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Abstract	 

Switching	lattices	are	two-dimensional	arrays	composed	of	two	or	four-terminals	switches	organized	as	a	crossbar	
array.	The	idea	of	using	regular	two-dimensional	arrays	of	switches	for	Boolean	function	implementation	was	proposed	
by	Akers	 in	1972.	Recently,	with	 the	advent	of	a	variety	of	emerging	nanoscale	 technologies,	 lattices	have	 found	a	
renewed	interest.	Emerging	technologies	allow	more	complex	function	integration,	thanks	to	their	smaller	sizes	and	
advanta	geous	properties	such	as	zero	leakage	current,	capability	to	retain	data	when	in	power-off	state,	and	almost	
unlimit	 edendurance,	 to	 name	 just	 a	 few	 appealing	 features.	 Also,	 implementation	 of	 new	 computing	 paradigms	
combining	memory	and	logic	becomes	possible.	However,	emerging	technologies	show	a	non-negligible	defect	ratio	
and	higher	sensitivity	to	process	and	environment	variations.	The	reliability	challenges	in	adopting	these	technologies	
need	to	be	investigated.	In	this	paper,	we	analyze	the	resilience	of	switching	lattices	to	stuck-at-fault	model	(SAF).	We	
first	identify	the	critical	switches	through	an	elaborated	sensitivity	methodology	and	extensive	analysis	of	the	lattice.	
Next,	we	 propose	 several	 techniques	 to	 improve	 lattice	 resilience	 in	 the	 face	 of	 these	 types	 of	 faults,	 that	 can	 be	
implemented	after	lattice	logic	optimization	steps.	 
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1	Introduction	 

Recent	years	advancements	in	process	scaling	and	3D	
monolithic	 integration	 brought	multiple	 possibilities	
for	 emerging	 devices	 to	 push	 further	 integration	 of	
integrated	 circuits.	 Nano-crossbars	 are	 among	 the	
most	promising	alternative	 solutions	 to	continue	 the	
process	scaling	down	[29].	They	lead	to	programmable	
logic	circuits	physically	implemented	as	nano-crossbar	
arrays	 that	 operate	 similarly	 to	 the	 conventional	
programmable	 logic	 arrays	 (PLAs),	 or	 as	 molecular	
switch	crossbar	arrays,	or	resistive	crossbar	 logic	[2,	
15].	 Due	 to	 simpler	 and	 cheaper	 manufacturing	
techniques,	 programmable	 nano-crossbars	 arrays	
present	more	regular	and	dense	forms	[9]	being	also	
among	 the	 best	 with	 respect	 to	 area	 and	 power	
efficiency	 [2].	 A	 given	 arithmetic	 logic	 function	
computation	is	mapped	on	a	matrix	of	cross	points	that	
can	be	made	of	two-terminals	switches	i.e	diodes	[16],	
or	 resistive/memristive	 elements	 [23]	 or	 FET	
transistors	 [24].	 Four-terminals	 switches	 is	 also	 a	
great	possibility	particularly	well	adapted	to	dual	logic	
functions	implementations	[1,	20].	 
The	 memrisitve	 based	 cross	 points	 represents	
probably	 the	 most	 prominent	 solutions	 explored	 by	
many	 research	 groups	 [17],	 adopted	 due	 to	 their	
potential	to	scale	down	to	5nm	offering	much	higher	
integration	 densities	 and	 compatibility	 to	 classical	
CMOS	 process.	 In	 addition	 to	 that,	 memristive	 non	
volatile	memory	(NVM)	technologies	have	other	very	
appealing	 features,	 such	 as	 zero	 leak-	 age	 currents,	
longer	 retention	of	 their	data	 in	 the	power	off	 state,	

normally-off/instant-on	 capabilities,	 almost	 unlim-	
ited	 endurance.	 The	 non-volatility	 of	 these	 devices	
offer	 possibilities	 for	 memory-intensive	 computing	
paradigms,	 enabling	 non	 Von-Neuman	 logic-in-
memory	paradigm	[7].	This	paradigm,	allows	logic	or	
arithmetic	operations	 to	be	directly	processed	 in	 the	
memory.	 Due	 to	 their	 versatile	 circuit-level	
implementations,	 memristive	 crossbar	 arrays	 are	
considered	 as	 serious	 candidate	 for	 pattern	
recognition,	 classifications,	 decision-making	 tasks	
processing,	 inher-	 ent	 to	 neuromorphic	 applications	
[12,	 22].	 This	 paradigm	 allows	 logic	 and	 arithmetic	
operations	 to	be	directly	pro-	 cessed	 in	 the	memory	
within	 the	 crossbar	 array	 (In	 Memory	 Computing),	
making	 them	 attractive	 from	 neuromorphic	
applications	 such	 as	 prediction,	 classification	 and	
decision-	 making	 problems	 [12,	 22].	 Memristive	
devices	 can	 be	 pro-	 grammed	 to	 store	 either	 two	
(binary)	 or	 more	 than	 two	 (ana-	 log)	 states,	 when	
multiple	 resistance	 states	 are	 used	 together.	 Several	
non-volatile,	memristive	technologies	are	consid-	ered	
for	 the	 In-Memory	 Computing	 Paradigm,	 including	
Spin	 Transfer	 Torque	 magnetic	 Random	 Access	
Memory	 (STT	 RAM),	 Resistive	 Random	 Access	
Memory	 (ReRAM),	 Phase	 Change	 Random	 Access	
memory	(PCRAM)	to	name	just	a	few,	all	of	them	being	
suitable	to	In-Memory	Comput-	ing	implementations.	 
The	 majority	 of	 the	 emerging	 technologies	 are	 still	
imma-	 ture,	 prone	 to	 important	 defect	 densities,	
manufacturing	variations	and	mismatches,	being	also	
sensitive	to	tempera-	ture	and	voltage	variations.	Spot	
defects,	 dust,	 assemblage	 faults,	 imperfections	of	 the	
fabrication	 process,	 instabilities,	 variations	 and	
mismatches	drastically	affect	the	fabrication	yield	but	



can	also	affect	the	reliability	of	the	circuit	in	the	field.	
They	induce	parametric	faults,	or	logic	faults	and	can	
be	classified	into	two	categories:	soft	 faults	and	hard	
faults	[11,	26].	Soft	faults	are	caused	by	different	cycle-
to-	 cycle	 or	 device-to-device	 variations	 during	 the	
fabrication,	but	they	can	also	manifest	in-field	during	
read/write	opera-	 tions,	or	as	retention	 faults	where	
the	content	of	a	cell	can	be	lost	after	some	time	[27].	
Hard	faults	are	provoked	either	by	fabrication	steps	as	
mentioned	 before,	 or	 by	 spot	 defects,	 extreme	
parametric	variations	or	by	the	forming	process	or	the	
continuous	 stress.	 The	 failures	will	 induce	 read	 and	
write	failures	on	the	memory	cell,	as	well	as	stuck-at	
faults.	One	typical	type	of	hard	fault	occurs	when	the	
resistance	 of	 a	 resistive	 memory	 cell	 will	 no	 longer	
change;	 this	cate-	gory	 includes	stuck-at-0	(SA0)	and	
stuck-at-1	 (SA1)	 faults	 caused	 by	 fabrication	
techniques	 and	 limited	 endurance.	 In	 this	 case,	 the	
faulty	 device	 is	 stuck-at-high	 resistance	 or	 stuck-at-
low	 resistance	 state.	 These	 situations	 occur	 with	 a	
significantly	high	probability.	It	 is	reported	that	63%	
of	a	storage	array	based	on	memristor	is	fault	free	in	a	
4Mb	resis-	tive	RAM,	with	about	10%	of	the	cells	being	
of	Stuck-At	type	[10].	In	[28]	the	authors	showed	that	
10%	 of	 bro-	 ken	 memristor	 cells	 will	 lead	 to	
substantial	 degradation	 of	 the	 accuracy	 and	 overall	
performances	 of	 a	 convolutional	 neural	 network	
implemented	 on	 this	 structure.	 This	 study	 has	 been	
performed	 on	 crossbar	 arrays	 with	 binary	 resistive	
devices,	 and	 the	 considered	 faults	 are	 uniformly	
distributed.	 In	 addition,	 as	 mentioned	 previously,	
variability	 of	 memris-	 tor	 resistances	 during	 write	
operations	may	also	push	the	device	in	a	hard	Stuck-at	
fault.	 However,	 to	 the	 best	 of	 our	 knowledge	 very	
limited	research	has	been	dedicated	so	far	to	analyze	
fault	 models	 of	 resistive	 devices	 where	 mul-	 tiple	
resistances	are	used.	Therefore	most	research	works	
considered	stuck-at	faults	as	predominant	to	perform	
yield	 analysis.	 Since	 the	 fabrication	 technology	 of	
crossbar	 cells	 is	 sensitive	 to	 different	 process	 steps	
(i.e.,	 forming),	 it	 is	 very	 difficult	 to	 prevent	 stuck-at	
faults	 during	 the	 fabrication	 process	 [10,	 11].	
Understanding	the	impact	of	the	sensitivity	to	stuck-at	
faults	on	the	mapping	algorithm	is	a	key	step	for	future	
developments.	 Yield	 analysis	 of	 memristive	 based	
nanocross-bars	 for	 uniformly	 and	 clustered	
distributed	 defects	 have	 been	 performed	 in	 [18,	 21,	
25].	Also	various	testing	methods	have	been	proposed	
in	[8,	14,	18,	19].	Testing	provides	a	 faulty	cells	map	
that	can	be	used	not	only	for	identifying	faulty	devices	
but	 it	 also	 helps	 managing	 the	 programmability	
around	 defected	 cells	 through	 algorithm	 remapping	
[28]).	 This	 generally	 requires	 important	 area	
overheads,	 as	 designer	 has	 to	 take	 into	 account	
margins	 in	 terms	 of	 sufficient	 spares	 organized	 in	
columns,	lines	or	blocks.		

In	this	paper,	our	contributions	are	as	follows:	 

1. The	 sensitivity	 of	 arbitrary	 logic	 function	
decomposi-	 tion	 algorithm	 on	 a	 given	 size	
crossbar	is	analyzed	face	to	SA0	and	SA1.	 

2. We	propose	fault	injection	methods	and	tools	
for	cross-	bar	arrays	targeting	stuck-at	fault	
(SA1	 or	 SA0)	 model.	 The	 fault	 injection	

algorithm	 uses	 independent	 uniform	
distribution	 as	 reported	 in	 [28].The	
experimental	fault	injection	simulation	aims	
at	 validating	 the	 decomposi-	 tion	 method	
with	single	fault	injection	at	the	time.	 

3. The	 prior	 sensitivity	 analysis	 helps	
identifying	critical	 switches.	Further	 to	 that	
we	propose	mitigation	factors	to	strengthen	
the	 mapping	 algorithm	 while	 keeping	 the	
crossbar	array	area	minimal.	This	paper	is	an	
extension	of	a	first	contribution	of	the	same	
authors	 published	 in	 IEEE	 Latin	 American	
Test	Symposium	in	2019	[4].	The	innovative	
aspects	here	are	related	to	new	properties	of	
synthesis	algorithms	 for	 lattices,	 and	a	new	
algorithm	to	increase	the	fault	tolerance	level	
of	 lattices	mapped	on	a	defective	crossbars.	
This	is	proved	by	new	evaluation	results.	 

The	paper	is	organized	as	follows.	Section	2	explain	the	
logic	function	synthesis	method	on	crossbar	switching	
arrays.	 Section	 3	 discuss	 the	 fault	 model	 and	 the	
sensitivity	analysis	method.	Sections	4	and	5	discuss	
methods	for	mitigation	and	finally	Section	7	presents	
sensitivity	results.	 

2	Switching	Lattices	and	Synthesis	
Methods	 

Multi-terminals	switching	lattices	are	typically	used	as	
higher	level	models	of	switching	nano-crossbar	arrays.	
In	 fact,	 the	 circuit	 is	 represented	 by	 a	 single	 lattice	
composed	by	a	two-dimensional	array	of	two	or	four-
terminal	 switches.	 Each	 of	 the	 terminals	 of	 a	 given	
switch	 links	to	 its	neighbours	of	 the	crossbar	cell,	 so	
that	these	are	either	all	connected	(when	the	switch	is	
ON),	or	all	disconnected	(when	the	switch	 is	OFF).	A	
Boolean	 function	can	be	 implemented	by	a	 lattice	by	
ensuring	proper	connectivity	across	it,	such	as:	 

• in	 the	 case	 of	 the	 four-terminal	 switches,	
each	terminals	of	the	switch	is	controlled	by	
a	literal;		

• if	 the	 literal	 takes	 the	 value	 1,	 the	
corresponding	switch	is	connected	to	its	four	
neighbours,	otherwise	it	is	considered	as	non	
connected;		

• the	 function	 output	 yields	 1	 (output	 =	 1)	 if	
and	 only	 if	 there	 exists	 a	 connected	 path	
between	 two	 opposing	 edges	 of	 the	 lattice,	
i.e.,	the	top	and	the	bottom	edges;		

• input	 assignments	 that	 leave	 the	 edges	
unconnected	correspond	to	an	invalid	output	
(output	=	0).		

For	instance,	the	network	of	switches	shown	
in	 Fig.	 1a	 corresponds	 to	 the	 lattice	 form	
depicted	 in	 Fig.	 1b,	 which	 implements	 the	
function	f	=	x1x2x3	+	x1x2	+	x2x3.	If		

we	assign	the	values	1,	1,	0	to	the	variables	x1,	x2,	x3,	
respectively,	 we	 obtain	 paths	 of	 gray	 square	



connecting	the	top	and	the	bottom	edges	of	the	lattices	
(Fig.	 1c),	 on	 this	 assignment	 f	 output	 is	 1.	 On	 the	
contrary,	 the	 assignment	 x1	 =	 0,x2	 =	 0,x3	 =	 1,	 on	
which	f	evaluates	to	0,	does	not	create	any	path	from	
the	top	to	the	bottom	edge	(Fig.	1d).		

The	synthesis	objective	on	a	lattice	consists	in	finding	
an	assignment	of	literals	to	switch	terminals	in	order	
to	implement	a	given	logic	function,	the	lattice	being	of	
the	minimal	size.	Within	this	abstraction	level,	the	size	
of	 a	 lattice	 is	 measured	 in	 terms	 of	 the	 number	 of	
switches	in	the	lattice.		

A	switching	lattice	can	similarly	be	equipped	with	left	
edge	to	right	edge	connectivity,	so	that	a	single	lattice	
can	 implement	 two	 different	 functions.	 This	 fact	 is	
explained	in	[3]	where	the	authors	propose	a	synthesis	
method	 for	 switching	 lattices	 simultaneously	
implementing	 a	 function	 f	 according	 to	 the	
connectivity	 between	 the	 top	 and	 the	bottom	plates,	
and	its	dual	function	f	D	according	to	the	connectivity	
between	 the	 left	 and	 the	 right	plates.	Recall	 that	 the	
dual	 of	 a	 Boolean	 function	 f	 depending	 on	 n	 binary	
variables	 is	 the	 function	 fD	such	 that	 f(x1,x2,...,xn)	 =	 f	
D(x1,	x2,	.	.	.	,	xn).	This	method	produces	lattices	with	a	
size	that	grows	linearly	with	the	number	of	products	in	
an	 non-redundant	 sum	 of	 product	 (SOP)	
representation	of	f	,	and	consists	of	the	following	three	
steps:	 

1. find	 an	 non-redundant,	 or	 a	 minimal,	 SOP	
representa-	tion	for	f	and	fD:	SOP(f)	=	p1	+p2	
+···+ps	and	SOP(fD)=q1	+q2	+···+qr;	 

2. assign	each	product	pj	(1	≤	j	≤	s)	of	SOP(f)	to	
a	 column	and	each	product	qi	(1	≤	 i	 ≤	 r)	of	
SOP(fD)	to	a	row;	 

3. forall1≤i≤randall1≤j≤s,assigntotheswitch	 on	
the	lattice	site	(i,	j	)	one	literal	which	is	shared	
by	qi	and	pj	(the	 fact	 that	 f	 and	 f	D	are	dual	
guarantees	 that	 such	 a	 shared	 literal	 exists	
for	all	i	and	j	).	 

Note	that,	we	can	have	a	couple	of	products	qi	and	pj	
such	 that	 the	 intersection	 of	 their	 literals	 is	 a	 set	 of		
cardinality	 greater	 than	 one.	 For	 building	 the	
corresponding	lattice,	the	algorithm	imposes	to	choose	
randomly	one	of	the	common	literals.	In	this	case,	we	
denote	 the	 corresponding	 cell	 (i,j)	 as	 a	 cell	 with	
multiple	 choice.	Moreover,	note	 that,	 in	Step	2	of	 the	
synthesis	 algorithm,	 the	 assignments	 of	 products	 to	
rows	and	 columns	 is	 random.	For	 example,	 consider	
the	function	f	in	ISOP	form	f	=	x1x2	+	x1x3	+	x2x3	and	its	
dual	f	D	=	x1x2	+	x1x3	+	x2x3.	The	lattice	containing	the	
cells	with	multiple	choice	is	depicted	in	Fig.	2.	At	the	
top	of	Fig.	3,	we	have	two	possible	lattices	derived	from	
the	 former	 by	 choosing	 a	 literal	 in	 the	 cells	 with	
multiple	choices.		

A	second	approach	to	 the	synthesis	of	minimal-sized	
lattices	 is	 proposed	 in	 [13],	 where	 the	 authors	
transform	 the	 synthesis	 problem	 into	 a	 satisfiability	
problem	in	quantified	Boolean	logic	and	solve	it	using	
a	quantified	Boolean	formula	solver.	 

 
Fig.	1	A	four	 terminal	switching	network	 implementing	 the	
function	f	=	x1x2x3	+	x1x2	+	x2x3	a;	its	corresponding	lattice	form	
b;	the	lattice	evaluated	on	the	assignments	1,1,0	(c)	and	0,	0,	
1	(d),	with	grey	and	white	squares	representing	ON	and	OFF	
switches,	respectively		

	

Fig.	2	A	lattice	for	the	function	f	=	x1x2	+x1x3	+x2x3,	with	
multiple	choices	on	the	diagonal	cells		

	

Fig.	3	Two	lattices	for	f	=	x1x2	+	x1x3	+	x2x3	(see	Fig.	2	for	
the	multiple	choice	lattice),	with	different	sensitivity	to	SA0	
and	SA1	defects	 

3	Single	Stuck-At-Faults	in	Lattices	 

The	well-known	Stuck-at	Fault	(SAF)	model	is	the	most	
used	 logic	model	covering	a	 large	number	of	defects,	
and	is	classically	used	by	the	semiconductor	industry	
for	many	years.	 In	CMOS	and	emerging	technologies,	
the	SA	model	assumes	that	a	defect	causes	a	basic	cell	
input	or	output	 to	be	 fixed	 to	either	0	or	1.	Thus,	all	
defects	covered	by	this	logic	fault	model	can	be	further	



detected	 by	 stuck-at-fault	 tests	 generated	 by	
structural,	functional,	or	cell-aware	ATPG.	In	a	lattice,	
a	SAF	can	be	similarly	modeled	as	a	fixed	value	(0	or	1)	
of	 the	 faulty	 cell	 (i.e.,	 a	 four-terminal	 switch)	 of	 the	
lattice.	As	our	objective	is	to	evaluate	the	sensitivity	of	
a	 lattice	 with	 respect	 to	 SA0	 and	 SA1	 faults.	 We	
propose	some	metrics	to	quantify	for	a	given	function,	
the	 average	 number	 of	 defective	 outputs	 of	 this	
function.	 In	 this	 section	 we	 briefly	 summarize	 the	
methodology	described	in	[20]	for	the	fault	injection,	
which	 we	 exploit	 for	 the	 sensitivity	 analysis	 of	 our	
approach.	The	 fault	 injection	 is	performed	uniformly	
by	substituting	a	single	cell	at	a	 time	with	an	always	
stuck-at-1	 (SA1)	 or	 stack-at-0	 (SA0)	 cell.	 The	 fault	
injection	procedure	is	then	repeated	for	each	cell	of	the	
lattice	 .	 The	 simulation	 algorithm	 generates	 all	 2n	
possible	inputs	and	for	each	input	x1,	.	.	.	,	xn	the	output	
is	compared	with	the	correct	one	(i.e.,	f	(x1,	.	.	.	,	xn).	

Let	 r	 and	 s	 be	 the	 number	 of	 rows	 and	 columns,	
respectively,inalattice.	 Let	𝐸!"#

	 (resp.,	𝐸!"$ ),	 with1≤i≤r,		
1	≤	 j	≤	s,	be	the	number	of	defective	outputs	when	a	 
SA0	(resp.,	SA1)	affects	a	cell	(i,j)	of	the	given	lattice.	
𝐸!"#

	 (resp.,	 𝐸!"$ )	 is	 equal	 to	 0	 when,	 for	 any	 possible	
input,	the	output	of	the	function	mapped	on	the	lattice	
is	not	affected	by	the	SAF	in	the	cell	(i,j).	In	this	case,	
the	cell	(i,	j	)	is	considered	robust	w.r.t.	SA0	(resp.,	SA1).	
Let	R0	(resp.,	R1)	be	 the	 total	number	of	 robust	cells	
w.r.t.	SA0	(resp.,	SA1)	in	the	lattice.	𝐸# = ∑ ∑ 𝐸!"#

"%&
"%$

!%'
!%$ 	

(resp.,	 𝐸$ = ∑ ∑ 𝐸!"$
"%&
"%$

!%'
!%$ )	 be	 the	 total	 number	 of	

defective	 outputs	 with	 respect	 to	 SA0	 (resp.	 SA1),	
considering	the	entire	lattice.		

Consider,	for	example,	the	function		

𝑓 = 𝑥(𝑥)&&&𝑥* + 𝑥(&&&𝑥+𝑥*&&& + 𝑥(&&&𝑥)𝑥+&&&𝑥* + 𝑥(𝑥+&&&𝑥*&&& + 𝑥(𝑥+𝑥* 
represented	by	the	lattice	in	Fig.	4a	(derived	with	the	
method	 in	 [3]).	 Figure	4b	and	 c	 show	 the	 sensitivity	
map	containing	the	value	𝐸!"#

	and	𝐸!"$
	in	each	cell.	 

In	order	to	evaluate	the	sensitivity	of	a	lattice	to	SA0	
and	SA1	defects,	we	propose	a	metric	 that	computes	
the	average	number	of	defective	outputs:	Sensitivity	of	
lattice	 is	 expressed	 as	 the	 ratio	 between	 the	 total	
number	of	inputs	that	are	able	to	propagates	a	SA0	or	
a	 SA1	 into	 a	 faulty	 output	 and	 the	 total	 number	 of	
possible	 inputs.	 In	 the	 case	 of	 SA0,	𝑆,# = 𝐸#/(2-(𝑟 ×
𝑠)),	and	for	SA1,	𝑆,$ = 𝐸$/(2-(𝑟 × 𝑠)).	

	

	

Fig.	4	a	Lattice	design	for	the	example	function	f	and	its	
sensitivity	map	for	(b)	SA0	and	(c)	SA1	 

	

4	Analysis	of	Lattices	Synthesized	with	
the	Altun-Riedel	Method	 

In	 this	 paragraph,	 some	 characteristics	 of	 the	
switching	 lattices	 obtained	 with	 the	 Altun-Riedel	
synthesis	 method	 [3]	 are	 discussed.	 These	
characteristics	 will	 be	 further	 exploited	 to	 enhance	
their	fault	tolerance.		

First	 of	 all,	 we	 note	 that	 the	 Altun-Riedel	 method	
allows	 definition	 of	many	 equivalent	 lattices	 for	 the	
given	 function	 f	 .	 Indeed,	 in	 the	 second	 step	 of	 the	
procedure	 (see	 Section	 2)	 each	 product	 in	 an	 non-
redundant	SOP	for	f	is	assigned	to	a	column,	and	each	
product	 in	 an	 non-redundant	 SOP	 for	 the	 dual	𝑓. 	 is	
assigned	to	a	row,	without	any	specific	rule	for	these	
assignments.	As	a	consequence,	any	permutation	of	the	
products	 in	 SOP(f)	 and	 in	 SOP(𝑓.)	 gives	 rise	 to	 a	
correct,	and	possibly	different,	lattice	for	f	.	Moreover,	
once	each	pair	of	products	(one	from	SOP	(f	)	and	one	
for	 SOP(𝑓.))	 has	 been	 assigned	 to	 a	 lattice	 cell,	 the	
controlling	literal	is	selected	choosing	arbitrarily	one	
of	the	literals	shared	by	both	products.	Thus,	we	could	
have	 multiple	 choices	 for	 the	 controlling	 literals	 in	
some	lattice	cells.		

Taking	into	account	these	degrees	of	freedom,	we	now	
evaluate	 the	 number	 of	 potentially	 different	 lattices	
produced	 by	 this	 synthesis	 procedure.	 Suppose	 that	
SOP(f)	 contains	 s	 products,	 and	 SOP(𝑓.)	 contains	 r	
products.	The	lattice	for	f	function	has	the	size	of	r	×	s.	
Let	us	denote	by	S(i,j)	the	subset	of	literals	shared	by	
the	prod-	ucts	assigned	to	the	cell	(i,	j	),	and	by	𝑠!," 	the	
cardinality	of	this	set.	We	have	

Proposition	1	The	number	Nf	of	lattices	for	f	produced	
by	the	Altun-Riedel	method	is	given	by:	

	𝑁0 = 𝑟! 𝑠!∏ 𝑠!,"$1!1'
$1"1&

	

Proof	:	Immediately	follows	since	there	are	r!	ways	to	
assign	 the	 products	 of	 SOP(𝑓.)	 to	 the	 rows	 of	 the	
lattice,	s	!	ways	to	assign	the	products	of	SOP(f	)	to	the	
columns,	and	si,j	ways	to	select	the	controlling	literals	
of	each	cell	(i,	j	).																																																																						☐ 

Observe	that	Nf	can	be	exponential	in	the	lattice	size:		

Corollary	1	Let	f	depend	on	n	binary	variables.	Then		

𝑁0 = 𝑂(𝑟! 𝑠! 𝑛'&)	

Proof	Easy	to	follow	as	si,j	≤	n.																																												☐ 

Thus,	 the	 Altun-Riedel	 method	 provides	 many	
equivalent	lattices	for	the	same	specified	function	f	,	all	
of	 them	 of	 r	 ×s	 size.	 These	 lattices	 may	 exhibit	 a	
different	 SAF	 sensitivity.	 Consider,	 for	 example,	 the	
lattice	for	f	=	x1x2	+	x1x3	+	x2x3	depicted	in	Fig.	2,	with	
cells	 with	 multiple	 choice	 on	 the	 diagonal.	 Starting	
from	this	lattice	we	can	build	up	to	288	=	3!3!8	lattices	
by	permuting	rows	and	columns	and	by	choosing	the	
controlling	 literal	 for	the	diagonal	cells.	For	 instance,	
by	 simply	 making	 different	 choices	 on	 the	 diagonal	
cells,	we	can	obtain	the	two	lattices	presented	in	Fig.	3.	
We	can	see	that	they	exhibit	different	sensitivities	to	
SA0	and	SA1	defects:	SL

0	=	1/12	and	SL
1	=	1/24	for	the	



first	lattice,	and	SL
0	=	1/9	and	SL

1	=	1/18	for	the	second	
one.	In	particular,	the	first	lattice	contains	more	robust	
cells,	probably	as	a	consequence	of	the	many	adjacent	
cells	with	the	same	controlling	literal	that	might	help	
contain	the	effect	of	a	faulty	cell.	Therefore,	instead	of	
picking	a	random	permutation	of	the	products	in	the	
starting	assignment	of	SOPs,	and	selecting	arbitrarily	
the	controlling	literal	for	all	cells	with	multiple	choice,	
one	should	exploit	the	degrees	of	freedom	offered	by	
the	 Altun-Riedel	 method	 to	 detect,	 among	 the	 Nf	
different	lattices,	the	most	resilient	one.	This	issue	will	
be	discussed	in	the	next	Section	5.		

Another	 interesting	 property	 of	 lattices	 synthesized	
with	 the	 Altun-Riedel	 method	 is	 that	 the	 function	
implemented	by	the	lattice	does	not	change	after	the	
insertion	 of	 a	 duplicate	 of	 a	 column	 or	 of	 a	 row,	 as	
proved	in	the	following	proposition.		

Proposition	2	Let	L	be	a	lattice	for	a	function	f	obtained	
with	 the	 Altun-Riedel	 method.	 The	 lattice	 L′	 derived	
inserting	 in	 L	 a	 duplicate	 of	 a	 column	 or	 of	 a	 row,	
implements	the	same	function	f	.		

Proof	 The	 thesis	 is	 a	 direct	 consequence	 of	 the	
synthesis	 procedure,	 as	 adding	 a	 copy	 of	 a	 column	
means	adding	a	copy	of	a	product	in	the	SOP	for	f,	while	
adding	 a	 copy	 of	 a	 row	 means	 adding	 a	 copy	 of	 a	
product	in	the	SOP	for	𝑓.,	and	this	does	not	change	the	
functions	f	and	𝑓..	More	precisely,	we	can	observe	that	
in	the	proof	of	correctness	of	the	Altun-Riedel	method,	
it	 is	 crucial	 that	 all	 products	 in	 SOP(f)	 and	 SOP(𝑓.)	
correspond	 to	 prime	 implicants,	 but	 the	 proof	 holds	
even	if	we	replicate	one	or	more	products	in	the	SOP	
expressions.	 Indeed,	 in	 this	 case	 the	 two	 functions	 f	
and	𝑓.	are	still	implemented	as	subsets	of	all	top-to-
bottom	and	left-to-right	paths	of	the	new	lattice	L′,	and	
this	 implies	 that	L′	 correctly	 computes	 f	 and	𝑓.	 (for	
more	details,	see	Theorem	1	in[3]).																																		☐ 

As	a	matter	of	fact,	we	exploit	this	property	to	enhance	
the	single	stack-at	fault	tolerance	of	a	lattice,	as	further	
discussed	in	Section	6.	

Finally,	observe	that	the	possibility	of	permuting	and	
duplicating	 rows	 and	 columns	 is	 not	 guaranteed	 in	
lattices	synthesized	with	other	strategies.	Consider	for	
instance	the	3	×	3	lattice	L	implementing	the	function	

𝑓 = 𝑥$𝑥2𝑥3&&& + 𝑥$𝑥2&&&𝑥3 + 𝑥$&&&𝑥2𝑥3	

(see	also	Fig.	5a).	This	lattice	has	not	been	synthesised	
with	 the	 Altun-Riedel	 method,	 which	 would	 have	
instead	 produced	 a	 lattice	 of	 size	 4	 ×	 3.	 In	 fact,	
permuting	columns	of	L	and	inserting	in	L	a	duplicate	
of	a	column,	we	can	derive	the	two	lattices	in	Fig.	5b	
and	 c,	 respectively.	 However,	 we	 can	 observe	 that	
these	lattices	do	not	implement	the	function	f	,	as	they	
contain	an	valid	path	for	the	through	x1x2x3.		

	
Fig.	5	A	lattice	L	for	𝑓 = 𝑥!𝑥"𝑥#$$$ + 𝑥!𝑥"$$$𝑥# + 𝑥!& 𝑥"𝑥#	(a);	a	lattice	
obtained	 from	 L	 by	 a	 column	 permutation	 (b);	 a	 lattice	
obtained	inserting	in	L	a	duplicate	of	the	first	column	(c).	All	
lattices	are	evaluated	on	the	assignment	x1	=	1,	x2	=	1,	x3	=	1		

5	Construction	and	Characterization	of	
Resilient	Lattices	 

Let	us	consider	a	Boolean	 function	 f	 synthsized	with	
Altun-	 Riedel	 method	 [3]	 .	 From	 the	 demonstration	
shown	 in	 Section	 4,	 the	 synthesis	 algorithm	 can	
generate	different	possible	lattices	for	this	function	f	,	
which	are	exponential	in	number.	The	main	aim	of	this	
section	 is	 to	 study	 efficient	 strategies	 to	 select	 the	
lattice	that	is	less	sensitive	to	cell	SA0	or	SA1	faults.	

Let’s	call	two	cells	in	a	lattice	as	being	in	the	first-order	
neighborhood	 or	 adjacent	 if	 they	 are	 in	 the	 same	
column	and	in	two	adjacent	rows	or	in	the	same	row	
and	in	two	adjacent	columns.	Consider	the	two	lattices	
shown	in	Fig.	6	both	obtained	by	applying	Altun-Riedel	
method	to	the	function	f	=	x1	+	x2x4x5	+	x3x4x5.	Let	us	
assume	 a	 SA0	 affects	 the	 first	 cell	 on	 the	 top-left	
(depicted	in	gray	in	the	lattices).	While	the	lattice	on	
the	 left	 leads	 to	 the	 computation	 of	 an	 erroneous	
output,	equivalent	to	a	different	function,	i.e.,	f	′	=	x1	+	
x3x4x5,	 the	 lattice	 on	 the	 right	 computes	 the	 correct	
function	 even	 in	 the	 presence	 of	 the	 SA0	 fault.	 In	
addition,	we	can	observe	that	the	lattice	on	the	right	is	
derived	from	the	first	one	by	a	simple	permutation	of	
columns.	 In	 particular,	 in	 the	 second	 lattice,	 two	
similar	 columns	 are	 adjacent.	 This	 example	 gives	 us	
the	intuition	that,	in	order	to	decrease	the	sensitivity	
to	a	defective	cell,	we	should	bring	cells	containing	the	
same	literal	in	the	first-order	neighborhood.	In	fact,	the	
product	 that	 is	 not	 computed	 anymore	by	 the	 faulty	
version	of	the	first	lattice	(i.e.,	x2	x4	x5	),	is	computed	by	
the	second	lattice	using	a	connection	path	starting	at	
the	top	of	the	second	column	going	down	and	then	on	
the	 left	 (i.e.,	 path	 x4,	 x5,	 x5,	 x2).	 Note	 that	 this	
connection	path	is	not	possible	in	the	lattice	on	the	left	
since	the	two	involved	columns	are	not	adjacent.		

Motivated	by	this	observation,	in	the	next	sections	we	
will	 describe	 several	methods	 that	 through	 different	
permutations	 bring	 those	 cells	 containing	 the	 same	
con-	trolling	literals	in	a	first-order	neighborhood.	Let	
us	first	give	a	metric	that	simplify	the	description	of	the	
proposed	technique.		

Consider	 a	 lattice	 L	 where	 each	 cell	 contains	 a	
controlling	 literal.	 For	 each	 cell	 c	 in	 L,	 with	 the	
controlling	 literal	 𝑙,	we	define	ac	 the	number	of	cells	
adjacent	 to	 c	 in	 L	 containing	 the	 same	 controlling	
literal	 𝑙.	 Let	 aL	 be	∑ 𝑎44∈, .	 In	 order	 to	maximize	 the	
number	of	 adjacent	 cells	 containing	 the	 same	 literal,	
we	must	maximize	aL.	

As	already	observed,	the	synthesis	algorithm	proposed	
by	Altun-Riedel	produces	a	lattice	containing	cells	with	
multiple	choices	(e.g.,	the	lattice	shown	in	Fig.	2).	The	
approaches	 we	 propose	 here	 in	 this	 paper	 are	
therefore	 based	 on	 three	 algorithms,	 each	 starting	
with	a	lattice	(containing	cells	with	multiple	choices)	
produced	 by	 Altun-	 Riedel’s	 algorithm	 with	 the	
following	modifications:	

• PermuteColumns:	make	a	random	choice	for	
the	cells	with	multiple	choices	and	permute	
the	 columns	 in	 order	 to	 maximize	 the	



number	of	adjacent	cells	containing	the	same	
literal	(i.e.,	aL).	

• PermuteRows:	make	a	random	choice	for	the	
cells	with	multiple	choices	and	permute	the	
rows	of	a	given	lattice	in	order	to	maximize	
the	number	of	 adjacent	 cells	 containing	 the	
same	literal	(i.e.,	aL).	

• ChooseLiteral:	given	a	lattice	containing	cells	
with	 multiple	 choices,	 in	 each	 cell	 with	
multiple	 choices	 choose	 the	 literal	 that	
maximize	 the	 number	 of	 adjacent	 cells	
containing	the	same	literal	(i.e.,	aL).	

Note	 that	 the	 three	 algorithms	 return	 one	 of	 the	 Nf	
possible	lattices	produced	by	Altun-Riedel’s	algorithm.	
In	 other	 words,	 the	 proposed	 procedures	 make	
deterministic	 choices	 aiming	 at	 reducing	 the	
sensitivity	to	SA	faults,	instead	of	the	random	choices	
performed	by	the	standard	Altun-Riedel’s	algorithm.	

In	order	to	combine	the	three	former	approaches,	we	
define	a	new	metric	that	evaluate	the	neighborhood	of	
two	cells	with	multiple	choices.	Suppose	that	we	have	
two	 adjacent	 cells	 with	 multiple	 choices	 (c1	 and	 c2)	
containing	the	sets	of	literals	L1	and	L2,	respectively.	
The	neighborhood	of	two	adjacent	cells	n(c1	,	c2)	is	the	
cardinality	of	their	intersections,	i.e.,	n(c1,c2)	=	|L1∩L2|.	
The	neighborhood	(n(L))	of	a	lattice	L	containing	cells	
with	multiple	choices	is	the	sum	of	the	neighborhoods	
of	all	the	couples	of	adjacent	cells	contained	in	L.	

We	 propose	 a	 strategy	 that	 starts	 with	 a	 lattice	
containing	cells	with	multiple	choices	L	produced	by	
Altun-Riedel’s	algorithm.	Then	the	following	algorithm	
is	applied:	

Algorithm	ChooseAndPermute:	

1. permute	 rows	 and	 columns	 in	 order	 to	
maximize	n(L),		

2. in	each	cell	with	multiple	choices,	choose	the	
literal	that	maximizes	the	number	of	adjacent	
cells	containing	the	same	literal	(i.e.,	aL).	

	
Fig.	6	Two	equivalent	lattices	for	the	function	f	=	x1	+	x2x4x5	+	
x3x4x5.	While,	in	case	of	a	SA0	in	the	first	cell	on	top-left,	the	
first	lattice	computes	a	different	function,	the	second	one	still	
computes	f	

6	 Further	 Improvements	 of	 the	 Overall	
Lattice	Resilience	 

In	 this	 section,	we	show	how	the	resiliency	 to	single	
stuck-	 at-faults	 (SA0	 or	 SA1)	 of	 a	 switching	 lattice	
synthesized	 with	 the	 Altun-Riedel	 method	 can	 be	
further	enhanced	by	duplicating	selected	columns	or	
rows.	 First	 of	 all,	 we	 observe	 that	 if	 we	 duplicate	 a	
lattice	 column	 containing	 a	 non-robust	 cell	 c	 with	

respect	to	a	SA0	(or	a	SA1)	fault,	then	the	new	lattice	
becomes	resilient	to	the	fault	in	c,	as	it	is	proved	by	the	
following	proposition.		

Proposition	3	For	a	given	function	f	,	let	L	be	a	lattice	
obtained	with	the	Altun-Riedel	method,	and	let	c(i,	j	)	be	
a	defective	cell	with	respect	to	a	SA0	(of	SA1).	The	lattice	
L′	 derived	 from	 L	 by	 adding	 a	 duplicate	 of	 the	 j	 -th	
column	still	computes	f	and	is	resilient	to	the	SA0	in	c(i,	
j	).		

Proof	Let	L′	be	the	lattice	derived	from	L	by	adding	a	
duplicate	of	the	j-th	column	(w.l.o.g,	suppose	that	the	
duplicate	column	has	been	added	as	new	last	column	
on	 the	 right	 side	 of	 the	 initial	 lattice).	 Recall	 from	
Proposition	2	that	the	new	lattice	L′,	without	stuck-at	
faults,	still	computes	f	and	fD.	

Now,	consider	a	SA0	(or	SA1)	fault	in	L′	affecting	cell	
c(i,	 j	 ),	 and	 observe	 that,	 since	 we	 are	 injecting	 the	
value	 0	 (or	 1)	 in	 one	 cell	 of	 the	 lattice,	 the	 lattice	
affected	by	the	fault	is	always	correct	on	the	off-set	of	f	
.	In	fact,	a	cell	affected	by	a	SA0	(or	SA1)	could	imply	
that	the	lattice	computes	a	faulty	0	(or	1)	for	an	on-set	
input.	Thus,	to	prove	that	L′	is	robust	with	respect	to	
the	SA0	(SA1)	at	c(i,	j	)	we	must	show	that	it	is	correct	
on	the	on-set	of	f	.		

Consider	an	on-set	minterm	w,	and	let	p	be	a	product	
that	covers	w	in	the	SOP	for	f	used	to	build	the	lattice.	
The	 column	 of	 L′	 associated	 to	 p	 contains,	 by	
construction,	a	literal	from	p	in	each	cell,	and	forms	a	
top-to-bottom	accepting	path	for	w.	Suppose	that	w	is	
covered	 by	 the	 product	 corresponding	 to	 the	 j-th	
defective	 column	 of	 L.	 Then,	 the	 duplication	 of	 this	
column	 guarantees	 the	 presence	 of	 a	 top-to-bottom	
accepting	path	in	L′	that	can	replace	the	path	blocked	
by	the	SA0	(SA1)	fault	in	c(i,	j	).																																									☐ 

This	 strategy	 can	 be	 applied	 for	 SA0	 or	 to	 SA1,	 and	
consists	in	the	duplication	of	a	row	containing	a	non-
robust	 cell	 in	 order	 to	 make	 the	 lattice	 resilient	 to	
considered	faults.	

Proposition	4	Let	L	be	a	lattice	for	a	function	f	obtained	
with	the	Altun-Riedel	method,	and	let	c	be	a	defective	cell	
with	respect	to	SA1	fault.	The	lattice	L′	derived	adding	
to	L	a	duplicate	of	 the	 i-th	 row	still	 computes	 f	and	 is	
resilient	to	a	SA1	in	c(i,	j	).  
Proof	 Let	 L′	 be	 the	 lattice	 derived	 from	 L	 adding	 a	
duplicate	 of	 the	 i-th	 row	 (w.l.o.g,	 suppose	 that	 the	
duplicate	 row	 has	 been	 added	 at	 the	 bottom	 of	 the	
lattice).	Recall	from	Proposition	2	that	the	new	lattice	
L′	still	computes	f	and	fD.	

Now,	consider	a	SA1	fault	in	L′,	in	cell	c(i,j).	Since	the	
value	1	is	now	injected	into	one	cell	of	the	lattice,	the	
faulty	lattice	is	always	correct	on	the	on-set	of	f	.	Thus,	
to	prove	that	L′	is	robust	with	respect	to	the	SA1	in	c(i,	
j	)	we	must	show	that	it	is	correct	on	the	off-set	of	f	 ,	
since	a	cell	SA1	could	imply	that	the	lattice	computes	a	
faulty	1	for	an	off-set	input.	

Let	us	consider	a	minterm	w	such	that	f	(w)	=	0,	and	a	
minterm	w′	obtained	by	complementing	all	literals	in	
w.	By	the	definition	of	the	dual	function,	we	know	that	
fD(w′)	=	1.	Let	p	be	a	product	that	covers	w′	in	the	SOP	
for	fD	used	to	build	the	lattice.	The	row	of	L′	associated	



to	p	contains,	by	construction,	a	literal	from	p	in	each	
cell,	and	forms	a	left-to-right	accepting	path	for	w	.	On	
the	other	hand,	each	cell	on	this	row	evaluates	to	0	on	
input	w	(so	that	the	non	faulty	lattice	correctly	outputs	
0	on	w).	Suppose	that	w′	is	covered	by	the	product	of	
fD	 corresponding	 to	 the	 i-th	 row	 of	 L.	 Then,	 the	
duplication	 of	 the	 i-th	 defective	 row	 guarantees	 the	
presence	of	a	row	where	each	cell	evaluates	to	1	on	w′	
and	 to	0	on	w,	blocking	any	 top-to-bottom	accepting	
path	possibly	produced	by	the	SA1	in	c(i,	j	).																		☐ 

Note	that,	 in	both	cases	(column	or	row	duplication)	
the	lattice	implements	correctly	the	original	function	f	
from	top	to	bottom,	even	in	presence	of	a	SA	fault	 in	
one	 of	 the	 cells.	 However,	 the	 function	 computed	
taking	into	account	the	left-to-right	connectivity	could	
be	different	from	the	dual	of	f.	In	fact,	the	defected	cell	
c(i,	j)	can	still	be	critical	for	fD	and	may	induce	changes	
on	the	output	computed	by	L′	with	respect	to	the	left-
to-right	 connectivity.	 An	 immediate	 consequence	 of	
Propositions	 3	 and	4	 is	 that	we	 can	 always	 obtain	 a	
lattice	 for	a	 function	f	resilient	 to	a	single	SA	fault	 in	
any	one	of	its	cells,	by	duplicating	all	columns	and	all	
rows	 of	 a	 lattice	 for	 f	 derived	with	 the	 Altun-Riedel	
method.	

Corollary	 2	 A	 lattice	 L	 synthesized	 according	 to	 the	
Altun-	Riedel	method	can	be	transformed	into	a	resilient	
one	to	single	stuck-at	 fault	affecting	any	single	cell	by	
duplicating	each	row	and	each	column.		

Proof	Follows	from	Propositions	3	and	4.																							☐ 

Note	however	 that	 this	 strategy	 if	 prohibitive	 as	 the	
size	of	the	lattice	becomes	four	times	bigger.	

A	better	approach	 in	obtaining	a	resilient	 lattice	to	a	
single	SA0	or	SA1	is	to	pre-compute	in	advance	a	lattice	
with	 one	 spare	 row	 and	 one	 spare	 column,	 at	 the	
bottom	and	at	the	right	side,	initially	filled	with	ones	or	
zeroes,	 respectively,	 as	 depicted	 in	 Fig.	 7b	 for	 the	
benchmark	 function	 Newtag.	 The	 area	 of	 the	 lattice	
increases	from	r	×	s	to	(r	+	1)	×	(s	+	1),	which	is	better	
than	4(r	×	s)	obtained	previously.	The	idea	is	to	exploit	
the	additional	column	and	row	to	duplicate	a	row,	or	a	
column,	 containing	 a	 defective	 cell.	 To	 this	 aim,	 it	 is	
necessary	to	connect	a	multiplexer,	whose	inputs	are	
all	the	original	input	literals,	to	each	spare	cell	in	order	
to	map	the	desired	literal	to	the	switch	in	the	cell.	The	
multiplexer	can	be	realized	using	2n	single	lattice	cells	
that	 have	 the	 top	 connected	 to	 the	 corresponding	
variable,	the	output	connected	to	the	spare	cell	and	a	
control	 signal	 that	 controls	 the	 multiplexer	 cell,	 as	
shown	 in	 Fig.	 7e.	 At	 the	 beginning	 of	 the	 test	
procedure,	the	spare	column	will	be	filled	with	zeroes	
and	 the	 spare	 row	with	ones;	 if	 a	 defect	 is	 detected,	
then	the	spare	cells	are	used	to	duplicate	the	column	
or	the	row	containing	the	faulty	cell,	as	shown	in	Fig.	
7c	and	d.	

Taking	 into	 account	 all	 previous	 observations,	 we	
therefore	 propose	 the	 following	 strategy	 to	mitigate	
the	sensitivity	of	a	 lattice	 to	SA	 faults	 in	a	more	cost	
effective	way.	

• First,	 we	 synthesize	 the	 lattice	 with	 the	
Altun-Riedel	 synthesis	 method,	 which	
provides	lattices	less	sensitive	to	SA	faults,	as	

experimentally	 verified	 (see	 [20]).	 As	 a	
matter	of	fact,	the	more	compact	the	lattice	is,	
the	higher	the	output	function	sensitivity	to	
SA0	or	SA1	faults.	

• Second,	 we	 apply	 the	 Algorithm	
ChooseAndPermute	described	in	Section	5	as	
a	 further	 processing	 step	 after	 logic	
optimization,	 in	 order	 to	 improve	 the	
resiliency	of	the	original	lattice.	

• For	a	given	logic	function,	if	a	SA0	or	SA1	fault	
affects	a	robust	cell,	as	identified	by	the	fault	
injection	campaign,	the	lattice	computes	the	
correct	 output,	 and	 we	 do	 not	 need	 any	
further	 action	 of	 applying	 fault	 tolerant	
strategy.	

• Otherwise,	if	an	injected	SA0	fault	is	proven	
to	be	critical	for	the	output	value,	the	column	
containing	that	defective	cell	is	duplicated	by	
a	spare	column	using	multiplexers.	Similarly,	
in	 case	 of	 a	 SA1,	 the	 row	 that	 contains	 the	
defective	cell	is	duplicated	by	a	spare	row.	

7	Experimental	Evaluation	 

This	section	reports	experimental	results	on	the	fault	
sensitivity	of	switching	lattices	face	to	the	single	stuck-	
at-fault	model	(SA0	and	SA1).	Our	goal	is	to	determine	
strategies	that	allow	us	to	obtain	less	sensitive	to	SA0	
and	SA1	faults	implementations	for	any	logic	function.	
For	 this	purpose,	 for	 a	 selected	benchmark,	 for	 each	
circuit	 from	the	benchmark	we	consider	six	different	
lattices:		

• L:	initial	generic	lattice	that	implements	the	
function,	 where	 no	 algorithms	 have	 been	
applied	to	maximize	the	number	of	adjacent	
cells	 containing	 the	 same	 literal	 (i.e.,	 [3]	
method)	

• Lr	 :	 lattice	 obtained	 by	 the	 PermuteRows	
algorithm;	

• Lc:	 lattice	 obtained	 by	 the	 PermuteColumns	
algorithm;	

• Lrc	 :	 lattice	 obtained	 by	 applying	 both	
PermuteRows	 and	 PermuteColumns	
algorithms	in	the	same	time;	

• Ll:	 lattice	 obtained	 by	 the	 ChooseLiteral	
algorithm.	

• Lc&p:	 lattice	 obtained	 by	 applying	 the	
ChooseAndPermute	algorithm.	

The	permutation	of	rows	and	columns	as	well	as	the	
computation	 of	 the	 best	 combinations	 of	 rows	 and	
columns	has	been	done	by	using	linear	optimizer	GLPK	
(GNU	 Linear	 Programming	 Kit).	 The	 simulation	 of	
GLPK	on	each	input	case	is	stopped	after	1	hour	in	case	
of	an	optimal	solution	is	not	found.	If	the	simulation	is	
stopped	 after	 1	 hour	 without	 obtaining	 the	 optimal	
solution,	 GLPK	 still	 produces	 a	 metric.	 This	 metric	
represents	 the	 percentage	 of	 the	 maximum	 relative	
gap	between	the	value	of	the	objective	function	for	the	
best	 known	 integer	 feasible	 solution	 and	 the	 global	
bound	 for	 the	exact	 integer	optimum.	 In	Table	1,	we	
mark	these	cases	with	the	symbol	‘⋆’.		

For	 a	 given	 a	 benchmark	 -	 LGSynth93	 [30],	 we	
computed	the	6	lattices	for	each	function	and	in	each	



of	 them	 we	 performed	 error	 injection	 campaigns.	
During	these	campaigns,	SA0	and	SA1	faults	have	been	
uniformly	 injected	 in	 the	 lattices,	 a	 single	 fault	 at	 a	
time,	 and	 metrics	 described	 in	 Section	 3	 have	 been	
computed	in	order	to	evaluate	the	proposed	strategies.	
The	experiments	have	been	run	on	a	machine	with	two	
Intel	 Xeon	 E5-2683	 for	 a	 total	 of	 64	 CPUs	 and	 756	
GByte	of	main	memory,	running	Linux	CentOS	7.	The	
benchmarks	 functions	 are	 expressed	 in	 PLA	 form.	 A	
total	of	about	620	functions	were	considered,	and	each	
function	has	been	implemented	as	a	separate	Boolean	
function.	 The	 software	 used	 for	 fault	 injection	
simulations	is	written	in	C++.	

As	the	fault-injection	simulations	are	preformed	on	all	
the	possible	inputs,	which	are	exponential	in	number,	
we	considered	only	benchmarks	whose	corresponding	
lattices	have	a	number	of	variables	smaller	or	equal	to	
8.	 Note	 that	 this	 limitation	 is	 due	 to	 the	 onerous	
procedure	for	the	fault	simulation,	and	it	is	not	due	to	
the	 proposed	 algorithms.	 In	 fact,	 the	 proposed	
algorithms	can	be	applied	to	the	entire	benchmark	set.	

In	Table	1	we	report	the	sensitivity	of	lattices	to	SA0	
and	 SA1	 faults.	 Due	 to	 lack	 of	 space,	 the	 reported	
values	in	table	I	belong	to	a	much	smaller	subset	of	the	
functions.	The	first	column	reports	the	name	and	the	
output	number	of	the	considered	benchmark	function;	
the	second	column	reports	the	lattice	dimension	(r	×	s	
)	and	the	number	of	inputs	n.	The	following	columns	
report,	 by	 group	 of	 two,	 the	 results	 of	 the	 metric	
described	in	Section	3,	for	SA0	and	SA1	respectively	for	
each	computed	lattice.	

	

Fig.	7	a	Lattice	 implementation	 for	 the	benchmark	Newtag,	
built	 from	 the	 SOPs	 𝑓	 = 	 𝑥!�̅�"�̅�# + 𝑥!�̅�$�̅�# + 𝑥!�̅�"�̅�% +
	𝑥!�̅�$�̅�% + 𝑥!�̅�$�̅�" + 𝑥& +	 �̅�' + 𝑥(	 and	 𝑓) 	= 	 𝑥(�̅�'𝑥&�̅�"�̅�%�̅�# +
𝑥(�̅�'𝑥&�̅�$�̅�%�̅�# + 𝑥(�̅�'𝑥&�̅�$�̅�" + 𝑥(�̅�'𝑥&𝑥!;	 b	 a	 lattice	 for	
Newtag	with	a	spare	row	and	a	spare	column;	c	the	lattice	for	
Newtag	resilient	to	the	SA1	in	c(2,	3)	thanks	to	the	use	of	the	
spare	row;	d	the	lattice	for	Newtag	resilient	to	the	SA0	in	c(2,	
3)	 thanks	 to	 the	 use	 of	 the	 spare	 column;	 e	mapping	 of	 a	
column	into	the	spare	one,	using	multiplexers	 

Table	2	presents	in	a	more	compact	way:	1)	the	per-	
centages	of	 lattices	obtained	with	our	methods,	with	
higher	 resilience	 to	 SA	 faults	 with	 respect	 to	 the	
corresponding	lat-	tices	synthesized	with	the	standard	
Altun-Riedel	method	 (%	more	resilient	 lattices);	 and	
2)	 the	 percentages	 of	 average	 gain	 in	 resiliency	
(average	 gain).	 The	 computation	 of	 the	 percentages	
reported	in	Table	2	have	been	done	on	lattices	with	at	
least	two	columns	and	two	rows.	

First	of	all,	we	note	that	all	proposed	techniques	allow	
to	improve	the	resilience	to	SA-faults.	Second,	it	is	good	
to	note	that	higher	percentages	are	obtained	with	the	
algorithm	 ChooseAndPermute	 that	 exploits	 all	 the	
proposed	 mitigation	 approaches	 (i.e.,	 PermuteRows,	
PermuteColumns,	 and	 ChooseLiteral).	 In	 the	 case	 of	
SA0,	 the	 percentages	 obtained	 by	 applying	 the	
PermuteRows	 and	 the	 PermuteColumns	 algorithms	
are	comparable	(42%	and	44%	respectively).	On	the	
other	hand,	for	SA1	faults	(last	row	of	Table	2),	we	can	
observe	 that	 the	 PermuteRows	 method	 allows	 to	
obtain	 higher	 resilience	 percentages	 (56%)	 with	
respect	 to	 PermuteColumns	 (12%).	 The	 column	 Ll,	
referring	 to	 the	 ChooseLiteral	 method,	 shows	 the	
lowest	resilient	percentages,	as	expected;	this	is	due	to	
the	 low	number	 of	 cells	 that	 present	multiple	 literal	
choices.	 Therefore,	 this	 approach	 alone	without	 row	
and	column	permutation	is	not	 interesting.	Thus,	 the	
correct	choice	of	the	literal	in	multiple	choice	cells	is	a	
useful	feature	only	when	it	is	used	together	with	row	
and	 column	 permutations.	 In	 fact,	 the	 algorithm	
ChooseAndPermute	 gives	 better	 results	 than	 the	
strategy	 that	 exploits	 just	 permutation	 of	 rows	 and	
columns	(see	lattices	Lc&p	and	Lrc	in	Table	2).	

Therefore,	 the	 highest	 average	 resiliency	 gain	 is	
obtained	 when	 applying	 the	 ChooseAndPermute	
algorithm	 (57%	 for	 SA0	 and	 42%	 for	 SA1),	 and	 the	
lowest	 are	 obtained	 respectively	 with	 the	
PermuteRows	 method	 for	 SA0	 (17%)	 and	 with	 the	
PermuteColumns	method	for	SA1	(16%).	

The	evaluation	of	the	technique	presented	in	Section	6	
shows	that	ChooseAndPermute	method	guarantees,	as	
expected,	the	complete	lattice	resilience	to	single	SA1	
or	 SA0,	 per	 lattice.	 Further	 to	 that,	 the	 resiliency	
improvement	is	independent	of	the	lattice	size.	

Therefore,	it	could	be	useful,	in	further	studies,	to	use	
this	 method	 for	 more	 complex	 arithmetic-logic	
functions	used	in	massive	parallel	computation.	

As	a	final	consideration,	we	remark	that	the	proposed	
methods	are	designed	to	improve	the	robustness	of	the	
overall	 lattice	with	respect	to	a	single	stuck-at-faults.	
In	 order	 to	 validate	 the	 proposed	 techniques,	 we	
needed	 to	 simulate	 the	 behaviour	 of	 the	 lattices	
considering	all	possible	inputs.	To	deal	with	the	high	
computational	cost	we	have	considered	 in	 this	study	
single	 stuck-at	 fault	 only.	 Based	 on	 preliminary	
research	work	published	by	some	authors	of	this	paper	
[5,	 6],	 we	 will	 extend	 the	 sensitivity	 evaluation	 to	
multiple,	 fist	 order	 neighbours	 clustered	 SAFs,	 and	
temporary	faults	(e.g.	soft	errors),	for	which	an	error	
detection	and	correction	phase	should	be	deployed	in	
addition	to	the	redundant	fault	avoidance	remapping	
technique.





8	Conclusion	 

Emerging	nanoscale	 technologies	are	very	promising	
for	 circuit	 level	 implementation	 in	 cross-bar	
structures.	However,	 due	 to	 their	 immature	 process,	
they	 can	 have	 non-negligible	 defect	 ratio	 and	
important	variability.	In	this	paper,	we	have	proposed	
a	 method	 to	 analyze	 fault	 sensitivity	 of	 switching	
lattices	 under	 the	 single	 stuck-	 at-fault	model	 (SAF).	
Algorithmic	improvements	of	the	fault	resilience	have	
been	 proposed,	 exploiting	 different	 redundant	
schemes,	 such	 as	 literal	 selection,	 row	 or	 column	
permutations,	or	combination	of	both.	 
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