Lorena Anghel

Anna Bernasconi

Valentina Ciriani

Luca Frontini

Gabriella Trucco

Ioana Vatajelu

Stuck-At Fault Mitigation of Emerging Technologies Based Switching Lattices

Keywords: Switching lattices, Stuck-at-fault model, Fault injection, Defect avoidance, Fault tolerance

Switching lattices are two-dimensional arrays composed of two or four-terminals switches organized as a crossbar array. The idea of using regular two-dimensional arrays of switches for Boolean function implementation was proposed by Akers in 1972. Recently, with the advent of a variety of emerging nanoscale technologies, lattices have found a renewed interest. Emerging technologies allow more complex function integration, thanks to their smaller sizes and advanta geous properties such as zero leakage current, capability to retain data when in power-off state, and almost unlimit edendurance, to name just a few appealing features. Also, implementation of new computing paradigms combining memory and logic becomes possible. However, emerging technologies show a non-negligible defect ratio and higher sensitivity to process and environment variations. The reliability challenges in adopting these technologies need to be investigated. In this paper, we analyze the resilience of switching lattices to stuck-at-fault model (SAF). We first identify the critical switches through an elaborated sensitivity methodology and extensive analysis of the lattice. Next, we propose several techniques to improve lattice resilience in the face of these types of faults, that can be implemented after lattice logic optimization steps.

Introduction

Recent years advancements in process scaling and 3D monolithic integration brought multiple possibilities for emerging devices to push further integration of integrated circuits. Nano-crossbars are among the most promising alternative solutions to continue the process scaling down [START_REF] Yan | Programmable nanowire circuits for nanopro-cessors[END_REF]. They lead to programmable logic circuits physically implemented as nano-crossbar arrays that operate similarly to the conventional programmable logic arrays (PLAs), or as molecular switch crossbar arrays, or resistive crossbar logic [START_REF] Alexandrescu | Logic synthesis and testing techniques for switching nano-crossbar arrays[END_REF][START_REF] Haselman | The future of integrated circuits: a survey of nanoelectronics[END_REF]. Due to simpler and cheaper manufacturing techniques, programmable nano-crossbars arrays present more regular and dense forms [START_REF] Chen | Nanoscale molecular-switch crossbar circuits[END_REF] being also among the best with respect to area and power efficiency [START_REF] Alexandrescu | Logic synthesis and testing techniques for switching nano-crossbar arrays[END_REF]. A given arithmetic logic function computation is mapped on a matrix of cross points that can be made of two-terminals switches i.e diodes [START_REF] Huangy | Logic gates and computation from assembled nanowire building blocks[END_REF], or resistive/memristive elements [START_REF] Snider | Computing with hysteretic resistor crossbars[END_REF] or FET transistors [START_REF] Snider | Nanoelectronic architectures[END_REF]. Four-terminals switches is also a great possibility particularly well adapted to dual logic functions implementations [START_REF] Akers | A rectangular logic array[END_REF][START_REF] Morgul | Integrated synthesis methodology for crossbar arrays[END_REF].

The memrisitve based cross points represents probably the most prominent solutions explored by many research groups [START_REF]ITRS: The International Technology Roadmap for Semiconduc-tors[END_REF], adopted due to their potential to scale down to 5nm offering much higher integration densities and compatibility to classical CMOS process. In addition to that, memristive non volatile memory (NVM) technologies have other very appealing features, such as zero leak-age currents, longer retention of their data in the power off state, normally-off/instant-on capabilities, almost unlimited endurance. The non-volatility of these devices offer possibilities for memory-intensive computing paradigms, enabling non Von-Neuman logic-inmemory paradigm [START_REF] Borghetti | Memristive switches enable stateful logic operations via material implication[END_REF]. This paradigm, allows logic or arithmetic operations to be directly processed in the memory. Due to their versatile circuit-level implementations, memristive crossbar arrays are considered as serious candidate for pattern recognition, classifications, decision-making tasks processing, inher-ent to neuromorphic applications [START_REF] Dengy | RRAM crossbar array with cell selection device: a device and circuit interaction study[END_REF][START_REF] Ni | Distributed inmemory computing on binary RRAM crossbar[END_REF]. This paradigm allows logic and arithmetic operations to be directly pro-cessed in the memory within the crossbar array (In Memory Computing), making them attractive from neuromorphic applications such as prediction, classification and decision-making problems [START_REF] Dengy | RRAM crossbar array with cell selection device: a device and circuit interaction study[END_REF][START_REF] Ni | Distributed inmemory computing on binary RRAM crossbar[END_REF]. Memristive devices can be pro-grammed to store either two (binary) or more than two (ana-log) states, when multiple resistance states are used together. Several non-volatile, memristive technologies are consid-ered for the In-Memory Computing Paradigm, including Spin Transfer Torque magnetic Random Access Memory (STT RAM), Resistive Random Access Memory (ReRAM), Phase Change Random Access memory (PCRAM) to name just a few, all of them being suitable to In-Memory Comput-ing implementations.

The majority of the emerging technologies are still imma-ture, prone to important defect densities, manufacturing variations and mismatches, being also sensitive to tempera-ture and voltage variations. Spot defects, dust, assemblage faults, imperfections of the fabrication process, instabilities, variations and mismatches drastically affect the fabrication yield but can also affect the reliability of the circuit in the field. They induce parametric faults, or logic faults and can be classified into two categories: soft faults and hard faults [START_REF] Degraeve | Causes and consequences of the stochastic aspect of filamentary RRAM[END_REF][START_REF] Vatajelu | Challenges and solutions in emerging memory testing[END_REF]. Soft faults are caused by different cycleto-cycle or device-to-device variations during the fabrication, but they can also manifest in-field during read/write opera-tions, or as retention faults where the content of a cell can be lost after some time [START_REF] Xial | Technological exploration of RRAM crossbar array for matrix-vector multiplication[END_REF]. Hard faults are provoked either by fabrication steps as mentioned before, or by spot defects, extreme parametric variations or by the forming process or the continuous stress. The failures will induce read and write failures on the memory cell, as well as stuck-at faults. One typical type of hard fault occurs when the resistance of a resistive memory cell will no longer change; this cate-gory includes stuck-at-0 (SA0) and stuck-at-1 (SA1) faults caused by fabrication techniques and limited endurance. In this case, the faulty device is stuck-at-high resistance or stuck-atlow resistance state. These situations occur with a significantly high probability. It is reported that 63% of a storage array based on memristor is fault free in a 4Mb resis-tive RAM, with about 10% of the cells being of Stuck-At type [START_REF] Chen | Rram defect modeling and failure analysis based on march test and a novel squeeze-search scheme[END_REF]. In [START_REF] Xia | Faulttolerant training with on-line fault detection for RRAMbased neural computing systems[END_REF] the authors showed that 10% of bro-ken memristor cells will lead to substantial degradation of the accuracy and overall performances of a convolutional neural network implemented on this structure. This study has been performed on crossbar arrays with binary resistive devices, and the considered faults are uniformly distributed. In addition, as mentioned previously, variability of memris-tor resistances during write operations may also push the device in a hard Stuck-at fault. However, to the best of our knowledge very limited research has been dedicated so far to analyze fault models of resistive devices where mul-tiple resistances are used. Therefore most research works considered stuck-at faults as predominant to perform yield analysis. Since the fabrication technology of crossbar cells is sensitive to different process steps (i.e., forming), it is very difficult to prevent stuck-at faults during the fabrication process [START_REF] Chen | Rram defect modeling and failure analysis based on march test and a novel squeeze-search scheme[END_REF][START_REF] Degraeve | Causes and consequences of the stochastic aspect of filamentary RRAM[END_REF]. Understanding the impact of the sensitivity to stuck-at faults on the mapping algorithm is a key step for future developments. Yield analysis of memristive based nanocross-bars for uniformly and clustered distributed defects have been performed in [START_REF] Kangw | Yieldandreliabilityimprovementtechn iques for emerging nonvolatile stt-mram[END_REF][START_REF] Naeimi | A greedy algorithm for tolerating defective crosspoints in nanopla design[END_REF][START_REF] Su | Defect-tolerant logic mapping on nanoscale crossbar architectures and yield analysis[END_REF]. Also various testing methods have been proposed in [START_REF] Chen | Fault modeling and testing of 1T1R memristor memories[END_REF][START_REF] Hamdioui | Testing open defects in memristor-based memories[END_REF][START_REF] Kangw | Yieldandreliabilityimprovementtechn iques for emerging nonvolatile stt-mram[END_REF][START_REF] Kannan | Sneak path testing and fault modeling for multilevel memristor-based memories[END_REF]. Testing provides a faulty cells map that can be used not only for identifying faulty devices but it also helps managing the programmability around defected cells through algorithm remapping [START_REF] Xia | Faulttolerant training with on-line fault detection for RRAMbased neural computing systems[END_REF]). This generally requires important area overheads, as designer has to take into account margins in terms of sufficient spares organized in columns, lines or blocks.

In this paper, our contributions are as follows:

1. The sensitivity of arbitrary logic function decomposi-tion algorithm on a given size crossbar is analyzed face to SA0 and SA1.

We propose fault injection methods and tools

for cross-bar arrays targeting stuck-at fault (SA1 or SA0) model. The fault injection algorithm uses independent uniform distribution as reported in [START_REF] Xia | Faulttolerant training with on-line fault detection for RRAMbased neural computing systems[END_REF].The experimental fault injection simulation aims at validating the decomposi-tion method with single fault injection at the time.

3.

The prior sensitivity analysis helps identifying critical switches. Further to that we propose mitigation factors to strengthen the mapping algorithm while keeping the crossbar array area minimal. This paper is an extension of a first contribution of the same authors published in IEEE Latin American Test Symposium in 2019 [START_REF] Anghel | Fault mitigation of swithcing lattices under stuck-at fault model[END_REF]. The innovative aspects here are related to new properties of synthesis algorithms for lattices, and a new algorithm to increase the fault tolerance level of lattices mapped on a defective crossbars. This is proved by new evaluation results.

The paper is organized as follows. Section 2 explain the logic function synthesis method on crossbar switching arrays. Section 3 discuss the fault model and the sensitivity analysis method. Sections 4 and 5 discuss methods for mitigation and finally Section 7 presents sensitivity results.

Switching Lattices and Synthesis Methods

Multi-terminals switching lattices are typically used as higher level models of switching nano-crossbar arrays. In fact, the circuit is represented by a single lattice composed by a two-dimensional array of two or fourterminal switches. Each of the terminals of a given switch links to its neighbours of the crossbar cell, so that these are either all connected (when the switch is ON), or all disconnected (when the switch is OFF). A Boolean function can be implemented by a lattice by ensuring proper connectivity across it, such as:

• in the case of the four-terminal switches, each terminals of the switch is controlled by a literal;

• if the literal takes the value 1, the corresponding switch is connected to its four neighbours, otherwise it is considered as non connected;

• the function output yields 1 (output = 1) if and only if there exists a connected path between two opposing edges of the lattice, i.e., the top and the bottom edges;

• input assignments that leave the edges unconnected correspond to an invalid output (output = 0).

For instance, the network of switches shown in Fig. 1a corresponds to the lattice form depicted in Fig. 1b, which implements the function f = x 1 x 2 x 3 + x 1 x 2 + x 2 x 3 . If we assign the values 1, 1, 0 to the variables x 1 , x 2 , x 3 , respectively, we obtain paths of gray square connecting the top and the bottom edges of the lattices (Fig. 1c), on this assignment f output is 1. On the contrary, the assignment x 1 = 0,x 2 = 0,x 3 = 1, on which f evaluates to 0, does not create any path from the top to the bottom edge (Fig. 1d).

The synthesis objective on a lattice consists in finding an assignment of literals to switch terminals in order to implement a given logic function, the lattice being of the minimal size. Within this abstraction level, the size of a lattice is measured in terms of the number of switches in the lattice.

A switching lattice can similarly be equipped with left edge to right edge connectivity, so that a single lattice can implement two different functions. This fact is explained in [START_REF] Altunm | Logic synthesis for switching lattices[END_REF] where the authors propose a synthesis method for switching lattices simultaneously implementing a function f according to the connectivity between the top and the bottom plates, and its dual function f D according to the connectivity between the left and the right plates. Recall that the dual of a Boolean function f depending on n binary variables is the function f D such that f(x 1 ,x 2 ,...,x n) = f D (x 1 , x 2 , . . . , x n). This method produces lattices with a size that grows linearly with the number of products in an non-redundant sum of product (SOP) representation of f , and consists of the following three steps:

1. find an non-redundant, or a minimal, SOP representa-tion for f and f

D : SOP(f) = p 1 +p 2 +•••+p s and SOP(f D)=q 1 +q 2 +•••+q r ;
2. assign each product p j (1 ≤ j ≤ s) of SOP(f) to a column and each product q i (1 ≤ i ≤ r) of SOP(f D) to a row;

3. forall1≤i≤randall1≤j≤s,assigntotheswitch on the lattice site (i, j) one literal which is shared by q i and p j (the fact that f and f D are dual guarantees that such a shared literal exists for all i and j).

Note that, we can have a couple of products q i and p j such that the intersection of their literals is a set of cardinality greater than one. For building the corresponding lattice, the algorithm imposes to choose randomly one of the common literals. In this case, we denote the corresponding cell (i,j) as a cell with multiple choice. Moreover, note that, in Step 2 of the synthesis algorithm, the assignments of products to rows and columns is random. For example, consider the function f in ISOP form f = x 1 x 2 + x 1 x 3 + x 2 x 3 and its dual f D = x 1 x 2 + x 1 x 3 + x 2 x 3 . The lattice containing the cells with multiple choice is depicted in Fig. 2. At the top of Fig. 3, we have two possible lattices derived from the former by choosing a literal in the cells with multiple choices.

A second approach to the synthesis of minimal-sized lattices is proposed in [START_REF] Gangeg | Synthesizingopti mal switching lattices[END_REF], where the authors transform the synthesis problem into a satisfiability problem in quantified Boolean logic and solve it using a quantified Boolean formula solver.

Single Stuck-At-Faults in Lattices

The well-known Stuck-at Fault (SAF) model is the most used logic model covering a large number of defects, and is classically used by the semiconductor industry for many years. In CMOS and emerging technologies, the SA model assumes that a defect causes a basic cell input or output to be fixed to either 0 or 1. Thus, all defects covered by this logic fault model can be further detected by stuck-at-fault tests generated by structural, functional, or cell-aware ATPG. In a lattice, a SAF can be similarly modeled as a fixed value (0 or 1) of the faulty cell (i.e., a four-terminal switch) of the lattice. As our objective is to evaluate the sensitivity of a lattice with respect to SA0 and SA1 faults. We propose some metrics to quantify for a given function, the average number of defective outputs of this function. In this section we briefly summarize the methodology described in [START_REF] Morgul | Integrated synthesis methodology for crossbar arrays[END_REF] for the fault injection, which we exploit for the sensitivity analysis of our approach. The fault injection is performed uniformly by substituting a single cell at a time with an always stuck-at-1 (SA1) or stack-at-0 (SA0) cell. The fault injection procedure is then repeated for each cell of the lattice . The simulation algorithm generates all 2n possible inputs and for each input x1, . . . , xn the output is compared with the correct one (i.e., f (x1, . . . , xn). Let r and s be the number of rows and columns, respectively,inalattice. Let 𝐸 !" # (resp., 𝐸 !" $), with1≤i≤r, 1 ≤ j ≤ s, be the number of defective outputs when a SA0 (resp., SA1) affects a cell (i,j) of the given lattice. 𝐸 !" # (resp., 𝐸 !" $) is equal to 0 when, for any possible input, the output of the function mapped on the lattice is not affected by the SAF in the cell (i,j). In this case, the cell (i, j) is considered robust w.r.t. SA0 (resp., SA1). Let R 0 (resp., R 1) be the total number of robust cells w.r.t. SA0 (resp., SA1) in the lattice.

𝐸 # = ∑ ∑ 𝐸 !" # "%& "%$!%' !%$ (resp., 𝐸 $ = ∑ ∑ 𝐸 !" $ "%& "%$!%' !%$
) be the total number of defective outputs with respect to SA0 (resp. SA1), considering the entire lattice. represented by the lattice in Fig. 4a (derived with the method in [START_REF] Altunm | Logic synthesis for switching lattices[END_REF]). Figure 4b andc show the sensitivity map containing the value 𝐸 !" # and 𝐸 !" $ in each cell.

In order to evaluate the sensitivity of a lattice to SA0 and SA1 defects, we propose a metric that computes the average number of defective outputs: Sensitivity of lattice is expressed as the ratio between the total number of inputs that are able to propagates a SA0 or a SA1 into a faulty output and the total number of possible inputs. In the case of SA0, 𝑆 , # = 𝐸 # /(2 -(𝑟 × 𝑠)), and for SA1, 𝑆 , $ = 𝐸 $ /(2 -(𝑟 × 𝑠)).

Analysis of Lattices Synthesized with the Altun-Riedel Method

In this paragraph, some characteristics of the switching lattices obtained with the Altun-Riedel synthesis method [START_REF] Altunm | Logic synthesis for switching lattices[END_REF] are discussed. These characteristics will be further exploited to enhance their fault tolerance.

First of all, we note that the Altun-Riedel method allows definition of many equivalent lattices for the given function f . Indeed, in the second step of the procedure (see Section 2) each product in an nonredundant SOP for f is assigned to a column, and each product in an non-redundant SOP for the dual 𝑓 . is assigned to a row, without any specific rule for these assignments. As a consequence, any permutation of the products in SOP(f) and in SOP(𝑓 .) gives rise to a correct, and possibly different, lattice for f . Moreover, once each pair of products (one from SOP (f) and one for SOP(𝑓 .)) has been assigned to a lattice cell, the controlling literal is selected choosing arbitrarily one of the literals shared by both products. Thus, we could have multiple choices for the controlling literals in some lattice cells.

Taking into account these degrees of freedom, we now evaluate the number of potentially different lattices produced by this synthesis procedure. Suppose that SOP(f) contains s products, and SOP(𝑓 .) contains r products. The lattice for f function has the size of r × s.

Let us denote by S(i,j) the subset of literals shared by the prod-ucts assigned to the cell (i, j), and by 𝑠 !," the cardinality of this set. We have

Proposition 1

The number Nf of lattices for f produced by the Altun-Riedel method is given by:

𝑁 0 = 𝑟! 𝑠! ∏ 𝑠 !," $1!1' $1"1&
Proof : Immediately follows since there are r! ways to assign the products of SOP(𝑓 .) to the rows of the lattice, s ! ways to assign the products of SOP(f) to the columns, and s i,j ways to select the controlling literals of each cell (i, j). ☐

Observe that N f can be exponential in the lattice size:

Corollary 1 Let f depend on n binary variables. Then

𝑁 0 = 𝑂(𝑟! 𝑠! 𝑛 '&)
Proof Easy to follow as si,j ≤ n. ☐ Thus, the Altun-Riedel method provides many equivalent lattices for the same specified function f , all of them of r ×s size. These lattices may exhibit a different SAF sensitivity. Consider, for example, the lattice for f = x 1 x 2 + x 1 x 3 + x 2 x 3 depicted in Fig. 2, with cells with multiple choice on the diagonal. Starting from this lattice we can build up to 288 = 3!3!8 lattices by permuting rows and columns and by choosing the controlling literal for the diagonal cells. For instance, by simply making different choices on the diagonal cells, we can obtain the two lattices presented in Fig. 3. We can see that they exhibit different sensitivities to SA0 and SA1 defects: S L 0 = 1/12 and S L 1 = 1/24 for the first lattice, and S L 0 = 1/9 and S L 1 = 1/18 for the second one. In particular, the first lattice contains more robust cells, probably as a consequence of the many adjacent cells with the same controlling literal that might help contain the effect of a faulty cell. Therefore, instead of picking a random permutation of the products in the starting assignment of SOPs, and selecting arbitrarily the controlling literal for all cells with multiple choice, one should exploit the degrees of freedom offered by the Altun-Riedel method to detect, among the N f different lattices, the most resilient one. This issue will be discussed in the next Section 5.

Another interesting property of lattices synthesized with the Altun-Riedel method is that the function implemented by the lattice does not change after the insertion of a duplicate of a column or of a row, as proved in the following proposition.

Proposition 2 Let L be a lattice for a function f obtained with the Altun-Riedel method. The lattice L ′ derived inserting in L a duplicate of a column or of a row, implements the same function f .

Proof The thesis is a direct consequence of the synthesis procedure, as adding a copy of a column means adding a copy of a product in the SOP for f, while adding a copy of a row means adding a copy of a product in the SOP for 𝑓 . , and this does not change the functions f and 𝑓 . . More precisely, we can observe that in the proof of correctness of the Altun-Riedel method, it is crucial that all products in SOP(f) and SOP(𝑓 .) correspond to prime implicants, but the proof holds even if we replicate one or more products in the SOP expressions. Indeed, in this case the two functions f and 𝑓 . are still implemented as subsets of all top-tobottom and left-to-right paths of the new lattice L′, and this implies that L′ correctly computes f and 𝑓 . (for more details, see Theorem 1 in [START_REF] Altunm | Logic synthesis for switching lattices[END_REF]). ☐

As a matter of fact, we exploit this property to enhance the single stack-at fault tolerance of a lattice, as further discussed in Section 6.

Finally, observe that the possibility of permuting and duplicating rows and columns is not guaranteed in lattices synthesized with other strategies. Consider for instance the 3 × 3 lattice L implementing the function

𝑓 = 𝑥 $ 𝑥 2 𝑥 3 &&& + 𝑥 $ 𝑥 2 &&&𝑥 3 + 𝑥 $ &&&𝑥 2 𝑥 3
(see also Fig. 5a). This lattice has not been synthesised with the Altun-Riedel method, which would have instead produced a lattice of size 4 × 3. In fact, permuting columns of L and inserting in L a duplicate of a column, we can derive the two lattices in Fig. 5b andc, respectively. However, we can observe that these lattices do not implement the function f , as they contain an valid path for the through x 1 x 2 x 3 .

Construction and Characterization of Resilient Lattices

Let us consider a Boolean function f synthsized with Altun-Riedel method [START_REF] Altunm | Logic synthesis for switching lattices[END_REF] . From the demonstration shown in Section 4, the synthesis algorithm can generate different possible lattices for this function f , which are exponential in number. The main aim of this section is to study efficient strategies to select the lattice that is less sensitive to cell SA0 or SA1 faults.

Let's call two cells in a lattice as being in the first-order neighborhood or adjacent if they are in the same column and in two adjacent rows or in the same row and in two adjacent columns. Consider the two lattices shown in Fig. 6 both obtained by applying Altun-Riedel method to the function f = x 1 + x 2 x 4 x 5 + x 3 x 4 x 5 . Let us assume a SA0 affects the first cell on the top-left (depicted in gray in the lattices). While the lattice on the left leads to the computation of an erroneous output, equivalent to a different function, i.e., f ′ = x 1 + x 3 x 4 x 5 , the lattice on the right computes the correct function even in the presence of the SA0 fault. In addition, we can observe that the lattice on the right is derived from the first one by a simple permutation of columns. In particular, in the second lattice, two similar columns are adjacent. This example gives us the intuition that, in order to decrease the sensitivity to a defective cell, we should bring cells containing the same literal in the first-order neighborhood. In fact, the product that is not computed anymore by the faulty version of the first lattice (i.e., x 2 x 4 x 5), is computed by the second lattice using a connection path starting at the top of the second column going down and then on the left (i.e., path x 4 , x 5 , x 5 , x 2). Note that this connection path is not possible in the lattice on the left since the two involved columns are not adjacent.

Motivated by this observation, in the next sections we will describe several methods that through different permutations bring those cells containing the same con-trolling literals in a first-order neighborhood. Let us first give a metric that simplify the description of the proposed technique. . In order to maximize the number of adjacent cells containing the same literal, we must maximize aL.

As already observed, the synthesis algorithm proposed by Altun-Riedel produces a lattice containing cells with multiple choices (e.g., the lattice shown in Fig. 2). The approaches we propose here in this paper are therefore based on three algorithms, each starting with a lattice (containing cells with multiple choices) produced by Altun-Riedel's algorithm with the following modifications:

•

PermuteColumns: make a random choice for the cells with multiple choices and permute the columns in order to maximize the number of adjacent cells containing the same literal (i.e., aL).

•

PermuteRows: make a random choice for the cells with multiple choices and permute the rows of a given lattice in order to maximize the number of adjacent cells containing the same literal (i.e., aL).

•

ChooseLiteral: given a lattice containing cells with multiple choices, in each cell with multiple choices choose the literal that maximize the number of adjacent cells containing the same literal (i.e., aL).

Note that the three algorithms return one of the Nf possible lattices produced by Altun-Riedel's algorithm.

In other words, the proposed procedures make deterministic choices aiming at reducing the sensitivity to SA faults, instead of the random choices performed by the standard Altun-Riedel's algorithm.

In order to combine the three former approaches, we define a new metric that evaluate the neighborhood of two cells with multiple choices. Suppose that we have two adjacent cells with multiple choices (c1 and c2) containing the sets of literals L1 and L2, respectively. The neighborhood of two adjacent cells n(c1 , c2) is the cardinality of their intersections, i.e., n(c1,c2) = |L1∩L2|. The neighborhood (n(L)) of a lattice L containing cells with multiple choices is the sum of the neighborhoods of all the couples of adjacent cells contained in L.

We propose a strategy that starts with a lattice containing cells with multiple choices L produced by Altun-Riedel's algorithm. Then the following algorithm is applied:

Algorithm ChooseAndPermute:

1. permute rows and columns in order to maximize n(L), 2. in each cell with multiple choices, choose the literal that maximizes the number of adjacent cells containing the same literal (i.e., aL).

Further Improvements of the Overall Lattice Resilience

In this section, we show how the resiliency to single stuck-at-faults (SA0 or SA1) of a switching lattice synthesized with the Altun-Riedel method can be further enhanced by duplicating selected columns or rows. First of all, we observe that if we duplicate a lattice column containing a non-robust cell c with respect to a SA0 (or a SA1) fault, then the new lattice becomes resilient to the fault in c, as it is proved by the following proposition.

Proposition 3 For a given function f , let L be a lattice obtained with the Altun-Riedel method, and let c(i, j) be a defective cell with respect to a SA0 (of SA1

). The lattice L′ derived from L by adding a duplicate of the j -th column still computes f and is resilient to the SA0 in c(i, j).

Proof Let L′ be the lattice derived from L by adding a duplicate of the j-th column (w.l.o.g, suppose that the duplicate column has been added as new last column on the right side of the initial lattice). Recall from Proposition 2 that the new lattice L′, without stuck-at faults, still computes f and f D . Now, consider a SA0 (or SA1) fault in L′ affecting cell c(i, j), and observe that, since we are injecting the value 0 (or 1) in one cell of the lattice, the lattice affected by the fault is always correct on the off-set of f . In fact, a cell affected by a SA0 (or SA1) could imply that the lattice computes a faulty 0 (or 1) for an on-set input. Thus, to prove that L′ is robust with respect to the SA0 (SA1) at c(i, j) we must show that it is correct on the on-set of f . Consider an on-set minterm w, and let p be a product that covers w in the SOP for f used to build the lattice.

The column of L′ associated to p contains, by construction, a literal from p in each cell, and forms a top-to-bottom accepting path for w. Suppose that w is covered by the product corresponding to the j-th defective column of L. Then, the duplication of this column guarantees the presence of a top-to-bottom accepting path in L′ that can replace the path blocked by the SA0 (SA1) fault in c(i, j). ☐

This strategy can be applied for SA0 or to SA1, and consists in the duplication of a row containing a nonrobust cell in order to make the lattice resilient to considered faults.

Proposition 4 Let L be a lattice for a function f obtained with the Altun-Riedel method, and let c be a defective cell with respect to SA1 fault. The lattice L′ derived adding to L a duplicate of the i-th row still computes f and is resilient to a SA1 in c(i, j).

Proof Let L′ be the lattice derived from L adding a duplicate of the i-th row (w.l.o.g, suppose that the duplicate row has been added at the bottom of the lattice). Recall from Proposition 2 that the new lattice L′ still computes f and f D . Now, consider a SA1 fault in L′, in cell c(i,j). Since the value 1 is now injected into one cell of the lattice, the faulty lattice is always correct on the on-set of f . Thus, to prove that L′ is robust with respect to the SA1 in c(i, j) we must show that it is correct on the off-set of f , since a cell SA1 could imply that the lattice computes a faulty 1 for an off-set input.

Let us consider a minterm w such that f (w) = 0, and a minterm w′ obtained by complementing all literals in w. By the definition of the dual function, we know that f D (w′) = 1. Let p be a product that covers w′ in the SOP for f D used to build the lattice. The row of L′ associated to p contains, by construction, a literal from p in each cell, and forms a left-to-right accepting path for w . On the other hand, each cell on this row evaluates to 0 on input w (so that the non faulty lattice correctly outputs 0 on w). Suppose that w′ is covered by the product of f D corresponding to the i-th row of L. Then, the duplication of the i-th defective row guarantees the presence of a row where each cell evaluates to 1 on w′ and to 0 on w, blocking any top-to-bottom accepting path possibly produced by the SA1 in c(i, j). ☐ Note that, in both cases (column or row duplication) the lattice implements correctly the original function f from top to bottom, even in presence of a SA fault in one of the cells. However, the function computed taking into account the left-to-right connectivity could be different from the dual of f. In fact, the defected cell c(i, j) can still be critical for f D and may induce changes on the output computed by L′ with respect to the leftto-right connectivity. An immediate consequence of Propositions 3 and 4 is that we can always obtain a lattice for a function f resilient to a single SA fault in any one of its cells, by duplicating all columns and all rows of a lattice for f derived with the Altun-Riedel method.

Corollary 2 A lattice L synthesized according to the Altun-Riedel method can be transformed into a resilient one to single stuck-at fault affecting any single cell by duplicating each row and each column.

Proof Follows from Propositions 3 and 4. ☐ Note however that this strategy if prohibitive as the size of the lattice becomes four times bigger.

A better approach in obtaining a resilient lattice to a single SA0 or SA1 is to pre-compute in advance a lattice with one spare row and one spare column, at the bottom and at the right side, initially filled with ones or zeroes, respectively, as depicted in Fig. 7b for the benchmark function Newtag. The area of the lattice increases from r × s to (r + 1) × (s + 1), which is better than 4(r × s) obtained previously. The idea is to exploit the additional column and row to duplicate a row, or a column, containing a defective cell. To this aim, it is necessary to connect a multiplexer, whose inputs are all the original input literals, to each spare cell in order to map the desired literal to the switch in the cell. The multiplexer can be realized using 2n single lattice cells that have the top connected to the corresponding variable, the output connected to the spare cell and a control signal that controls the multiplexer cell, as shown in Fig. 7e. At the beginning of the test procedure, the spare column will be filled with zeroes and the spare row with ones; if a defect is detected, then the spare cells are used to duplicate the column or the row containing the faulty cell, as shown in Fig. 7c andd.

Taking into account all previous observations, we therefore propose the following strategy to mitigate the sensitivity of a lattice to SA faults in a more cost effective way.

• First, we synthesize the lattice with the Altun-Riedel synthesis method, which provides lattices less sensitive to SA faults, as experimentally verified (see [START_REF] Morgul | Integrated synthesis methodology for crossbar arrays[END_REF]). As a matter of fact, the more compact the lattice is, the higher the output function sensitivity to SA0 or SA1 faults.

•

Second, we apply the Algorithm ChooseAndPermute described in Section 5 as a further processing step after logic optimization, in order to improve the resiliency of the original lattice.

•

For a given logic function, if a SA0 or SA1 fault affects a robust cell, as identified by the fault injection campaign, the lattice computes the correct output, and we do not need any further action of applying fault tolerant strategy.

•

Otherwise, if an injected SA0 fault is proven to be critical for the output value, the column containing that defective cell is duplicated by a spare column using multiplexers. Similarly, in case of a SA1, the row that contains the defective cell is duplicated by a spare row.

Experimental Evaluation

This section reports experimental results on the fault sensitivity of switching lattices face to the single stuckat-fault model (SA0 and SA1). Our goal is to determine strategies that allow us to obtain less sensitive to SA0 and SA1 faults implementations for any logic function.

For this purpose, for a selected benchmark, for each circuit from the benchmark we consider six different lattices:

• L: initial generic lattice that implements the function, where no algorithms have been applied to maximize the number of adjacent cells containing the same literal (i.e., [The permutation of rows and columns as well as the computation of the best combinations of rows and columns has been done by using linear optimizer GLPK (GNU Linear Programming Kit). The simulation of GLPK on each input case is stopped after 1 hour in case of an optimal solution is not found. If the simulation is stopped after 1 hour without obtaining the optimal solution, GLPK still produces a metric. This metric represents the percentage of the maximum relative gap between the value of the objective function for the best known integer feasible solution and the global bound for the exact integer optimum. In Table 1, we mark these cases with the symbol '⋆'.

For a given a benchmark -LGSynth93 [START_REF] Yang | Logic synthesis and optimization benchmarks user guide version 3.0. User guide[END_REF], we computed the 6 lattices for each function and in each of them we performed error injection campaigns. During these campaigns, SA0 and SA1 faults have been uniformly injected in the lattices, a single fault at a time, and metrics described in Section 3 have been computed in order to evaluate the proposed strategies.

The experiments have been run on a machine with two Intel Xeon E5-2683 for a total of 64 CPUs and 756 GByte of main memory, running Linux CentOS 7. The benchmarks functions are expressed in PLA form. A total of about 620 functions were considered, and each function has been implemented as a separate Boolean function. The software used for fault injection simulations is written in C++.

As the fault-injection simulations are preformed on all the possible inputs, which are exponential in number, we considered only benchmarks whose corresponding lattices have a number of variables smaller or equal to 8. Note that this limitation is due to the onerous procedure for the fault simulation, and it is not due to the proposed algorithms. In fact, the proposed algorithms can be applied to the entire benchmark set.

In Table 1 we report the sensitivity of lattices to SA0 and SA1 faults. Due to lack of space, the reported values in table I belong to a much smaller subset of the functions. The first column reports the name and the output number of the considered benchmark function; the second column reports the lattice dimension (r × s) and the number of inputs n. The following columns report, by group of two, the results of the metric described in Section 3, for SA0 and SA1 respectively for each computed lattice. Table 2 presents in a more compact way: 1) the percentages of lattices obtained with our methods, with higher resilience to SA faults with respect to the corresponding lat-tices synthesized with the standard Altun-Riedel method (% more resilient lattices); and 2) the percentages of average gain in resiliency (average gain). The computation of the percentages reported in Table 2 have been done on lattices with at least two columns and two rows.

First of all, we note that all proposed techniques allow to improve the resilience to SA-faults. Second, it is good to note that higher percentages are obtained with the algorithm ChooseAndPermute that exploits all the proposed mitigation approaches (i.e., PermuteRows, PermuteColumns, and ChooseLiteral). In the case of SA0, the percentages obtained by applying the PermuteRows and the PermuteColumns algorithms are comparable (42% and 44% respectively). On the other hand, for SA1 faults (last row of Table 2), we can observe that the PermuteRows method allows to obtain higher resilience percentages (56%) with respect to PermuteColumns (12%). The column Ll, referring to the ChooseLiteral method, shows the lowest resilient percentages, as expected; this is due to the low number of cells that present multiple literal choices. Therefore, this approach alone without row and column permutation is not interesting. Thus, the correct choice of the literal in multiple choice cells is a useful feature only when it is used together with row and column permutations. In fact, the algorithm ChooseAndPermute gives better results than the strategy that exploits just permutation of rows and columns (see lattices Lc&p and Lrc in Table 2).

Therefore, the highest average resiliency gain is obtained when applying the ChooseAndPermute algorithm (57% for SA0 and 42% for SA1), and the lowest are obtained respectively with the PermuteRows method for SA0 (17%) and with the PermuteColumns method for SA1 (16%).

The evaluation of the technique presented in Section 6 shows that ChooseAndPermute method guarantees, as expected, the complete lattice resilience to single SA1 or SA0, per lattice. Further to that, the resiliency improvement is independent of the lattice size.

Therefore, it could be useful, in further studies, to use this method for more complex arithmetic-logic functions used in massive parallel computation.

As a final consideration, we remark that the proposed methods are designed to improve the robustness of the overall lattice with respect to a single stuck-at-faults. In order to validate the proposed techniques, we needed to simulate the behaviour of the lattices considering all possible inputs. To deal with the high computational cost we have considered in this study single stuck-at fault only. Based on preliminary research work published by some authors of this paper [START_REF] Bernasconi | Testability of switching lattices in the stuck at fault model[END_REF][START_REF] Bernasconi | Testability of switching lattices in the cellular fault model[END_REF], we will extend the sensitivity evaluation to multiple, fist order neighbours clustered SAFs, and temporary faults (e.g. soft errors), for which an error detection and correction phase should be deployed in addition to the redundant fault avoidance remapping technique.

Conclusion

Emerging nanoscale technologies are very promising for circuit level implementation in cross-bar structures. However, due to their immature process, they can have non-negligible defect ratio and important variability. In this paper, we have proposed a method to analyze fault sensitivity of switching lattices under the single stuck-at-fault model (SAF). Algorithmic improvements of the fault resilience have been proposed, exploiting different redundant schemes, such as literal selection, row or column permutations, or combination of both.

Fig. 1 AFig. 2 AFig. 3

 123 Fig. 1 A four terminal switching network implementing the function f = x1x2x3 + x1x2 + x2x3 a; its corresponding lattice form b; the lattice evaluated on the assignments 1,1,0 (c) and 0, 0, 1 (d), with grey and white squares representing ON and OFF switches, respectively

Fig. 4 a

 4 Fig. 4 a Lattice design for the example function f and its sensitivity map for (b) SA0 and (c) SA1

Fig. 5 A

 5 Fig. 5 A lattice L for 𝑓 = 𝑥 ! 𝑥 " 𝑥 # $$$ + 𝑥 ! 𝑥 " $$$𝑥 # + 𝑥 ! & 𝑥 " 𝑥 # (a); a lattice obtained from L by a column permutation (b); a lattice obtained inserting in L a duplicate of the first column (c). All lattices are evaluated on the assignment x1 = 1, x2 = 1, x3 = 1

 Consider a lattice L where each cell contains a controlling literal. For each cell c in L, with the controlling literal 𝑙, we define ac the number of cells adjacent to c in L containing the same controlling literal 𝑙. Let aL be ∑ 𝑎 4 4∈,

Fig. 6

 6 Fig. 6 Two equivalent lattices for the function f = x1 + x2x4x5 + x3x4x5. While, in case of a SA0 in the first cell on top-left, the first lattice computes a different function, the second one still computes f

Fig. 7 a

 7 Fig. 7 a Lattice implementation for the benchmark Newtag, built from the SOPs 𝑓= 𝑥 ! 𝑥̅ " 𝑥̅ # + 𝑥 ! 𝑥̅ $ 𝑥̅ # + 𝑥 ! 𝑥̅ " 𝑥̅ % + 𝑥 ! 𝑥̅ $ 𝑥̅ % + 𝑥 ! 𝑥̅ $ 𝑥̅ " + 𝑥 & + 𝑥̅ ' + 𝑥 (and 𝑓) = 𝑥 (𝑥̅ ' 𝑥 & 𝑥̅ " 𝑥̅ % 𝑥̅ # + 𝑥 (𝑥̅ ' 𝑥 & 𝑥̅ $ 𝑥̅ % 𝑥̅ # + 𝑥 (𝑥̅ ' 𝑥 & 𝑥̅ $ 𝑥̅ " + 𝑥 (𝑥̅ ' 𝑥 & 𝑥 ! ; b a lattice forNewtag with a spare row and a spare column; c the lattice for Newtag resilient to the SA1 in c(2, 3) thanks to the use of the spare row; d the lattice for Newtag resilient to the SA0 in c(2, 3) thanks to the use of the spare column; e mapping of a column into the spare one, using multiplexers

Acknowledgments This research is funded by the European Union Horizon 2020 research and innovation programme under the Marie Skłsodowska-Curie grant agreement No 691178.