaller than the mean velocity of the
main eddies (Uc), i.e. σ 2

u /U
2
c << 1 with σu the standard deviation of the longitudinal

velocity (Lin 1953). Even if the well-known mixing-layer-type flow prevailing at
the canopy top leads to velocity fluctuations of the same order as the mean wind
velocity (Uh), the mean convection velocity of the main eddies (Uc) is larger than Uh,
Uc≈ 1.8 Uh (Raupach et al. 1996), which extends the validity the Taylor hypothesis at
the canopy top (Kaimal & Finnigan 1994). The squared turbulence intensity relative
to the squared convection velocity varies from 0.04 in stable conditions up to 0.18
for the most unstable runs (table 1), reaching the limit of applicability of the Taylor
hypothesis for these latter runs. To overcome this limitation, we normalized the time
scale with Lw (the integral scale of the vertical velocity w) (Zorzetto et al. 2018),
assuming that the distortion of the main advected eddies impacted similarly the time
scale and Lw, Lw being much smaller than Lu (table 1).

The ratio between the integral scales of u and w (Lu/Lw) is approximately 7.5,
exhibiting the anisotropy of the large-scale wind motions at the canopy top, and is
intermediate between the expected values in surface-layer and mixing-layer flows
(Katul & Chang 1999). This value of 7.5 is close to the ratio observed by Katul &
Chang (1999) for a pine forest, showing the generality of our canopy flow.

2.2. Multifractal analysis
The WTMM method was used to perform the multifractal analysis. This method
has proved very efficient in estimating scaling exponents and singularity spectra of
complex non-stationary time series related to various research areas, including fully
developed turbulence (Muzy, Bacry & Arneodo 1994; Arneodo, Manneville & Muzy
1998c; Arneodo, Muzy & Sornette 1998d; Delour, Muzy & Arneodo 2001; Arneodo
et al. 2002; Audit et al. 2002; Arneodo et al. 2003; Khalil et al. 2006; Arneodo
et al. 2008; Roland et al. 2009; Roux et al. 2009; Arneodo et al. 2011). Compared
to the structure function method, the WTMM method allows one to extract the entire
range of non-oscillating singularities (cusp type) present in the signal provided that
the wavelet is sufficiently smooth and localized in time and frequency, and with a
sufficient number of vanishing moments (Muzy, Bacry & Arneodo 1993). Oscillating
singularities (chirp type) are not expected or are negligible in our turbulence data
as confirmed by Lashermes et al. (2008) and Abry, Roux & Jaffard (2011) on
wind-tunnel turbulence data.

The strengths of the singularities of the wind velocity and air temperature signals
f were computed from their wavelet transform (WT). The WT can be compared to a
mathematical microscope (Muzy, Bacry & Arneodo 1991; Muzy et al. 1994; Arneodo,
Bacry & Muzy 1995) whose lenses are a family of wavelets ψ with different zooming
factors, characterized by the scale parameter a, which are shifted along the signal with
a translation parameter b. The WT is well suited for the analysis of complex non-
stationary time series such as those found in the atmosphere. The continuous wavelet
transform of the function f (t) is defined as

Tψ [ f ](b, a)=
1
|a|

∫
f (t)ψ

(
t− b

a

)
dt, (2.1)

where f is here either u or θ , Tψ [ f ](b, a) is the wavelet coefficient that characterizes
the degree of correlation between the signal f and the wavelet at the location b and
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S. Dupont and others

Run ζ L Uh u∗ H σ 2
u /U

2
c σw σθ Lu Lw Lθ D(h= 0) qcrit

1 −1.13± 0.26 −9.0 0.9 0.31 314.0 0.18 0.43 1.02 27.23 5.10 19.32 0.00± 0.05 3.4
2 −0.59± 0.17 −17.9 1.4 0.41 393.7 0.17 0.56 1.11 27.83 2.78 9.43 0.10± 0.05 2.9
3 −0.53± 0.12 −19.5 1.3 0.37 259.1 0.12 0.51 0.84 15.56 2.92 8.28 0.10± 0.05 2.7
4 −0.52± 0.13 −19.9 1.4 0.39 289.1 0.13 0.50 0.91 15.17 2.81 9.14 0.35± 0.05 1.8
5 −0.33± 0.32 −50.7 1.6 0.55 367.4 0.13 0.61 0.94 12.23 1.88 11.48 0.15± 0.05 2.6
6 −0.31± 0.10 −34.1 1.3 0.39 162.7 0.12 0.47 0.53 15.67 2.75 16.86 0.00± 0.05 3.7
7 −0.29± 0.06 −34.6 1.9 0.52 394.9 0.11 0.64 1.06 12.47 1.94 11.17 0.37± 0.05 1.7
8 −0.29± 0.09 −35.8 1.7 0.51 366.4 0.14 0.61 0.99 19.06 2.22 7.03 0.30± 0.05 2.0
9 −0.27± 0.05 −37.6 1.8 0.52 364.5 0.12 0.65 0.96 22.65 1.82 8.06 0.40± 0.05 1.6
10 −0.26± 0.19 −58.8 2.1 0.60 392.3 0.10 0.67 1.00 8.56 1.37 9.15 0.10± 0.05 3.0
11 −0.25± 0.10 −47.7 2.1 0.53 301.1 0.12 0.64 0.92 16.99 1.52 16.42 0.32± 0.05 2.4
12 −0.19± 0.04 −54.6 2.0 0.59 368.2 0.12 0.68 0.98 8.76 1.85 7.72 0.16± 0.05 2.0
13 −0.16± 0.04 −62.9 2.2 0.65 405.3 0.10 0.70 1.03 7.66 1.41 14.64 0.49± 0.05 1.4
14 −0.16± 0.02 −64.1 1.9 0.57 265.7 0.10 0.61 0.78 8.88 1.53 12.98 0.15± 0.05 2.9
15 −0.15± 0.04 −68.5 1.6 0.41 93.2 0.10 0.46 0.39 11.52 2.10 15.44 — —
16 −0.15± 0.10 −84.0 2.3 0.68 385.2 0.11 0.72 0.87 6.66 1.33 5.92 — —
17 −0.14± 0.02 −70.1 2.4 0.68 433.6 0.10 0.78 1.01 7.74 1.39 5.96 — —
18 −0.13± 0.01 −78.4 2.6 0.68 375.9 0.10 0.76 0.91 9.14 1.29 6.72 — —
19 −0.11± 0.01 −88.3 2.6 0.65 301.9 0.10 0.72 0.84 7.56 1.14 8.41 — —
20 −0.10± 0.08 44.0 3.6 0.62 206.4 0.12 0.62 1.86 63.73 1.50 63.28 — —
21 −0.08± 0.02 −135.9 2.9 0.76 307.1 0.09 0.84 0.76 4.39 0.94 6.03 — —
22 −0.06± 0.01 −166.8 2.8 0.72 207.8 0.08 0.81 0.50 6.16 1.10 12.51 — —
23 −0.06±< 0.01 −178.0 2.5 0.66 147.9 0.08 0.73 0.39 6.26 1.25 13.73 — —
24 0.26± 0.15 54.7 1.1 0.23 −23.5 0.06 0.27 0.19 5.47 1.34 8.62 0.40± 0.05 1.5
25 0.64± 0.32 17.6 1.1 0.18 −31.3 0.03 0.21 0.29 4.35 1.12 3.82 0.32± 0.05 2.0
26 0.78± 1.04 35.2 1.0 0.19 −20.9 0.05 0.24 0.21 5.79 1.32 5.80 0.20± 0.05 2.3
27 0.98± 0.81 19.7 0.9 0.14 −15.6 0.04 0.16 0.24 6.99 1.36 30.44 0.40± 0.05 1.5

TABLE 1. Main characteristics of the selected runs: the atmospheric stability parameter ζ ,
the Obukhov length L (m), the mean wind speed at canopy top Uh (m s−1), the friction
velocity u∗ (m s−1), the sensible heat flux (W m−2), the turbulent intensity σu/Uc (where
σu is the standard deviation of the longitudinal velocity and Uc the eddy convection
velocity), the vertical velocity standard deviation σw (m s−1), the air temperature standard
deviation σθ (K), the integral time scale of the longitudinal velocity Lu (s), the integral
time scale of the vertical velocity Lw (s), the integral time scale of the air temperature
Lθ (s), the fractal dimension of the strong cliff singularities (D(h = 0)) and the critical
value of q at the phase transition (qcrit).

for the wavelet scale a; ψ denotes the complex conjugate of ψ . In our study, a third
derivative of the Gaussian function was chosen as the wavelet (in which case the
complex conjugate of ψ identifies to ψ). This wavelet is well localized in both space
and frequency and is well suited to detecting discontinuities like cliffs in signals, as
demonstrated by its extensive use with geophysical or medical signals (e.g. Muzy et al.
1994; Arneodo et al. 1995; Venugopal et al. 2006; Gerasimova et al. 2014; Attuel
et al. 2018). More importantly, this wavelet allows us to remove polynomial trends
of order less than or equal to three from the function f (t), which is important when
dealing with long meteorological time series.

The singularities of the signal f are then localized from the maximum lines of
the wavelet transform modulus |Tψ [ f ](t, a)| of f , connected across scales a at time
t as a→ 0+. The strength of these singularities, also called local Hölder exponents
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Phase transition in the temperature multifractal spectra

h(t) (Mallat & Hwang 1992), are precisely the scaling exponents of the WTMM line
pointing at the singularity. These lines define the wavelet transform skeleton L(a).

Under the canonical multifractal formalism, the distribution of h values given by the
singularity spectrum D(h) characterizes the set of singularities, and hence the fractal
properties of the signal; D(h) is computed through a Legendre transformation (2.2)
of the scaling exponent τ(q) of the partition functions Z(q, a) (2.3) restricted to the
subset of points of the WTMM skeleton L(a) at each scale a

D(h)=min
q
[qh− τ(q)], (2.2)

Z(q, a)=
∑

l∈L(a)

[
sup

(t,a′)∈l,a′6a
|Tψ [ f ](t, a′)|

]q

∼ aτ(q), (2.3)

where q ∈ R is the moment order. To avoid numerical instabilities inherent to the
Legendre transform, the expectation values h(q, a)= ∂[ln(Z(q, a))]/∂q and D(q, a)=
q∂[ln(Z(q, a))]/∂q− ln(Z(q, a)) were computed first (Arneodo et al. 1995). Then, the
slopes of h(q, a) and D(q, a) versus ln a gave h(q) and D(q), and therefore the D(h)
singularity spectrum as a curve parametrized by q.

The maximum moment order q chosen in our analysis was based on (i) the
convergence of the moments of the wavelet coefficients along the time series for
scales within the scaling regime, and (ii) the quality of the scaling of the partition
function log2(Z(q, a)) versus the normalized scale log2(a/Lw). Figure 1 shows an
example of convergence with time of the moment of order 6 of the u and θ wavelet
coefficients at two scales delimiting the scaling regime, for an unstable, near neutral
and stable run. The convergence appears relatively well attained during the last
10 % of the time series, with variations lower than ±10 % of the final value. This
accuracy validation of the choice of the moment order is similar to the convergence
method proposed by Anselmet et al. (1984). Analysing the scaling of the partition
functions for moment order q up to 8 demonstrated that the range of scales for a
valid estimation of the scaling exponent was drastically shortened for q larger than 6.
The maximum moment order q was fixed to 6.

Finally, figures 2 to 4 illustrate the wavelet transform analysis of portions of the
θ and u time series at the top of the canopy for an unstable, a near neutral and a
stable case, runs 7, 19 and 27, respectively. Unlike the u signal, the θ signal exhibits
ramp–cliff structures in non-neutral cases. In the unstable case, these structures
correspond to gradual rise of air temperature with weak scalar fluctuations over
scales commensurate with the integral scale, followed by a relatively sharp drop. As
expected, in the stable case, these ramp–cliff patterns in the θ signal are inverted
due to the inversion of the temperature vertical gradient. In the near-neutral case,
the ramp–cliff structures are not as well defined for this transitional regime between
uprising and decreasing ramps. The maximum lines of the wavelet transform modulus
define the wavelet transform skeleton (figures 2–4c). The cliff singularities appear
on the wavelet transform modulus as cone-like structures pointing toward the signal
discontinuities or singularities at the smallest scales, while the ramp structures
give a smaller and smoother wavelet transform modulus (weaker singularities)
(figures 2–4b). The strongest cliff singularities visible on the non-neutral cases have
the longest maximum lines, crossing all scales, with a slow decrease of the modulus
|Tψ [θ ](t, a)| along their maximum lines as a → 0+, leading to near-zero Hölder
exponents. Interestingly, the time-scale distributions of the wavelet transform modulus
of both the θ and u signals show some branching structures, starting from large
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1.2

u for log2(a/Lw) = -3.2
u for log2(a/Lw) = +1.8
œ for log2(a/Lw) = -3.2
œ for log2(a/Lw) = +1.8

(÷ 105)
1.00.80.6

Data number
0.40.2

5
Stable condition (run 27)(c)

4
3
2
1
0

1.2

u for log2(a/Lw) = -3.6
u for log2(a/Lw) = +0.4
œ for log2(a/Lw) = -3.6
œ for log2(a/Lw) = +0.4

(÷ 105)
1.00.80.60.40.2

5
Near-neutral condition (run 19)(b)

4
3
2
1
0

1.2

u for log2(a/Lw) = -4.4
u for log2(a/Lw) = +0.6
œ for log2(a/Lw) = -4.4
œ for log2(a/Lw) = +0.6

(÷ 105)
1.00.80.60.40.2

5
Unstable condition (run 7)(a)

4
3
2
1
0

FIGURE 1. Convergence with time of the moment order 6 of the u and θ wavelet
coefficients at two scales delimiting the scaling regime, for an unstable (a), near neutral
(b) and stable (c) run.

scales where eddies divide asymmetrically into smaller ones, and so on, as depicted
in figures 2(b–e) and 3(b–e) through the imbrication of cone-like structures related
to abrupt changes in the signals at different scales. This hierarchical distribution of
the wavelet transform modulus is similar to the branching structure obtained from a
non-homogeneous Cantor set, resulting from deterministic hierarchical construction
rules (see figure 1 in Argoul et al. (1989)). This represents a visual evidence that
the singularities appear hierarchically distributed on a ‘Cantor-like’ set, suggesting
the presence of a multiplicative cascading process, as previously reported by Argoul
et al. (1989) from a velocity field of wind-tunnel turbulence at very high Reynolds
numbers.

3. Results
3.1. Multifractal characteristics of θ and u

The WTMM analysis of the air temperature time series is illustrated in figure 5 for
the unstable run 7. It reveals two scaling regimes over two successive ranges of scales
within the inertial convective subrange (a< Lθ ), for q=−0.5 to 6 (figure 5a–c). This
is visible from the log–log plot of the partition function Z(q, a) as a function of the
scale a. The first scaling regime occurs at scales smaller than Lw, while the second
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FIGURE 2. Wavelet transform analysis of an air temperature time series (θ(t)) and a
longitudinal wind velocity time series (u(t)) of length ∼ 24 integral scales, measured
at the canopy top in an unstable atmospheric regime (run 7 in table 1). (a,d) θ and u
time series on a 150 s interval, the ramp–cliff patterns are visible in θ(t). (b,e) Moduli
|Tψ [θ ](t, a)| and |Tψ [u](t, a)| of the wavelet transforms of θ(t) and u(t), respectively.
(c, f ) Wavelet transform skeleton defined by the WTMM lines. The colour of the maximum
lines corresponds to |Tψ |. Panels (b,c,e, f ) have the same colour map coding. The scale a
is normalized by the integral scale of the vertical velocity (Lw).

scaling regime extends up to Lw. Hereafter, these regimes are referred to as scaling I
and II.

The scaling exponent τI(q) obtained for the scaling regime I from the linear
regression fit of log2(Z(q, a)) versus log2(a), has a nonlinear convex increasing form.
This form is well approximated by a quadratic spectrum τI(q)=−cθ0 + cθ1q− cθ2q2/2!
(figure 5d), where cθ0, cθ1, and cθ2 are fitting coefficients (table 2). This spectrum
τI(q) fits well with that obtained for temperature in homogeneous and isotropic flows
of the Modane wind tunnel and other experiments (Schmitt 2005). The nonlinear
form of τI(q) is corroborated by the dependence of the scaling behaviour of h(q, a)
versus q, suggesting a range of singularity exponents (h) in the signal. Hence, the
singularity spectrum DI(h) exhibits a single humped shape over a finite range of
Hölder exponents, varying from hmin = 0.1 to hmax = 0.5 for q decreasing from 6 to
−0.5 (figure 5e). This represents the signature of the multifractality of the temporal
fluctuations of θ(t).

The scaling regime II exhibits a saturation of τII(q) for high q values: τsat ∼−0.37
(figure 5d). Interestingly, τII(q) and DII(h) spectra are similar to τI(q) and DI(h)
spectra for low q values, respectively (figure 5d–e). Looking closer, the slopes of
log2(ZII(q, a)), hII(q, a) and DII(q, a) versus log2(a/Lw) at low q values appear as
the continuation of the slopes of the scaling regime I (figure 5a–c). Interestingly,
the cross-over of h(q, a) between the scaling regimes I and II evolves with q, the
slope of h(q, a) decreases from the larger scale of the scaling regime II, and invades
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FIGURE 3. Same as figure 2 but for a stable atmospheric regime (run 27 in table 1).
The air temperature time series (θ(t)) is approximately 20 integral scales long.
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FIGURE 4. Same as figure 2 but for a near-neutral atmospheric regime (run 19 in
table 1). The air temperature time series (θ(t)) is approximately 49 integral scales long.

progressively the smaller scales with increasing q, reflecting the dominance of strong
singularities (h = 0) for high q values (figure 5b). These strong singularities are the
signature of the cliff patterns observed in figure 2. Concomitantly, DII(h) extends
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FIGURE 5. Multifractal analysis of the canopy-top air temperature under an unstable
atmospheric regime (run 7 in table 1) using the WTMM method. (a) Partition function
log2(Z(q, a)) versus log2(a/Lw). (b) log2(h(q, a)) versus log2(a/Lw). The black dashed line
delimits the progressive invaded scaling regime II toward smaller scales with increasing
q. (c) log2(D(q, a)) versus log2(a/Lw). (d) The scaling functions τ(q) versus the moment
order q estimated by linear regression fit of log2(Z(q, a)) versus log2(a) for both scaling
regions, and compared with τ(q) of the isotropic–homogeneous turbulent flows of Modane,
compiled experiments (Schmitt 2005) and prediction from KOC turbulence theory. The
scaling function τ(q) obtained for the longitudinal wind velocity (u) is also presented and
compared with the Modane values. (e) The singularity spectra D(h) versus the singularity
strength h obtained from linear regression fits of log2(h(q, a)) and log2(D(q, a)) versus
log2(a). The red dashed line represents the linear extension of DII(h) fall off towards
+0.37 for h = 0 (DII(h = 0) = −τsat) with a slope equal to qcrit. For clarity, error bars
on D(h) are partially represented. In (a–c), the two yellow boxes delimit the two scaling
regimes I and II. The green solid lines represent the linear fit for the scaling regime I. The
dashed green lines in (b) extend the linear fit obtained for the scaling regime I into the
scaling regime II to highlight the saturation propagation due to ‘cliff’ singularities with
decreasing scale and increasing q.

toward smaller h than DI(h) as the strong cliff singularities become statistically
significant for this scale range.
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Run Longitudinal velocity Air temperature
cu

0 cu
1 cu

2 cθ0 cθ1 cθ2
1 1.00±< 0.01 0.38±< 0.01 0.03±< 0.01 0.99± 0.01 0.48± 0.03 0.11± 0.02
2 1.00±< 0.01 0.40±< 0.01 0.04±< 0.01 0.98± 0.01 0.45± 0.03 0.10± 0.02
3 1.01±< 0.01 0.34±< 0.01 0.04±< 0.01 0.99± 0.01 0.46± 0.02 0.10± 0.01
4 0.99±< 0.01 0.36± 0.01 0.03± 0.01 0.99± 0.01 0.43± 0.02 0.09± 0.01
5 1.00±< 0.01 0.43±< 0.01 0.04±< 0.01 1.00± 0.01 0.46± 0.02 0.11± 0.01
6 1.00±< 0.01 0.40±< 0.01 0.04±< 0.01 1.00± 0.01 0.43± 0.01 0.08± 0.01
7 1.00±< 0.01 0.41±< 0.01 0.05±< 0.01 0.99± 0.01 0.44± 0.02 0.09± 0.01
8 1.00±< 0.01 0.40±< 0.01 0.05±< 0.01 0.98± 0.01 0.45± 0.02 0.10± 0.01
9 1.00±< 0.01 0.42±< 0.01 0.05±< 0.01 0.99± 0.01 0.44± 0.02 0.09± 0.01
10 1.00±< 0.01 0.43±< 0.01 0.04±< 0.01 0.98± 0.02 0.43± 0.02 0.09± 0.01
11 0.99±< 0.01 0.40±< 0.01 0.03±< 0.01 1.00± 0.01 0.42± 0.02 0.11± 0.02
12 1.01±< 0.01 0.41±< 0.01 0.03±< 0.01 0.99± 0.01 0.43± 0.02 0.09± 0.01
13 1.00±< 0.01 0.43±< 0.01 0.05±< 0.01 0.99± 0.01 0.40± 0.01 0.07± 0.01
14 1.00±< 0.01 0.43±< 0.01 0.05±< 0.01 0.99± 0.01 0.43± 0.02 0.09± 0.01
15 1.01±< 0.01 0.39±< 0.01 0.04±< 0.01 0.99± 0.01 0.39± 0.01 0.08± 0.01
16 1.00±< 0.01 0.44± 0.01 0.04±< 0.01 0.98± 0.01 0.41± 0.02 0.07± 0.01
17 1.00±< 0.01 0.43±< 0.01 0.04±< 0.01 0.99± 0.01 0.43± 0.02 0.10± 0.01
18 1.01±< 0.01 0.42±< 0.01 0.04±< 0.01 0.98± 0.01 0.42± 0.02 0.09± 0.01
19 1.00±< 0.01 0.41±< 0.01 0.04±< 0.01 0.98± 0.01 0.40± 0.02 0.08± 0.01
20 1.00±< 0.01 0.40± 0.01 0.03±< 0.01 0.98± 0.01 0.39± 0.02 0.07± 0.01
21 1.00±< 0.01 0.41±< 0.01 0.04±< 0.01 0.99± 0.01 0.41± 0.02 0.10± 0.01
22 1.00±< 0.01 0.44± 0.01 0.04±< 0.01 0.99± 0.01 0.41± 0.01 0.09± 0.01
23 1.00±< 0.01 0.43±< 0.01 0.05±< 0.01 1.00± 0.01 0.43± 0.01 0.09± 0.01
24 1.00±< 0.01 0.38±< 0.01 0.03±< 0.01 0.98± 0.01 0.44± 0.02 0.08± 0.01
25 1.00±< 0.01 0.39±< 0.01 0.02±< 0.01 0.98±< 0.01 0.44± 0.01 0.10± 0.01
26 1.00±< 0.01 0.37±< 0.01 0.04±< 0.01 0.99± 0.01 0.44± 0.01 0.09± 0.01
27 0.99±< 0.01 0.36±< 0.01 0.03±< 0.01 0.98±< 0.01 0.46± 0.01 0.10± 0.01

TABLE 2. Coefficients c0, c1 and c2 of the polynomial expansion of τ(q) (τ(q)=−c0 +

c1q− c2q2/2!) obtained from the WTMM multifractal analysis of the longitudinal velocity
u and air temperature θ (scaling I), for the 27 selected runs (table 1).

Unlike θ , the WTMM analysis of u for run 7 reveals only one scaling regime
covering the two scaling regimes I and II of θ (figure 6). The τ(q) spectrum of
u fits well with that observed for u in the Modane wind-tunnel experiment, with
no sign of saturation. Importantly, as in Modane and in Antonia et al. (1984), u
fluctuations exhibit a lower intermittency coefficient (cu

2 = 0.04± < 0.01 on average)
than θ fluctuations (cθ2 = 0.09± 0.01 on average) (table 2).

These behaviours of the multifractal spectra of θ and u fluctuations have been
systematically observed in all our runs under unstable conditions (ζ 6 −0.15). The
same analyses performed only on the half-length of the signals exhibited the same
behaviours, showing that the saturation of the τ(q) spectrum of θ is not an artefact
of the finite length of the signals (result not shown). In stable conditions (ζ > 0.26),
similar behaviours were also observed although the ramp–cliff patterns in the θ signal
were inverted (see figures 7 and 8 for the run 27). However, in near-neutral conditions,
the temperature multifractal spectra exhibit only one scaling regime up to Lw, as for
u, without sign of saturation of τ(q) (see figure 8 for run 19). The spectra τ(q) of
θ and u are both in agreement with those obtained from the Modane wind-tunnel
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FIGURE 6. Multifractal analysis of the canopy-top longitudinal velocity under an unstable
atmospheric regime (run 7 in table 1) using the WTMM method. (a) Partition function
log2(Z(q, a)) versus log2(a/Lw). (b) log2(h(q, a)) versus log2(a/Lw). (c) log2(D(q, a))
versus log2(a/Lw). (d) The scaling function τ(q) versus the moment order q estimated
by linear regression fit of log2(Z(q, a)) versus log2(a), and compared with τ(q) for the
isotropic–homogeneous turbulent flows of Modane and prediction from Kolmogorov (Ko)
turbulence theory. (e) The singularity spectrum D(h) versus the singularity strength h
obtained from linear regression fits of log2(h(q, a)) and log2(D(q, a)) versus log2(a). In
(a–c), the yellow box delimits the scaling regimes. The green solid lines represent the
linear fit for the scaling regime.

experiment (figure 9d). Importantly, θ fluctuations are still more intermittent than u
fluctuations (table 2).

Compared to θ and u, the scaling of the partition function of the vertical velocity
component w was not as well defined at high-order moments. This is probably related
to the much smaller integral scale of w (table 1). Consequently, the scaling functions
τ(q) and the singularity spectra D(h) obtained for w are compared with those from
θ and u for only runs 12 (unstable condition), 17 (near-neutral condition) and 27
(stable condition), at small scales within the inertial convective subrange (figure 10).
For larger scales, w fluctuations show no scaling regime due to their lower integral
scale as compared to those of u and θ (table 1). Overall, at fine scales, τ(q) and
D(h) exhibit small differences between stability conditions. The scaling exponent τ(q)
of w fluctuations appears lower than that of u fluctuations, which is consistent with
observations from Katul, Porporato & Poggi (2009), and close to that of θ fluctuations,
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FIGURE 7. Same as figure 5 but for a stable atmospheric regime (run 27 in table 1).

although the intermittency of w (c2 coefficient) is lower than the one of θ and slightly
larger than the one of u. This is visible from the narrower singularity spectra D(h) of
w as compared to the singularity spectra of θ . The mean strength of the singularities
of w (c1 coefficient or the maximum of the singularity spectra) is stronger (lower c1
coefficient) than the mean strength of θ singularities. This means that the fluctuations
of w are on average sharper than those of θ , although the strongest fluctuations reach
a similar strength in both signals (h= 0).

3.2. Wavelet skewness and flatness factors of θ and u
To confirm previous results on the larger intermittency of θ fluctuations than u
fluctuations independently of the thermal stratification, the wavelet skewness factor
(SF) and flatness factor (FF), i.e. skewness and flatness of the wavelet coefficients, of
u and θ are presented in figure 11 for different stability regimes. Both factors were
defined as follows:

SFf (a)= 〈Tψ [ f ](t, a)′3〉/〈Tψ [ f ](t, a)′2〉3/2, (3.1)

and
FFf (a)= 〈Tψ [ f ](t, a)′4〉/〈Tψ [ f ](t, a)′2〉4/2, (3.2)

where f is either u or θ , the brackets refer to time average and Tψ [ f ](t, a)′ =
Tψ [ f ](t, a)− 〈Tψ [ f ](t, a)〉; 〈Tψ [ f ](t, a)′2〉 is the variance of the wavelet transform of
f , 〈Tψ [ f ](t, a)′3〉 its moment of order 3 and 〈Tψ [ f ](t, a)′4〉 is its fourth-order moment.
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FIGURE 8. Same as figure 6 but for a stable atmospheric regime (run 27 in table 1).

Overall, u fluctuations appear in near-isotropic state with near-zero SF values,
around −0.1 to −0.2, independently of the stability (figure 11a). This is consistent
with the observed similarity at small scales (a < Lw) between the multifractal
characteristics of u and those observed in homogeneous–isotropic turbulence (Modane,
figure 5). The SF values of u obtained here for the mixing-layer-type flow prevailing at
the canopy top are smaller than the values reported in atmospheric shear flows (Katul
& Parlange 1994; Basu et al. 2007). The SF values of θ are larger in magnitude, with
negative values (−0.5) in stable conditions and positive values (+0.5) in unstable
conditions, reflecting the well-known anisotropic state of scalar turbulence at small
scales (Sreenivasan 1991). The sign difference of SFθ between unstable and stable
conditions is consistent with previous observations (Katul & Parlange 1994, 1995), and
was suspected to be related to the type of turbulence regime: isolated shear-overturning
events in the stable condition and updraft–downdraft events in the unstable regime
(Mahrt & Gamage 1987).

The flatness factors increase with decreasing scale, starting with Gaussian values
(+3) near the integral scale (figure 11b). As expected, this increase is stronger for θ
leading to larger FF values at smaller scales. This is consistent with the larger fine-
scale intermittency of θ compared to u obtained from our multifractal analysis. This
difference between FFθ and FFu is also in agreement with observations from Katul &
Parlange (1994, 1995). Overall, the flatness factors appear weakly dependent on the
stability. Only the θ flatness factors seem larger in stable conditions.
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FIGURE 9. Same as figure 5 but under a near-neutral atmospheric regime (run 19 in
table 1). Here, only one scaling regime is observed, covering the two scaling regimes
I and II of the unstable convective regime of figure 5.

The small differences of SF and FF between non-neutral and near-neutral conditions
do not permit us to distinguish an effect related to the presence or absence of
saturation of the scaling exponent of θ observed in the previous section.

4. Discussion

Our multifractal analysis suggested a substantial similarity at small scales (a<Lw/4)
between the multifractal characteristics of canopy-top u and θ fluctuations and
those observed in homogenous–isotropic turbulence, for at least moment order q
of up to 6. This was observed from the agreement of the scaling exponents τ(q)
of u and θ in the scaling regime I with the well-known multifractal properties
of isotropic–homogeneous turbulence (Arneodo et al. 1995; Schmitt 2005). This
similarity is probably explained by the canopy-top mixing-layer-type flow weakening
the anisotropy and inhomogeneity of the above atmospheric surface-layer shear flow.
In near-neutral conditions, this similarity extends up to Lw. To our knowledge, this
represents the first demonstration of the analogy between the fine-scale turbulence at
the canopy top and that in an isotropic–homogeneous flow.
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FIGURE 10. Comparison of the scaling functions τ(q) (left panels) and singularity spectra
D(h) (right panels) obtained for u, w and θ in the first scaling regime, for an unstable
(a), near neutral (b) and stable (c) regime.
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FIGURE 11. Wavelet skewness (a) and flatness (b) factors of u and θ , as a function
of log2(a/Lw) for the 27 runs, with distinction between unstable, near-neutral and stable
conditions.

Under thermal stratification conditions (unstable or stable), steep cliffs (fronts) of
large temperature gradients start to contaminate and saturate the multifractal spectra
of θ fluctuations from high moment orders q, while the multifractal spectrum of u
fluctuations remains similar to that in near-neutral conditions. This saturation due to
cliff singularities was demonstrated for run 7 by the equivalence between the value
of the scaling exponent at saturation (τsat =−0.37 in figure 5d) and the value of the
singularity spectrum for cliff singularities DII(h= 0)= 0.37. This is further illustrated
in figures 2(c) and 3(c) where cliffs dominate the WTMM lines for the scale range of
the scaling regime II, while at smaller scales (regime I), the cliff singularities become
embedded by numerous singularities of lower intensities. This saturation of the θ
scaling exponent due to cliff structures was observed in all non-neutral runs and is
consistent with previous modelling and laboratory measurements of scalar multifractal
spectra (Celani et al. 2000; Moisy et al. 2001; Iyer et al. 2018).

We argue that this saturation of τ(q) in scaling regime II may reflect an
ordered–disordered phase transition in signal singularities with decreasing moment
order q. At high moment orders, strong cliff singularities dominate (ordered phase,
h = 0) while at low moment orders, a large range of singularity strengths coexists
(disordered phase, large range of h values). Such analogy between multifractal
formalism and statistical thermodynamics has been demonstrated previously (Jensen,
Kadanoff & Procaccia 1987; Katzen & Procaccia 1987; Arneodo et al. 1995), where
q and τ(q) play the same role as the inverse temperature and the free energy. In
particular, the non-analyticity of τ(q) has been interpreted as a phase transition
occurring at a critical moment order qcrit (e.g. Barkley & Cumming 1990; Schertzer
& Lovejoy 1992). Hence, this multifractal phase transition is analogous to a phase
transition in condensed-matter physics, where systems show regular orientation of
atoms with long-range correlation under the low-temperature phase and a random
orientation of atoms with no long-range correlation under the high-temperature phase.

To verify this analogy between the saturation of τ(q) and a phase transition, we
use the same approach as Arneodo et al. (1995). We assume that θ in scaling regime
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Phase transition in the temperature multifractal spectra

II is the superposition of two signals, one with the multifractal characteristics of the
scaling regime I and the other one corresponding to large-scale ramp–cliff patterns.
The partition function of this signal can be then split into two parts: ZII(q, a) =
ZI(q,a)+Zcliff (q,a)∼aτI(q)+aτsat , where ZI and Zcliff are the sum of partition functions
over the maximum lines created by the first and second signals, corresponding to the
scaling laws aτI(q) and aτsat , respectively, in the limit a→ 0+. In such conditions, a q
critical value should exist such that

τII(q)=
{
τI(q), q< qcrit
τsat, q > qcrit.

(4.1)

At the critical point, τsat = τI(qcrit)≈−cθ0 + cθ1qcrit − cθ2q2
crit/2!, which leads to

qcrit =
cθ1
cθ2
−

√(
cθ1
cθ2

)2

+
2
cθ2
(−τsat − cθ0). (4.2)

For the temperature time series of figure 5, we obtained qcrit=1.7. The saturation of
τII(q) near −0.37 for q>qcrit is in excellent agreement with the DII(h) fall off towards
+0.37 for h=0 (DII(h=0)=−τsat). Furthermore, the linear extension of this fall off is
tangent to the DI(h) spectrum with a slope equal to qcrit (figure 5e). This last feature is
the signature of a phase transition phenomenon. The change of slope of τII(q) around
qcrit suggests a first-order phase transition, but this cannot be concluded with certainty.
Indeed, the DII(h) fall off is not perfectly linear for q values surrounding qcrit, and the
non-analyticity of τII(q) is not perfect around qcrit. This is due to the shifting of the
cross-over with q between regime I and the saturation regime, weakening the scaling
regime II in this transition region (see h(q, a) for q around 2 and 3 in figure 5b).

For unstable and stable conditions, qcrit ranges between 1.4 and 3.7 and the fractal
dimension of the stronger cliffs (h = 0) varies from D(h = 0) = 0.0 to 0.40. Both
qcrit and D(h= 0) do not show a clear trend according to the stability intensity ζ (see
table 1), which could be due to the varying large-scale meteorological conditions, even
for similar stability levels. However, all runs in these stability conditions exhibited a
saturation of τ(q) and the conditions of a phase transition, which demonstrates the
robustness of our results.

One striking result from our multifractal analysis is the absence of saturation in
the temperature multifractal spectra under near-neutral conditions. This was observed
for the 9 near-neutral runs (table 1). This suggests a negligible impact of cliff
singularities (h = 0) on the statistics of the θ signal. However, θ fluctuations still
appear more intermittent than u fluctuations (see the cθ2 and cu

2 coefficients in table 2),
with the same level of intermittency in both unstable and stable conditions. This
larger intermittency of θ fluctuations compared to u ones, independently of the
stability conditions, was further confirmed by the larger increase of the θ wavelet
flatness factor than the u one with decreasing scale (figure 11). This result is a
strong indication that the statistical contribution of the ‘cliffs’ is not important
enough (D(h = 0) = 0) to account for the stronger intermittency of θ fluctuations
when compared to corresponding u fluctuations. This is also confirmed by the poor
correlation of the fine-scale θ wavelet coefficients with the near-integral-scale ones, as
illustrated in figure 12 for runs 7, 19 and 27 (unstable, near-neutral and stable cases).
We suspect that the progressively invaded influence of the strongest singularities
(cliffs) with increasing moment order q, from large to small scales, might lead to the
saturation as well of the scalar scaling exponent at small scales (scaling regime I) for
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FIGURE 12. Correlation between the fine-scale modulus of the temperature wavelet
transform (within the first scaling regime) and the equivalent larger-scale modulus for an
unstable (run 7), near-neutral (run 19) and stable (run 27) regimes. The yellow boxes
delimit the scaling regimes. The black arrows indicate the position of the integral scale.
This figure confirms for all stability conditions the negligible correlation between |Tψ [θ ]|
within the scaling regime I and |Tψ [θ ]| near the integral scale of θ fluctuations (Lθ ).
This means that fine-scale θ fluctuations are weakly impacted by large-scale ramp–cliff
structures.

q values larger than the maximum q value considered in this study (q= 6), however,
these rare and extreme singularities should be statistically insignificant and could not
explain the larger intermittency of scalar fluctuations.

This statistically limited contribution of cliff structures to the intermittency of scalar
fluctuations contrasts with the Zorzetto et al. (2018) findings on the persistence of
the signature of integral-scale ramp–cliff structures on θ fluctuations, well within the
inertial convective subrange, explaining the larger intermittency of θ fluctuations. We
suspect that the mixing-layer-type flow prevailing at the top of our canopy dampens
the memory of the integral-scale eddy structures as opposed to shear-layer flow located
far above surface roughness elements of Zorzetto et al. (2018).

Our findings suggest that the scalar intermittency at fine scales has more of an
internal origin, built from the fluctuation dissipation rate, than an external one, coming
from large-scale external forcing (cliffs). Interestingly, the values of the intermittency
coefficients cθ2 (0.09 ± 0.01 on average) are close to those observed for Lagrangian
velocity fluctuations in turbulent flows (0.08± 0.01 (Chevillard et al. 2003)). Hence,
the dynamic of scalar fluctuations appear closer to the dynamic of Lagrangian velocity
fluctuations than to that of Eulerian velocity fluctuations. This might be considered for
explaining the larger intermittency of scalar fluctuations.

5. Summary
Under unstable and stable conditions, i.e. daily warming and nocturnal cooling

conditions, our analysis revealed a saturation of the scaling exponent of the canopy-top
air temperature (θ ) fluctuations above a critical moment order, unlike that of the
longitudinal wind velocity (u) fluctuations. This saturation is related to the sharp
temperature fronts bordering the ramp–cliff patterns present in the θ signal. This
suggests an ordered–disordered phase transition occurring at this critical moment
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order. Under near-neutral conditions, no such phase transition was observed while
θ fluctuations are still more intermittent at fine scales than u fluctuations. Hence,
conversely to previous studies that suggested large-scale ramp–cliff structures as
responsible for the larger intermittency of scalar turbulence at fine scales than that of
velocity fluctuations, our multifractal analysis applied to canopy-top mixing-layer-type
flow shows that the statistical contribution of the ‘cliffs’ is not significant enough
to explain the stronger intermittency of θ fluctuations. Our findings open a new
avenue on scalar turbulence intermittency, with an analogy to a phase transition of
the invaded influence of the strongest singularities (cliffs) with increasing moment
order, from large to small scales.
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