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This article examines numerically the two-dimensional fluid-structure interaction prob-
lem of a circular cylinder rolling under gravity along an inclined surface under the
assumption of a fixed but small gap. The motion of the cylinder is governed by the
ratio of cylinder and fluid densities and the Reynolds number based on a velocity scale
derived from the momentum balance in the asymptotic regime. For increasing Reynolds
number, the cylinder wake undergoes a transition from steady to periodic flow, causing
oscillations of the cylinder motion. The critical Reynolds number increases for light
cylinders. Whereas the time-averaged characteristics of the asymptotic rolling states
depend only on the Reynolds number, the density ratio has an additional influence
on the vibration amplitude and on the cylinder motion during a start-up transient
from rest. Light cylinders reach their final state quickly after the initial acceleration;
heavier cylinders traverse a series of quasi-steady states, including a temporary velocity
overshoot, before settling in the asymptotic regime. The amplitudes of the flow-induced
vibrations remain small over the entire parameter range, which can be attributed to the
value of the added-mass force associated with a rolling cylinder.

Special attention is paid to the influence of the small but finite gap between cylinder
and wall, since lubrication theory predicts a diverging pressure drag for a vanishing gap.
The variations with gap size of the forces, torque and added mass are explored. The gap
also influences the characteristics of the cylinder vibrations in the unsteady wake regime,
in particular their amplitude.

Key words: aerodynamics, fluid-structure interactions, wakes

1. Introduction

For an isolated, stationary cylinder of diameter d placed in a uniform flow of velocity U,
the wake transitions from a steady two-dimensional state to unsteady periodic shedding of
vortices at a Reynolds number Re = Ud/v ~ 46 (Taneda 1956; Roshko 1954; Henderson
1997; Provansal et al. 1987, v is the kinematic viscosity). As the Reynolds number is
increased, three-dimensional instabilities appear, in particular mode A at Re = 190
(Williamson 1988, 1996; Henderson 1997) and mode B at Re ~ 260 (Williamson 1996;
Henderson 1997).

Elastically mounted cylinders experience vortex-induced vibration (VIV) when the
wake is unsteady. Early experimental studies conducted by Feng (1968), Sarpkaya (1979)
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and Williamson & Roshko (1988), complemented more recently by work and reviews from
Khalak & Williamson (1996, 1999), Govardhan & Williamson (2000) and Williamson &
Govardhan (2004), offer a comprehensive overview on the subject for Reynolds numbers
Re > 1250, where the wake is three-dimensional. Concerning the different regimes of
synchronous response, it was shown that a cylinder with low mass damping exhibits an
‘initial’, an ‘upper’ and a ‘lower’ amplitude branch, whereas in the case of high mass
damping, the upper branch is non-existent. The vortex wake exhibits a ‘25’ mode in the
initial branch, i.e. two single vortices are shed in each cycle, and a ‘2P’ mode in the lower
and upper branches, i.e. two pairs of vortices are shed in each cycle (Williamson & Roshko
1988). The first transition from the initial to the upper branch is associated with a jump
in the vortex phase (defined as the phase between vortex force and displacement) and a
response frequency that approaches the natural frequency of the cylinder system in the
fluid medium. A distinct switch in the timing of vortex shedding is also observed as the
vortex wake mode changes from 2S to 2P, causing the amplitude of cylinder oscillations
to increase and reach a peak of about one cylinder diameter. The second transition, from
upper to lower branch, is correlated with a jump in the total phase (defined as the phase
between total force and displacement), a response frequency that passes through the
natural frequency of the cylinder system in vacuum (thus a slight increase in the response
frequency occurs) and a decrease in oscillation amplitude. Unlike the first transition, it is
not associated with a switch in timing of the shedding (Williamson & Govardhan 2004).

In the low-Re regime, where the vortex street is fully two-dimensional, one set of
experiments was perfomed by Anagnostopoulos & Bearman (1992) at Re = 90-150.
Amongst the numerical investigations undertaken are those by Blackburn & Karniadakis
(1993), Blackburn & Henderson (1996), Shiels et al. (2001), Guilmineau & Queutey
(2002), Leontini et al. (2006), Prasanth & Mittal (2008, 2009), and Mysa et al. (2016).
From the latest studies, it is understood that the branching behaviour of the cylinder
VIV response starts to develop in the low-Re regime and is therefore not a product of
the three-dimensionality of the flow.

Previous studies by Taneda (1965) showed that the presence of a stationary wall near
a cylinder stabilises the wake, delaying the onset of vortex shedding to Re ~ 100 when
the distance G to the wall is less than a critical value around G/d = 0.2 — 0.3 (Lei
et al. 1999). When the wake is unsteady, the strength of the vortex shedding decreases
with decreasing gap ratio. Taneda (1965) observed a single row of vortices at G/d = 0.1,
whereas alternate vortex shedding developed at G/d = 0.6 (Taneda 1965; Zdravkovich
1985). At small gap ratios (G/d < 0.1), the vortices are generated by the interaction
between the separating shear layer from the top of the cylinder and the secondary vortex
shedding from the wall boundary layer (Stewart et al. 2010b; Rao et al. 2011, 2013¢).
For G/d < 0.3, three-dimensionality appears before the onset of vortex shedding, similar
to what occurs in the flow over a backward-facing step (Armaly et al. 1983).

Where near-wall VIV is possible, the dynamics of the coupled system are complex.
Numerous studies have looked into the effect of the wall on a vibrating cylinder with one
or two degrees of freedom (DoF) for its motion, namely in the transverse and streamwise
directions, for moderate to high Reynolds numbers. Experiments conducted by Fredsge
et al. (1987) and Raghavan et al. (2009) showed that, unlike for the stationary cylinder
case, vortex shedding may occur even at very small gap ratios. This was confirmed
numerically by Zhao & Cheng (2011) and Wang et al. (2013). Tsahalis (1983) reported
that the trajectory of the cylinder has an oval shape. Yang et al. (2008) measured that, in
the turbulent regime, the vibration amplitudes of a cylinder allowing 2-DoF motion near
a wall increase for larger gap ratios. For small mass ratios, Yang et al. (2009) showed that
the vibration range is larger and that the dimensionless vibration frequency is higher than
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for larger mass ratios. Zhao & Cheng (2011) studied numerically the VIV of a cylinder
close to a plane wall where bounce-back was also considered; they identified three vortex
shedding modes, which depend on the reduced velocity U/(fnd), where f, is the natural
frequency of the system in a quiescent fluid. Experiments of a transversly vibrating
neutrally buoyant cylinder at various heights above a plane wall (G/d = 0.05 — 2.5) were
conducted by Wang et al. (2013) for Re = 3000-13000, showing that VIV exists at all gap
ratios considered and that the presence of the wall causes non-linearities in the cylinder
response. For small gaps, the wake pattern is characterised by a single row of vortices
formed in the upper shear layer and shed periodically, whereas for high gap ratios a
double-rowed vortex street is found. At Re = 100, a numerical investigation by Tham
et al. (2015) found that a third response branch exists between the initial and lower-type
branches for G/d < 0.60, and that for G/d > 5 the system becomes equivalent to that
of the isolated cylinder. Two- and three-dimensional simulations at Re = 200 and 1000
and G/d = 0.9 carried out by Li et al. (2016) showed that the wall proximity generates
a mean lift force and enhances the streamwise oscillations while reducing their frequency
in comparison with the isolated configuration.

When a rotation is imposed on the cylinder, different flow dynamics are observed. In
an unbounded flow, the wake becomes asymmetrical (Tang & Ingham 1991) and the
elimination of one or both recirculation regions in the wake can occur, depending on the
Reynolds number and the rotation rate. The transition to unsteady flow is also affected -
it is in most cases delayed or suppressed - and a multitude of different three-dimensional
modes exist (Mittal & Kumar 2003; Rao et al. 2013a,b; Radi et al. 2013). Stewart et al.
(2010b) and Rao et al. (2011) studied cylinders rotating and translating near a wall at
various imposed rotation rates and found that prograde motion destabilises the flow,
whereas retrograde rolling delays the onset of the instability.

Using two- and three-dimensional simulations, Bourguet & Lo Jacono (2014) inves-
tigated flow-induced vibrations of a circular cylinder free to oscillate in the transverse
direction and subjected to a forced rotation about its axis at Re = 100 and for a large
range of reduced velocities and rotation rates. They identified two novel wake patterns,
named ‘T+S’ and ‘U’, associated with the largest vibration amplitudes and the low-
frequency vibration regime, respectively. The T+S pattern is characterised by a triplet of
vortices and a single vortex shed per cycle, and the U pattern by a transverse undulation
of the spanwise vorticity layers without vortex formation, indicating that flow-induced
vibrations may also occur in the absence of vortex shedding. Overall, the time-averaged
displacement and lift coefficient tend to increase with the rotation rate. Zhao et al. (2014)
studied numerically the VIV of a 1- and 2-DoF rotating cylinder at Re = 150 and low
mass ratio. They found that the rotation of the cylinder increases the response amplitude
for the 1-DoF motion in the transverse direction. In the 2-DoF case, the streamwise
response amplitude increases significantly with increasing rotation rate, first exhibiting
one initial branch and then two such branches at higher values. In both 1- and 2-DoF
configurations, hysteresis regions were detected in the amplitude response.

Wong et al. (2017) carried out experiments on VIV of a cylinder of low mass ratio free
to oscillate in the transverse direction with imposed rotation around its axis. Their study
showed that forced rotation can cause peak response amplitudes of up to 1.4 diameters
in the range of reduced velocities associated with the upper amplitude response branch
of a non-rotating cylinder. For higher rotation rates and for reduced velocities outside
the synchronisation range, a new chaotic wake mode ‘C(AS)’ was observed, characterised
by the shedding of small asymmetric vortices as the wake switches between a wider and
a narrower state.

Most previous studies consider cylinders placed in a free stream without wall inter-
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actions or rotation. In cases where the presence of a wall and the rotation of the body
were taken into account, the velocities and rotation rates were for the most part set to be
constant. A cylindrical bluff body moving freely near a surface has none of its velocity,
rotation or trajectory imposed externally, these are instead determined by the drag, lift
and torque from the motion through the surrounding fluid, as well as by gravity driving
this motion and the contact force at the wall. The resulting body and flow dynamics
in such a configuration, i.e. the translation, rotation, wake structure and flow-induced
vibrations, are largely unknown. The case of a spherical bluff body rolling freely down
an incline has received some attention in the literature; a number of experimental (e.g.,
Carty 1957; Jan & Chen 1997), analytical (e.g., Chhabra & Ferreira 1999) and numerical
(e.g., Zhang et al. 2017) studies have focussed mainly on the drag coefficient and the
motion history of the rolling sphere.

This paper investigates numerically the free motion of cylinders rolling without slipping
on an inclined wall under the effect of gravity, buoyancy and fluid forces, in the idealised
configuration of two-dimensional flow. This situation introduces new parameters: the
gravitational acceleration, the inclination angle of the wall and the ratio of cylinder and
fluid densities. It also changes the nature of the problem, which now involves a coupled
interaction between the fluid forces and the cylinder motion. When vortex shedding
occurs, these forces are unsteady, and the translational (and rotational) velocity of
the cylinder is not constant, leading to streamwise vortex-induced vibrations. The aim
here is to characterise the flow behaviour as a function of the governing parameters
and to investigate the flow transitions, the saturated flow states and the fluid-structure
interactions.

The problem definition, equations of motion and numerical formulation are given in
section 2. Section 3 then provides a quantitative assessment of the effect of the small gap
between the cylinder and the wall, which is necessary to guarantee numerical stability
and which is known to lead to singularities in the force coefficients when its size decreases
to zero. The transition to unsteady flow is treated in section 4. The properties of the
asymptotic rolling motion and vortex-induced vibrations are presented in section 5 and
compared to the constant-velocity case. Finally, section 6 shows results concerning the
initial transient when the motion starts from rest. Section 7 contains the conclusions.

2. Problem definition

We investigate the fluid-structure interaction problem of a circular cylinder rolling
freely down a surface of constant slope under gravity through a viscous incompressible
fluid. A natural reference case for comparison is that of a circular cylinder rolling along
a surface at a constant specified velocity. The configuration, including relevant notation,
is shown in Figure 1.

The uniform-rolling case has been studied previously by Taneda (1965), Stewart et al.
(2010a,b) and Houdroge et al. (2017), providing a comprehensive set of results for this
configuration. In this paper, a few simulations with uniform rolling are repeated, in order
to enable high-fidelity comparisons with the new predictions for the current problem. The
corresponding force histories and flow dynamics provide a benchmark for comparison of
the asymptotic state, allowing an assessment of the differential effects induced by the
free movement of the cylinder.

In both configurations, the simulations are performed in a frame of reference placed at
the centre of the cylinder. For the constant-velocity case, this is equivalent to the fluid
and wall moving past a rotating cylinder with a fixed centre-of-mass. In the free-rolling
case, the frame of reference is not an inertial frame.
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FIGURE 1. Schematic of a cylinder rolling along an inclined plane of slope angle 6. Its
translational and angular velocities are u. and w, respectively. The frame of reference
(x,z) is attached to the centre of the body, and the different forces exerted on it are
illustrated: the fluid forces (drag D, lift L and torque T'), the mechanical forces (reactions
of the wall on the body, N and R) and gravity/buoyancy (|m*|g).

2.1. Governing equations

The governing equations are the continuity and incompressible Navier-Stokes equations
for the motion of the fluid, along with the linear and angular momentum balance for the
motion of the cylinder.

2.1.1. Fluid equations

Let u(z, z,t) represent the time-dependent two-dimensional velocity of the fluid. For an
incompressible flow, the continuity equation is:

V-u=0, (2.1)
and the general form of the Navier-Stokes equation in an accelerating frame is:
Ou 1 du
— -Vu=—-—VP u- —= 2.2
8t+u Vu pr +vViu e (2.2)

where py is the density of the fluid, P the static pressure and ue = (uc, 0) is the velocity
of the body, which is opposite to that of the frame of reference. The last term of (2.2) is
obtained by applying Newton’s second law of motion to the centre of mass of the body;
its presence underlines the coupled nature of this problem.

2.1.2. Body acceleration equations

According to Newton’s second law,

meac=» F, (2.3)

where m,. is the mass (per unit span) of the cylinder, a. = (&, Z.) its acceleration and
>~ F the sum of all forces exerted on the body. For the configuration described in figure 1,
this gives:
meie = |m*|gsind — D — R, (2.4)
meZ. = —|m*|gcosd + N + L,



6 F. Houdroge, T. Leweke, K. Hourigan and M. C. Thompson

where the buoyant mass, m* = m. — my, is the mass of the cylinder in excess of that
of the fluid it displaces (my). Assuming that the body stays at a fixed distance from
the surface, the z—component of the acceleration is zero, which leads to the following
expression for the normal component of the reaction force exerted by the wall on the
body:

N =|m*|gcos® — L. (2.6)

2.1.3. Torque equation

The balance of angular momentum for the rolling cylinder is given by:

Io=> "M, (2.7)

where I is the body’s moment of inertia and > M is the sum of all moments acting on
the cylinder. For a cylinder of uniform density, I = %mc(d/ 2)2. The moments are the
fluid torque T" and the torque (d/2)R applied by the contact reaction force R. With this,
equation (2.7) becomes:

ime(d/2)%0 =T+ gR. (2.8)

The no-slip boundary condition between the surface of the cylinder and the wall results in
a kinematic relationship between the translational velocity of the cylinder &. (= u.) and
its angular velocity: @, = (d/2)w. Therefore w = (2/d)i,, giving the following expression
for the reaction force R, from (2.8):

2
R = im.i. — i (2.9)
Substituting this in equation (2.4) provides an expression for the cylinder acceleration:
du, 2 1 4D 8T
io=—=2|({1-=)gsingd - —— + ——|, 2.10
=T T3 [( 5)95”1 wdp. | ndp, (2.10)

where 8 = p./py is the ratio of the body density and the density of the fluid. The range
of B considered in this study is 0.1-200. Note that for g < 1, the cylinder is positively
buoyant, it can be considered to be rolling upwards beneath an inclined surface.

2.1.4. Non-dimensional equations

Unlike the case of a uniformly rolling cylinder, where the imposed translational velocity
provides a scale for non-dimensionalisation, the cylinder velocity is here a function of
the other problem parameters (and also of time, depending on the regime). However, a
new velocity scale V' can be obtained by considering the asymptotic flow state, where a
balance exists between the fluid forces (per unit mass), which are proportional to V2, and
gravitational /buoyancy forces, given by |m*|g sin 6. This leads to the following expression

for the velocity scale:
d .
V= §|B—1|gsm9, (2.11)

where the length scale needed for dimensional compatibility was chosen as the cylinder
radius, a choice justified a posteriori by the fact that the observed asymptotic velocities
are indeed close to V.

Scaling the lengths by the diameter d, velocities by V', time by d/V and pressure by
Py V2 allows the governing equations to be written in terms of non-dimensional variables



Wake dynamics and flow-induced vibration of a freely rolling cylinder 7

(denoted by asterisks) as

V*-u* =0, (2.12)
ou* 1 du*
* ok *P* *2_ 0k C 21
o +u*-V*u \Y Jr—Re*v u TR (2.13)
duf 4 us?
_ _ _ 2.14
=35 | e Co o) (2.14)

where Re* = dV/v is a modified Reynolds number based on the new velocity scale (2.11).
The force and torque coefficients (per unit length) are defined in the usual way:

Cp =D/ (3dpyu), (2.15)
Cp =L/ (3dpyuz), (2.16)
Or =T/ (3d°pug) - (2.17)

Equations (2.12)—(2.14) for the freely rolling cylinder indicate that this fluid-structure
problem is governed by two non-dimensional parameters, in contrast to the uniformly
rolling cylinder, whose state is fully defined by just the Reynolds number. Here, the
modified Reynolds number Re*, which involves a combination of the gravitational accel-
eration (g), the slope angle () and the mass ratio (), and separately the mass ratio 3,
both determine evolution of the flow and the cylinder motion. The asymptotic cylinder
velocity U can be obtained from equation (2.14). For this, the cylinder acceleration
should be zero, which leads to u? = [7/(Cp — Cr)]*/? = U*. This relation remains true
for unsteady flow involving vortex shedding and flow-induced vibrations, if one considers
time-mean quantities:

Cp—Cr

The non-dimensional asymptotic (mean) velocity is independent of /3, even if the di-
mensional velocity U = U*V (or U = U*V), as well as the amplitude of the cylinder
oscillation (see sections 5 and 6) depend on this parameter.

In order to compare the results to those obtained for the constant-velocity case, it is
useful to also define a Reynolds number Re = Ud/v, based on the asymptotic (mean)
translation velocity of the cylinder.

2.2. Computational method

A description of the method used to solve the fluid flow equations (2.12) and (2.13) can
be found in Thompson et al. (2006), with relevant similar applications presented in a
number of articles, including Thompson et al. (1996, 2001). The extension to moving
bodies and fluid-structure interactions is discussed in Ryan et al. (2005, 2007), Leontini
et al. (2007), Rao et al. (2011) and Lee et al. (2013). For the sake of completeness, a brief
summary of the computational approach follows.

A spectral-element technique based on the Galerkin finite-element method (see Kar-
niadakis & Sherwin 1999) is employed to evaluate the spatial derivatives in the two-
dimensional domain. The solution variables are approximated using high-order La-
grangian polynomial interpolants associated with Gauss-Lobatto-Legendre quadrature
points within each element.

For the time integration, a high-order three-step time-splitting scheme is used. The
three steps encompass the advection and cylinder-movement terms, the pressure term and
the diffusion term of the Navier-Stokes equations, respectively. The nonlinear terms, i.e.
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the advection and cylinder acceleration terms, are treated explicitly using a third-order
Adams-Bashforth method and a semi-implicit Adams-Moulton scheme in subsequent
iterations (using estimates at the next time step from previous iterations). The (linear)
pressure and diffusion substeps are both treated implicitly: taking the divergence of the
equation for pressure and enforcing continuity at the end of the step amounts to solving a
Poisson equation for the pressure, and the second-order Crank-Nicolson scheme allows for
the diffusion term to be treated (see, e.g., Canuto et al. 2007). In practice, these substeps
are implemented by computing the LU decomposition at the start of the simulation for
each of these matrix problems, so that the subsequent pressure and diffusion substeps
involve straightforward sparse matrix multiplications.

The two-dimensional mesh used is non-deformable and has significantly enhanced
resolution in the vicinity and downstream of the cylinder. After some initial optimisation
and tuning, the final mesh consisted of 1472 macro-elements, each comprising N = 5(x5)
internal collocation points. The upstream, downstream and upper boundaries are located
at x = 25d, x = —25d and z = 50d, respectively, resulting in a blockage ratio of 2%.
This mesh is the same as the one used in a previous study on uniformly rolling cylinders
(Houdroge et al. 2017), where a full resolution and validation study was undertaken.

To avoid a mesh singularity at the point of contact between the cylinder and the wall,
a small gap of size G is imposed, in line with previous simulations of uniformly rolling
cylinders (Stewart et al. 2006, 2010b; Rao et al. 2011). Earlier studies (Jeffrey & Onishi
1981; Merlen & Frankiewicz 2011) have shown that, as the gap is reduced to zero, the
pressure before and after the contact point becomes unbounded. Merlen & Frankiewicz
(2011) examined the cylinder rolling at constant speed using a combination of lubrication
theory and finite-element simulation to predict the flow at finite Reynolds numbers. In
the limit of zero gap size, the pressure field becomes discontinuous, with the pressure
approaching positive infinity ahead of the cylinder and negative infinity behind it. In
the zero-gap limit for Stokes flow, this leads to an infinite drag force, while the positive
and negative pressure contributions cancel to give zero lift. This is not the case for finite
Reynolds numbers, where the pressure distribution associated with the non-symmetrical
upstream and downstream flow leads to a positive lift coefficient, even for very small
Reynolds numbers. This was clearly shown by Merlen & Frankiewicz (2011) for Reynolds
numbers below Re = 1. The drag prediction indicates that the cylinder should not be
able to roll with a zero gap size. The resolution of this paradox has been proffered as
requiring cavitation or release of absorbed gas in a liquid, as demonstrated in experiments
by Seddon & Mullin (2006), or compressibility effects if the fluid is a gas. Other practical
factors may also contribute, such as surface roughness (as discussed in Prokunin 2003)
or cylinder and wall straightness.

The influence of the gap size on the pressure and force coefficients, as well as on the
added mass, are again analysed in detail in the following section, and its effect on the
freely rolling cylinder configuration is also documented in section 5. For the study of
the start-up transient in section 6, a constant gap size G/d = 0.005 was chosen as a
practical compromise, balancing the requirements for accuracy of the force components,
time step restrictions and code stability. As shown in section 3 below, and as observed
in previous work on uniformly rolling cylinders (Stewart et al. 2006, 2010b; Rao et al.
2011; Houdroge et al. 2017), the gap size has little effect on the formation and shedding
of large vortical structures away from the gap region.

Further details on the mesh and computational method can be found in Houdroge
et al. (2017).
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2.3. Linear stability analysis

The transition from steady (asymptotic) flow over the rolling cylinder to vortex shedding
and flow-induced vibrations was determined using linear stability analysis. Due to the
coupled nature of the problem, the equations for both the fluid and the cylinder have to
be solved simultaneously. The pressure p, the flow velocity u and the cylinder velocity uc
can be expressed as the sum of their steady base states P, U and U, and perturbations
p/, u’ and ul, respectively:

p=P+p, u=U+u, u.=0U,+u,, (2.19)

where U, = (U, 0). The drag and torque in the equation of motion for the cylinder (2.10)
are linear in the pressure and the flow velocity (viscous forces). Therefore, D(u,p) =
DU +u,P+p') = D(U,P)+ D(,p') = D+ D', and similarly T = T + T". Thus,
the perturbation drag is a function of the perturbation velocity and pressure, as is the
perturbation torque.

Substituting the above relations into equations (2.2) and (2.10), subtracting the terms
corresponding to the base flow and linearising, leads to:

ou’ — = 1 dug
6—1:+u’-VU+U-Vu’:—;Vp’—i—uVQu’— (;;, (2.20)

dul, 8

D’ n 2T
dt 3| 7wd?p. wd3p.|’
Replacing the last term in (2.20) by (2.21) gives
o
ot

(2.21)

. 1 8 D' 27"
=—u.-VU-U-Vu - —Vp +vV2u' — - [—+—] ex

pr P 3| 7dp.  wdp. (2.22)
= L(u),

which governs the stability of the coupled system. Solutions of this equation can be
decomposed into a sum of solutions of the form (z, z) exp(at), where 0(z, ) is a spatial
eigenmode of the linear operator £(u’) and « the corresponding complex eigenvalue. The
temporal growth rate of the mode is given by ¢ = R(«). The evolution of perturbations is
monitored by initialising the fields with white noise and integrating the equations forward
in time. The most dominant modes corresponding to the highest growth rates are then
extracted by applying a Krylov subspace approach, along with an Arnoldi decomposition
(see, e.g., Barkley & Henderson 1996). If max(c) > 0 the flow is unstable; if max(o) < 0
all perturbations die out; max(c) = 0 corresponds to a neutrally stable state. It was found
that for mass ratios smaller than approximately 0.8, it was necessary to use a coupled
iterative solver with under-relaxation of the cylinder velocity to maintain stability of the
time-integration procedure. This same approach was used previously for vortex-induced
vibration studies of light tethered cylinders and spheres (Ryan et al. 2005; Rajamuni
et al. 2020).

One aim of the coupled stability analysis is to determine whether the ability of the
cylinder to freely roll substantially changes the flow stability from the case where the
cylinder rolls at a pre-determined fixed speed.

3. Effect of the gap size
3.1. Pressure, drag and lift

As mentioned above, the size of the gap between the cylinder and the wall has a significant
effect on the pressure forces acting on the cylinder. A series of simulations was carried out
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FIGURE 2. (a) Pressure coefficient distribution in the vicinity of the gap for different gap
sizes: G/d = 0.005/2",n = 0,...,4. (b) Rescaled distribution based on lubrication theory
(see text for details). Re = 50.
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FIGURE 3. Variation of (a) lift coefficient and (b) drag coefficient with gap size. The
prediction from lubrication theory in the limit of vanishing gap size is shown by the solid
line in (b). Re = 50.

at a finite Reynolds number of Re = 50, for which the flow is still steady and the cylinder
rolls at constant speed, in order to investigate the evolution of these forces as the gap size
approaches zero. Figure 2(a) shows the predicted distribution of the pressure coefficient
Cp = (p—poo)/(%pfui), for various gap sizes, on the cylinder surface in the vicinity of the
gap, whose centre is located at ¢ = —90° (see figure 4b for the definition of ). Decreasing
the gap size produces increasing pressure peaks and movement of these peaks towards the
centre of the gap. Merlen & Frankiewicz (2011) have used lubrication theory to predict
the pressure distribution in this configuration, and proposed scalings for the pressure
coefficient and the distance from the gap centre as Cp, = 3v/3/[2Re(G/d)*/?] and
Ty = d(G/d)"/?, respectively. Figure 2(b) shows the rescaled distribution C, =Cp/Cpm
as function of #’ = x/x,,, showing a collapse of the data. The simulation results clearly
match lubrication theory predictions of the pressure distribution in the vicinity of the
gap, providing confidence that this near singular region is well predicted by the numerical
scheme.

The variation of lift with gap size was not completely explored by Merlen & Frankiewicz
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FIGURE 4. (a) Variation of pressure coefficient at the cylinder surface away from the gap
region. The plot shows almost identical distributions for distinctly different gap sizes of
G/d = 0.005 and 0.005/32. (b) and (c) show the vorticity fields in the neighbourhood of

the cylinder for these two gap sizes. Re = 50.

(2011). They showed that the lift coefficient increases substantially with decreasing
gap size, without showing the behaviour as the gap approaches zero. This variation,
obtained for Re = 50 in the present study, is shown in figure 3(a). The lift approaches an
asymptotic value as the gap becomes very small, consistent with the observation that the
flow field away from the gap does not appear to be strongly influenced by the gap size
as it is reduced to very small values (figure 4). Figure 3(b) shows the drag coefficient as
function of gap size. It diverges as the latter approaches zero, in line with the lubrication
theory prediction of Merlen & Frankiewicz (2011): Cp = 47/[Re(G/d)"/?].

A premise of the study reported in this paper, and of the previous numerical work
by Stewart et al. (2010b), Rao et al. (2011) and Houdroge et al. (2017), is that vortex-
shedding into the wake and flow transitions are only weakly affected by the flow in
the vicinity of the gap. Evidence for this is given in figure 4. The top plot shows the
variation of the pressure coefficient on the cylinder surface away from the gap for two
different gap distances of G/d = 0.005 and 0.005/32. The pressure distributions are
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FIGURE 5. Added mass coeflicient as a function of gap size. The solid line corresponds
to the added mass for a non-rotating cylinder adjacent to a wall. See text for further
details.

essentially identical over the top and sides of the cylinder, but begin to diverge as the
gap region is approached (see figure 2). Since the pressure gradient along the surface is
associated with surface vorticity generation, this indicates that the outer flow does not
show a strong dependency on the gap. This is confirmed by the two bottom images of
figure 4 comparing the vorticity distributions around the cylinder and in the wake for
the two gap sizes. The plotted contour levels are the same in both images, showing the
almost identical distributions, despite the reduction in gap size by a factor of 32. Larger
differences occur inside the gap, but the overall effect is found to be very localised.

The analysis in this section shows that while the gap size has a strong effect on the
pressure distribution in the vicinity of the gap, the influence is effectively localised to
that region and negligible elsewhere. The wake states and wake transitions are therefore
expected to depend principally on the Reynolds number only. However, the fluid-structure
interaction, in which the cylinder responds to the changing drag force as wake vortices
are formed and shed, will be affected by the gap size, because the contribution from the
gap region to the overall drag dominates the one from the remaining surface as the gap
is reduced, i.e. the variation of the wake drag over a cycle is only a fraction of the overall
drag for small gaps. These characteristics are examined further in the following sections.

3.2. Added mass

Flow-induced vibration, associated with the formation and shedding of vortices, is
expected for higher Reynolds numbers in the present configuration. Since this phe-
nomenon depends on how easy it is to accelerate and decelerate the cylinder, it is worth
documenting the added mass coefficient for this flow, and especially its dependence on
the size of the gap. Added mass represents the additional force needed to displace the
fluid surrounding an accelerating body, which is given by the drag this body experiences
when accelerating in an inviscid potential flow. In practice, a near-potential flow is found
at early times when a body accelerates from rest in a quiescent fluid at ¢ = 0. Measuring
the pressure drag D, in this situation, i.e. neglecting viscous forces, one can therefore
estimate the added mass coefficient as

C4 = lim < Dy > (3.1)

t—0 mysZe
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FIGURE 6. Non-dimensional growth rate o (scaled by u./d) of the most unstable periodic
mode as a function of density ratio S for different Reynolds numbers.

where my = pymd? /4 is the displaced fluid mass (per unit span) and . the acceleration
of the rolling cylinder.

This procedure was first tested by accelerating a non-rotating cylinder in a free stream
without a wall. The added mass coeflicient obtained in this way, C'4 = 1.00, is identical
to the theoretical potential flow value for this case, which validates the method.

The added mass coefficient found for the cylinder rolling near a solid boundary is
shown in figure 5 as a function of the gap size. Perhaps not surprisingly, this matches the
potential added mass for a non-rotating cylinder positioned adjacent to a wall derived by
Brennan (1982) and presented in Chung & Chen (1984), which is shown by the solid line.
The gap clearly has a strong influence on added mass, leading to an increase by a factor
of 2 as its size decreases towards zero. Note that the limiting value for zero gap size as
given by Brennan (1982) is 2.290. This high value indicates that the effective oscillatory
mass is considerable, even for nominally light cylinders, and may limit the fluid-induced
vibration response. It also suggests that the peak vibration amplitude will decrease as
the gap size is reduced. This effect is examined in section 5.3.

4. Transition to unsteadiness

In previous studies examining cylinders rolling at fixed prescribed velocities (Houdroge
et al. 2017; Rao et al. 2011; Stewart et al. 2010b), the transition from two-dimensional
steady to unsteady flow was found to occur at Re ~ 88. The stability analysis for the
freely rolling case described in section 2.3 was used to investigate the influence of the
cylinder density ratio on this transition. Another question is whether allowing the cylinder
to respond to the incipient unsteady flow can alter the critical Reynolds number for
transition. Since the present configuration does not involve a resonance between flow
unsteadiness and a mechanical frequency, such as for an elastically mounted cylinder in
a free stream (Mittal & Singh 2005), the change in the transition Reynolds number, if
any, might be expected to be small.

Equation (2.22) indicates that the standard stability equations are modified by the
inclusion of an extra term involving the drag and torque acting on the cylinder. This
term is inversely proportional to the cylinder density, hence its contribution diminishes
as the density ratio 5 = p./ps increases. This is consistent with the expectation that a
heavy cylinder will only exhibit a small dynamic response as the flow undergoes transition
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to unsteadiness, suggesting that the critical Reynolds number will approach that for the
fixed-rolling case. For small density ratios, the situation is less obvious.

Figure 6 shows the predicted growth rate of the dominant linear mode near transition
as a function of density ratio for different Reynolds numbers. For these calculations, a gap
size of G/d = 0.005 was adopted. A distinct but small increase in the critical Reynolds
number for light cylinders is observed. For the heaviest cylinder tested, corresponding to
B = 100, the growth rate becomes positive at Re. = 88.6 — the same critical Reynolds
number obtained for a uniformly rolling cylinder (see below). There is a smooth transition
to higher critical Reynolds numbers for lighter cylinders, asymptoting to a value of Re. >~
90.8 for 5 < 1. Thus, there is a variation in the critical Reynolds number of ARe, ~ +2
between the heaviest and lightest cylinders; a small but significant change. This indicates
that allowing the cylinder to move in response to the developing perturbation field can
actually stabilise it. On the other hand, for heavy cylinders, the increased inertia seems
to prevent the cylinder from stabilising the dominant perturbation mode.

The effect of the cylinder motion on damping the perturbation field can be seen by
evaluating the change AF in the area-integrated perturbation energy over one cylinder
oscillation period, which is given by

ap- | o / / i ar (4.1)

Using equation (2.20), this expression becomes

t+T o o 1 dul

AFE = / // (u’~VUU~Vu’+—Vp'1/V2u'—°> dV dt
Pf dt

e e

The retained term on the righthand side represents the energy transfer from the fluid to
the cylinder over a cycle. The term was evaluated for 5 = 0.2 for Re = 90, which is above
the critical Reynolds number of the fixed rolling case. Indeed it was negative, indicating
that the oscillating light cylinder removes energy from the perturbation field to stabilise
it beyond that for the non-oscillating case.

As a cross-check on these predictions, the full fluid-structure problem was simulated
for a range of Reynolds numbers spanning the critical Reynolds number, for § = 0.2. For
Re* =127 (Re = 89.9), the flow is found to be steady, whilst for Re* = 129 (Re = 91.7),
the saturated flow state is periodic. The lower value is above the critical number for a
steady rolling cylinder (88.6), but below the critical Reynolds number for the coupled
system predicted by stability analysis (90.8). Hence these results are consistent with the
coupled stability analysis.

The bifurcation is examined in more detail in figure 7, which shows the amplitude
of the fluctuating component of the pressure drag (bep) at saturation for the steady
rolling case in the vicinity of onset. The variation of this amplitude follows two separate
branches. A low-amplitude branch exhibits the standard behaviour for a supercritical
Hopf bifurcation, i.e. Cp, , o< (Re — Re.)'/? beyond the critical Reynolds number, which
is here found to be Re. ~ 88.6 (see inset of figure 7). A second stable branch of unsteady
solutions exists for Re = 89.5. The amplitudes are significantly higher than for the initial
branch, and they evolve linearly with Reynolds number. These results show that two
stable solutions exist in the approximate interval 89.5 < Re < 92, beyond which no
lower-branch solution could be found. The dotted line in figure 7 qualitatively represents
a possible unstable branch connecting the two stable branches.

(4.2)
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FIGURE 7. Bifurcation behaviour near the steady-to-unsteady transition in terms of the
variation of the amplitude of the fluctuating component of the pressure drag (C"D’p)
at saturation with Reynolds number. These prediction are for the steady rolling case,
although a similar variation is observed for the coupled case. For a supercritical Hopf
bifurcation, the expected variation is Cp, , o< (Re — Re.)'/?. This behaviour is seen for
the lower-amplitude branch close to the critical Reynolds number, as shown in the inset
plot. Points labeled (b) and (c) refer to figure 8.

Figure 8 provides a comparison of the perturbation fields close to onset and after
saturation. These images correspond again to predictions for the steady rolling cylinder
case; similar result are found for the coupled problem. The lefthand column shows the
spanwise vorticity field at Re = 90 obtained using a steady solver (figure 8a) and the
saturated flow states at Re = 89.4 and Re = 90 (figure 8, ¢), corresponding to points (b)
and (c¢) in figure 7, which lie on different branches of the bifurcation plot. The righthand
column shows the dominant linear stability mode of the steady flow at Re = 90 (figure 8d)
and the perturbation fields at saturation for Re = 89.4 and Re = 90 (figure 8e, f), the
latter two being obtaining by subtracting (b, ¢) from (a). These images show that, close
to onset on the lower branch, the saturated perturbation field is very similar to the
dominant linear stability mode. This is not true for slightly higher values of Re on the
upper branch, for which figures 8(c¢) and (f) show that the saturated perturbation field
has departed considerably from the linear stability mode in figure 8(d), further illustrating
the difference between the solutions of the two amplitude branches.

Finally, there is the question of whether the steady-unsteady transition will vary
significantly as the gap size is changed. Since, the wake stability is primarily a function of
the wake flow, which is only weakly affected by the flow near the gap, it seems probable
that altering the gap should hardly affect the critical Reynolds number, for the constant-
speed case. The results from this section show that, for the fully coupled problem, there is
only a small variation from that critical Reynolds number for very light spheres. For heavy
spheres, due to their increased inertia, the effect is even less. As shown in figure 13 below
and discussed in detail later, the vibration amplitude appears to be close to maximal
for the current gap of G/d = 0.005. Hence, it seems probable that the change in critical
Reynolds number is also close to maximal for this gap size.
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FIGURE 8. Vorticity fields for the steady rolling cylinder. Left column: (a) steady solution
at Re = 90; (b,c) saturated unsteady flow at Re = 89.4 and Re = 90, respectively.
Right column: (d) dominant linear instability mode of the steady flow at Re = 90;
(e, f) perturbation at saturation for Re = 89.4 and Re = 90; respectively. The lines are
contours of the steady vorticity field for w, = +0.1U/d.

5. Asymptotic flow characteristics as function of gap size

This section presents results concerning the long-term asymptotic flow states, once the
cylinder has reached a steady or periodic state after starting to roll from rest, with special
attention to the influence of the gap size. The characteristics of the start-up transient
are treated in section 6.

5.1. Translation velocity and Reynolds number

The flow past a uniformly rolling cylinder is governed by just one non-dimensional
parameter: the Reynolds number Re = Ud/v, based on the diameter of the cylinder and
its fixed translational speed. When comparing the results with the freely rolling case,
it is useful to resort to the asymptotic Reynolds number Re = Ud/v, where U is the
time-mean speed of the cylinder in the asymptotic state. In section 2.1.4, an alternative
Reynolds number was defined specifically for the free-rolling case, based on the velocity
scale V' (equation (2.11)) derived from the parameters governing this flow:

oAV 1 @ _

Multiple simulations were carried out for Re* in the range 80-300, density ratios 3
between 1.2 and 10 and gap ratios G/d from 0.002 to 0.15. The relationship between
Re* and Re is shown in figure 9, it is found to be linear and to depend on the gap
size. The two Reynolds numbers are generally close to each other, and almost identical
for G/d = 0.05. This shows that the derived velocity scale V is a good estimate of the
asymptotic translation speed of the rolling cylinder.

These results do not depend on the density ratio 3. For a fixed Re*, 3 has virtually no
effect on the averaged non-dimensional quantities of the flow at saturation. The influence
of the density ratio is entirely accounted for in the non-dimensionalisation, which is based
on the momentum balance in the asymptotic state. This parameter does, however, have
a significant effect in the transient state starting from rest (see section 6).
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FIGURE 9. Relationship between the Reynolds number Re based on the asymptotic
(mean) velocity and the modified Reynolds number Re*. The different curves correspond
to different gap ratios.

5.2. Lift and drag

A cylinder rotating in a uniform flow experiences a lift force (Magnus 1853), which is
a direct result of the asymmetrical pressure distribution on the surface of the cylinder
generated by the rotation. The presence of a nearby wall reverses the direction of the lift if
the cylinder is sufficiently close. Stewart et al. (2010b) showed that the lift force increases
as the gap ratio is reduced from G/d = 0.01 to 0.004 at Re = 20-200 and for various
rotation rates (from normal to reverse rolling), noting that it was of positive sign, i.e.
directed away from the wall, over the entire parameter range of their study. For normal
rolling, Rao et al. (2015) extended the analysis to gap heights up to 4 diameters and
Reynolds numbers up to 400. One observation was that the lift force becomes negative
once the gap exceeds a certain value. This shows that the body can experience either a
repulsive or an attractive force from the wall, depending on its distance to it and on the
value of the Reynolds number.

This effect was investigated here for the freely rolling cylinder. The results are reported
in figure 10, which shows the total lift, as well as its pressure and viscous components, for
0.002 < G/d < 0.15 and Re* < 300. For Re* < 50 (not shown), the lift force is found to
be positive for all values of G/d considered. For higher Reynolds numbers, the expected
change of sign occurs. Stewart et al. (2010b) noted that, in general, the pressure force,
rather than the viscous force, provides the dominant contribution to the lift. As the gap
is decreased, the pressure variation across it also increases, as shown in figure 3. The low
pressure at the top of the cylinder, together with the complex contribution of the pressure
in the gap region, results in a positive lift force. The current simulations show that the
change of sign of the total lift is accompanied by a similar change of sign of the pressure
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FIGURE 12. Mean (a) drag coefficient and (b) torque coefficient for Re™ > 80 (see legend
in figure 10a).

lift (figure 10b). The viscous lift remains positive, but fairly constant, contributing less to
the total lift variation at a given Re (figure 10c¢). The wall and the gap region lose their
influence as the distance between the cylinder and the wall grows. The forward rolling
of the cylinder, combined with the incoming flow at large gap heights, generate a lower
velocity magnitude (and therefore greater pressure) on the top of the cylinder than at
the bottom, resulting in a pressure differential that causes the lift force to be negative.
The relation between the critical gap ratio, G./d, at which the sign change occurs and
the Reynolds number is plotted in figure 11.

The trends of the mean drag and torque coeflicients given in figure 12 show a general
decrease in magnitude as the gap ratio increases. Note that, in the chosen coordinate
system (figure 1), the fluid torque is negative for a cylinder rolling without slip. Whereas
the torque magnitude decreases with Re™ for all gap sizes, the drag evolution reverses
this tendency at larger gaps.

5.3. Amplitude and frequency of oscillations

For Reynolds numbers above the threshold for unsteady flow, the wake of the rolling
cylinder reaches a periodic state characterised by vortex shedding (see, e.g., figures 21
and 22 in section 6). The resulting unsteady forces in turn lead to oscillations of the
translation velocity of the freely moving cylinder. The frequency f of these oscillations
can be expressed in non-dimensional form as a Strouhal number, St = fd/U. Their
amplitude A is rescaled by the mean value of the cylinder velocity: A* = A/U.
Rescaled amplitudes and Strouhal numbers were determined for a range of gap sizes,
Reynolds numbers and density ratios. The results are shown in figures 13 and 14. The gap
size has a significant effect on the flow-induced vibration characteristics. The predictions
show that as the gap is reduced from d/25 to d/6400, the vibration amplitude initially
increases to peak at a gap ratio around 0.01, before decreasing at smaller gap ratios.
Reducing the gap from 0.005d by a factor of 32 results in a reduction of the vibration
amplitude by approximately 50% for 8 = 1.2, and considerably less in the 8 = 10 case.
The data also show that a decrease of the mass ratio from g = 10 to 1.2 results in only a
moderate overall increase of the velocity fluctuation (factor of 2). This is consistent with
the large added mass (C4 ~ 2) associated with a cylinder rolling near a wall (figure 5).
The Strouhal number varies with all three parameters as well, although for all the
cases considered it lies in the approximate range 0.05 < St < 0.07, with smaller values
at higher Reynolds numbers (except for the largest gap, G/d = 0.04). For gap ratios
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F1GURE 14. Non-dimensional oscillation frequency St.

G/d < 0.005, the variation with this parameter is weak, especially for high mass ratios.
Figure 14(b) for 5 = 10, shows a collapse of the Strouhal-Reynolds number curves for
G/d < 0.0025. This is consistent with the small variation of vibration amplitude with
gap ratio in this parameter range.

The results in this section have clearly shown that the size of the gap between the
wall and the cylinder rolling along it has a non-negligible effect on the characteristics of
the cylinder motion, the wake flow and the resulting flow-induced vibrations. In order to
explore in more detail the dependence on the other parameters, the gap ratio is fixed at
G/d = 0.005 throughout the remainder of the paper. This is in line with previous similar
studies (e.g. Stewart et al. 2010b; Rao et al. 2011) and partly motivated by numerical
constraints. Reducing the gap ratio drastically affects the maximum time step of the
numerical method, because of the increasingly singular pressure distribution. The chosen
gap size is a compromise, enabling a more extensive coverage of parameter space. It
produces a VIV response which is close to maximum for small gap ratios, as shown in
figure 13. This figure can be used to adjust the VIV predictions made in the following
section for cases with different gap sizes.
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FicUrE 15. Temporal evolution of the cylinder velocity for different Reynolds numbers
and density ratios.

6. Flow and cylinder motion starting from rest

This section considers the overall evolution of the cylinder motion and the associated
wake flow after the body is released from rest. The gap size is fixed at G/d = 0.005 and
the two parameters governing the evolution of the system, the Reynolds number and the
density ratio, are varied.

Figure 15 gives an overview of the different behaviours for 80 < Re® < 250 and
0.8 < B < 100, illustrated by the time evolution of the cylinder velocity. For a given
Reynolds number, the final (non-dimensional) mean velocity is the same for all values of
the density ratio, which is expected from the choice of the scaling. However, the start-up
transient and the amplitude of flow-induced vibrations in the final state vary with 5. The
period of oscillation depends primarily on the vortex shedding frequency of the uniformly
rolling case, which is only weakly modified by the vibration of the cylinder; it is nearly
the same for all values of f.

From figure 15, one can identify distinct phases in the motion history starting from rest.
Initially, the cylinder velocity increases from zero with an almost constant acceleration,
which is a function of the density ratio. Subsequently, it continues to increase and
fluctuate on a time scale not related to vortex shedding, before reaching, or oscillating
around, a constant speed.
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FIGURE 16. Variation of the rescaled velocity with rescaled time at Re® = 200 for
different mass ratios, showing the collapse of the curves for small times.

6.1. Initial evolution

At small times, the drag force is dominated by the added mass contribution, as mentioned
in section 3.2. The equation of motion (2.10) therefore reduces to

imcfc'C = |me — my|gsinf — Camyi,. (6.1)
Scaling the velocity by V' = V/1/(3/2)8 4+ C4 and time by 7" = (d/V)+\/(3/2)8 + Cla,
reduces (6.1) to the dimensionless equation du?’/dt*’ = 2. Using this scaling should
result in a collapse of the dimensionless velocity-time variation at small times. This is
demonstrated in figure 16, which shows the rescaled velocity evolution at Re™ = 200 for
three values of 5. The evolutions follow the prediction of (6.1) at very small times. As
the cylinder accelerates and vortical structures develop in the wake, the effective added
mass rapidly deviates from the potential added mass. For low mass ratios, this has a
large effect on the cylinder acceleration, while for high mass ratios, the influence of the
added mass is relatively small.

6.2. Intermediate phase

For Reynolds numbers below the threshold for unsteady flow (figure 15a), the cylinder
motion reaches its asymptotic state with constant velocity after a smooth transition
from the initial acceleration phase. The duration of this transition increases with the
density ratio, as expected. When the flow is unsteady, we define the critical time ¢} as
the non-dimensional time corresponding to when the first vortex is shed into the wake,
specifically calculated from the time of the initial local maximum of the cylinder velocity.
Figure 17 contains a contour plot of t* as a function of Re® and S, and figures 18 and
19 compare the evolution of the wake from ¢t* = 0 to t* = ¢} for two Reynolds numbers
and three density ratios. Figure 17 shows that t* increases as Re* decreases and/or 3
increases; the closer to transition and/or the denser the body, the longer the duration of
the intermediate phase. Regarding the flow structure, the recirculation region that forms
and develops downstream of the cylinder prior to the shedding of vortices is quasi-steady
and characterised by two closed recirculation zones: an upper one forming around the
cylinder and being displaced away from the wall (coloured in blue), and a lower one
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FIGURE 18. Initial development of the flow (vorticity contours) up to the shedding of
the first vortex at time t*, for Re* = 160 and different density ratios.

which is smaller and forms near the wall (coloured in red). These regions grow longer as
Re™ decreases and/or 3 increases.

Low mass ratios result in the transition to unsteady periodic flow almost as soon as
the separating shear layer has rolled up into a small identifiable vortex structure. On the
other hand, large mass ratios allow a quasi-steady intermediate wake to form prior to the
onset of strong unsteadiness and vortex shedding. This elongated recirculation bubble is
similar to the solution obtained by solving the steady flow problem at the same Reynolds
number. Presumably, this happens because of the slow increase in cylinder velocity at
high mass ratios, allowing the wake to evolve slowly through a series of near-steady
wake states. During this transition, the cylinder reaches velocities well beyond the mean
velocity of the final state. This behaviour is similar to the one observed for an isolated
cylinder in a free stream. When shedding commences, it takes many cycles for the wake
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FIGURE 19. Same as figure 18, for Re™ = 300.
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FIGURE 20. Amplitude A* of cylinder velocity oscillations (scaled by the mean velocity),
as function of Reynolds number and density ratio.
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FIGURE 21. Flow evolution during one shedding cycle for Re* = 160.
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FIGURE 22. Same as figure 21, for Re™ = 300.

to shorten again, and for the cylinder to decrease its velocity to reach the asymptotic
state.

6.3. Asymptotic state

In the final state, the wake and cylinder motion are either steady (figure 15a) or periodic
(figure 15b-d). The amplitude of the velocity oscillations (figure 20) decreases as the
density ratio S increases and/or Re™ decreases: the denser the body, the less sensitive it
is to the forces acting on it; and the weaker the vortex shedding, the lower these forces
are. Both effects lead to a weaker response and oscillation amplitude. Figures 21 and
22 compare the flow evolution at 8 = 0.2 and 200 for Re* = 160 and 300, respectively,
over one shedding cycle. The shedding patterns are similar: a compact vortical structure
forms from the upper shear layer, destabilises the wall shear layer and rolls up to shed
as a counter-rotating vortex pair. One can nevertheless distinguish that for the heavier
cylinder (8 = 200), the vortices are closer to the wall than for the lighter one (5 = 0.2).

The Strouhal number of the unsteady asymptotic states is shown in figure 23(a)
as function of the density ratio for various Reynolds numbers. Some dependency on
£ can be observed for f < 50; above this value, the Strouhal number is practically
constant. Heavier cylinders show weaker flow-induced vibrations and therefore roll with
approximately the same constant non-dimensonal speed, since the latter does not depend
on (3. As a consequence, the measured mean Strouhal numbers for § > 50 are in good
agreement with the results obtained for uniform rolling, as seen in figure 23(b), where the
Reynolds number Re is used for comparison purposes. The values lie between 0.05 and
0.065 for 100 < Re < 300, which is significantly lower than for a non-rotating cylinder
in an unbounded flow.

Further comparisons can be made between the asymptotic state of the freely rolling
cylinder and the case of a cylinder rolling at constant speed, again using Re. Fig-
ure 24(a-c¢) compares the time-mean drag, lift and torque coefficients obtained in both
cases. The values match closely up to the transition at Re ~ 88, where the flow
becomes unsteady and the freely rolling body begins to oscillate. In the unsteady regime,
deviations of less that 2% for the drag and torque and 5% for the lift occur. Using
the force and torque data, equation (2.18) can be used to predict the asymptotic mean
velocity of the freely rolling cylinder. This prediction is compared to the values measured
in the simulations in figure 24(d), showing excellent agreement.
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FIGURE 23. (a) Strouhal number as function of density ratio for different Reynolds
numbers. For 8 > 50, the Strouhal number is practically constant. Its mean value St in
this range is shown as function of Re in (b) and compared to the uniform-rolling case.
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equation (2.18).
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Ficure 25. Time histories of the oscillation amplitude and force components for
Re* = 250 and two density ratios. From top to bottom, the subfigures show: X* — cylinder
displacement with respect to the motion at constant mean velocity; F, , — pressure force
coefficient without added mass; Fy,, — added mass force coefficient; F, , — viscous force
coefficient; Fpr — force coefficient from torque; total force coefficient; and vortex force
coefficient.

6.4. Flow-induced vibrations

In this section, we take a closer look at the various time-dependent forces acting on the
freely rolling cylinder in the unsteady regime, characterised by vortex-induced vibra-
tions. The top row of figure 25 shows the asymptotic oscillatory cylinder displacement
around its linearly increasing mean position, X* = (z. — Ut)/d, as a function of time
for Re* = 250. The left and right columns show results for 5 = 0.1 and 20, respectively.
Both displacement signals are far from sinusoidal, and the displacement for the low mass
ratio is markedly asymmetric, almost resembling a sawtooth waveform. The oscillation
amplitude is significantly greater for § = 0.1, as might be expected, with a value of
~ 0.17d. For 8 = 20, the amplitude is less than half this value.

Figure 25 also shows the time traces of the force components acting on the cylinder,
and their phase relationships to the displacement signal. From equation (2.10), the
dimensional equation of motion can be written as:

gmcfé = |m. —my|gsinb + F, +2T/d, (6.2)
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where F, = —D is fluid force in the z-direction, and 7" is the viscous torque. Splitting
the fluid force F,, + 2T'/d into different physical contributions gives:

fluid force = (F, + Camy@) — Camysi + F, , +2T/d

(6.3)
= Fa:,p + Fam +Fx,u+ FT~

Here, F ), is the pressure force without the added mass contribution, F,, the (potential-
flow) added mass term associated with the acceleration of the cylinder, Fy , the viscous
drag force, and Fr the effective forcing due to viscous torque. In an attempt to examine
contributions from irrotational and rotational flow components, Govardhan & Williamson
(2000), following Lighthill (1986), considered the total force to consist of the potential
added mass force and a “vortex force” representing all other contributions:

Ftotal = Fam + Fvortea;- (64)

For the classical VIV response of a circular cylinder, the transitions to different modes
can be identified with different jumps in the total and vortex force components as the
flow velocity is varied.

Figure 25 shows these contributions for 5 = 0.1 and g = 20. For both cases, the total
and vortex force signals are approximately 180° out of phase with the displacement signal.
This was verified by performing a Hilbert transform on each signal and subtracting the
time-dependent phases to obtain a mean value (see, e.g. Khalak & Williamson 1999).
For the low-mass ratio case, the total force is small relative to the vortex force, because
the pressure force consists mainly of the added mass component. The viscous force terms
F, ., and Fr are relatively small in comparison, as expected, given the mean Reynolds
number of 250. The situation for g = 20 is different. Here the added mass, viscous and
viscous torque terms are an order of magnitude smaller than the pressure term, so that
the vortex and total force signals are very close. One interesting comparison concerns the
viscous torque term. The phase relationship switches between the low- and high-mass
ratio cases from being approximately in phase to being approximately out of phase with
the displacement signal.

Figure 26 shows a contour plot of the displacement amplitude over a wider range in
the Re*—f3 parameter space. Peak amplitudes occur for 200 < Re* < 250 as 3 is varied
over several orders of magnitude. The largest values occur for lighter-than-fluid mass
ratios, as might be expected. However, because of the large added mass coeflicient, the
oscillation amplitudes are limited, even for very light cylinders.

7. Conclusions

We have studied the configuration of a circular cylinder rolling along an inclined
solid wall in a viscous incompressible Newtonian fluid under the influence of gravity,
through two-dimensional numerical simulations. The evolution equations for the fluid
and cylinder motion depend on two non-dimensional parameters: a Reynolds number
based on a velocity scale derived from the balance between gravity and fluid forces in
the asymptotic state, and the ratio of cylinder and fluid densities. In addition, the size
of the small but finite gap between the cylinder and the wall, which is required by the
numerical procedure, has a notable effect on the fluid forces. It is known from lubrication
theory that the drag on the rolling cylinder diverges as the gap is reduced to zero, and the
corresponding theoretical scaling is recovered in the present simulations. The lift, torque
and added mass force also increase with decreasing gap size, although they appear to
remain finite. For small gap size (less than 1% of the cylinder diameter), the added mass
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FIGURE 26. Amplitude A% of the displacement oscillations (scaled by the cylinder
diameter) as a function of Reynolds number and density ratio.

of the rolling cylinder is more than twice that of a non-rotating cylinder far from a wall.
The gap effect remains localised in the immediate vicinity of the location of minimum
cylinder-wall separation. The pressure distribution on the outer parts of the cylinder
wall and the overall vorticity distribution near the cylinder and in its wake are quite
insensitive to variations in the gap size, provided the latter is small enough.

Increasing the Reynolds number leads to the onset of unsteadiness in the wake of the
rolling cylinder. Whereas for heavy cylinders (large density ratios), this transition occurs
at roughly the same velocity as for a cylinder rolling at a prescribed fixed speed, the
instability threshold is found at higher Reynolds numbers in the case of light cylinders.
The fact that the cylinder is free to adjust its motion to the forces acting on it delays
the transition to unsteadiness for low density ratios. For comparison/contrast, one may
recall the case of a non-rotating elastically mounted cylinder in a free stream, for which
the added degree of freedom leads to vortex-induced vibrations at Reynolds numbers
below the threshold for unsteadiness of the fixed cylinder (Mittal & Singh 2005).

Once the wake is unsteady, the cylinder responds to the time-dependent forces with
periodic oscillations of its rolling speed. The amplitudes and frequencies of these flow-
induced vibrations depend on both the Reynolds number and the density ratio, as well
as on the gap size. In the long-term asymptotic state, the time-averaged force and torque
coefficients, as well as the wake frequency, are nearly identical to the values found for a
cylinder rolling at constant speed. This can be explained by the fact that the oscillation
amplitudes generally remain small, even for low density ratios, due to the large added
mass in this configuration.

Whereas the mean values of the forces and non-dimensional rolling speed in the
asymptotic state do not depend on the density ratio, this parameter influences the stages
leading up to this regime after a start of the motion from rest: the initial acceleration
with near-potential flow and the subsequent growth of a recirculation region before the
onset of vortex shedding. The duration of these phases, as well as the amplitudes of
the final flow-induced vibrations, are affected by the density ratio. For high values, the
initial acceleration is slower, allowing the near-wake vorticity region to grow and move
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downstream. This leads to a significant overshoot of the cylinder velocity with respect
to the the final asymptotic value. At low mass ratios, this phase is much shorter and
without overshoot, since shedding commences quickly.

We have not addressed the issue of cylinder lift-off from the wall, the cylinder motion
being restricted to the direction parallel to the wall in our simulations. Since the lift
(force in the direction normal to the wall) is generally positive in the range of parameters
considered here, reaching relatively large values for small gap sizes, the situation may
arise that this lift exceeds the component of gravitational/buoyancy force normal to the
wall, which would lead to a negative wall reaction force (N in equation (2.6)). Since this
is not possible, the cylinder does not remain at its original distance from the wall (gap),
but accelerates away from it. Using the condition N < 0 and the expression (2.18) for
the asymptotic velocity, one can derive the following condition for lift-off:

tang > 2 €1 (7.1)

CL

where the right-hand side depends only on the Reynolds number. When Re* is fixed, the
cylinder is expected to lift off when the wall inclination angle exceeds a limit depending
on the values of the (mean) force and torque coefficients. An alternative interpretation
results from the fact that the lift is a decreasing function of the gap size: when the limit
for lift-off is reached, the cylinder will move away from the wall, but just enough so that
the lift coefficient associated with the new gap size is again below the limit for lift-off.

Following on from this discussion, the next stage would be to produce a coupled model
that allows for normal motion of the cylinder without a fixed gap. However, including this
further degree of freedom increases the problem complexity substantially; in particular,
the flow physics within the gap operates on much shorter time and length scales than
the outer flow, so a multi-scale modelling approach treating the two zones using different
approaches may provide a way forward. Even with the current model, for minute gaps
a minuscule time-step is needed, resulting in extremely long integration times. Adding
this further degree of freedom also decouples the rolling and translating velocities, and in
addition, means that a time-varying mesh (or alternative approach) would be needed. In
reality, the gap thickness for an ideal cylinder is probably mostly dependent on surface
roughness, which ideally would also be included in the computational model. Finally, we
note that for smooth machined cylinders, the effective gap is likely be to significantly
smaller than the smallest gap considered in this study.

We have also not considered three-dimensional effects. As discussed in Houdroge et al.
(2017), for a cylinder rolling at fixed speed, the transition to three-dimensional flow first
occurs for the steady two-dimensional wake, at Reynolds numbers below the instability
threshold leading to two-dimensional shedding. A similar behaviour is expected for
the freely rolling cylinder if the third, spanwise dimension is added. Three-dimensional
instabilities will then interact with, and modify, the unsteady transition and the flow-
induced vibration characteristics. For the case of a cylinder starting its motion from rest,
the system traverses a series of different quasi-steady states with increasing Reynolds
number (based on the instantaneous speed). This process tends to delay the three-
dimensional transition, similar to the case of a cylinder which starts to roll impulsively
at a constant speed Houdroge et al. (2017).
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