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Abstract
We define a class of Separation Logic [10, 16] formulæ, whose entailment problem given formulæ φ,ψ1, . . . ,ψn,
is every model of φ a model of some ψi? is 2-EXPTIME-complete. The formulæ in this class are existentially
quantified separating conjunctions involving predicate atoms, interpreted by the least sets of store-heap structures
that satisfy a set of inductive rules, which is also part of the input to the entailment problem. Previous work
[8, 12, 15] consider established sets of rules, meaning that every existentially quantified variable in a rule must
eventually be bound to an allocated location, i.e. from the domain of the heap. In particular, this guarantees
that each structure has treewidth bounded by the size of the largest rule in the set. In contrast, here we show
that establishment, although sufficient for decidability (alongside two other natural conditions), is not necessary,
by providing a condition, called equational restrictedness, which applies syntactically to (dis-)equalities. The
entailment problem is more general in this case, because equationally restricted rules define richer classes of
structures, of unbounded treewidth. In this paper we show that
(1) every established set of rules can be converted into an equationally restricted one and
(2) the entailment problem is 2-EXPTIME-complete in the latter case, thus matching the complexity of entail-

ments for established sets of rules [12, 15].
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1 Introduction

Separation Logic (SL) [10, 16] is widely used to reason about programs manipulating recursively
linked data structures, being at the core of several industrial-scale static program analysis techniques
[3, 2, 5]. Given an integer K ≥ 1, denoting the number of fields in a record datatype, and an infinite set
L of memory locations (addresses), the assertions in this logic describe heaps, that are finite partial
functions mapping locations to records, i.e., K-tuples of locations. A location ` in the domain of the
heap is said to be allocated and the points-to atom x 7→ (y1, . . . ,yK) states that the location associated
with x refers to the tuple of locations associated with (y1, . . . ,yK). The separating conjunction φ∗ψ
states that the formulæ φ and ψ hold in non-overlapping parts of the heap, that have disjoint domains.
This connective allows for modular program analyses, because the formulæ specifying the behaviour
of a program statement refer only to the small (local) set of locations that are manipulated by that
statement, with no concern for the rest of the program’s state.

Formulæ consisting of points-to atoms connected with separating conjunctions describe heaps of
bounded size only. To reason about recursive data structures of unbounded sizes (lists, trees, etc.),
the base logic is enriched by predicate symbols, with a semantics specified by user-defined inductive
rules. For instance, the rules: excls(x,y)⇐ ∃z . x 7→ (z,y) ∗ z 6l c and excls(x,y)⇐ ∃z∃v . x 7→
(z,v) ∗ excls(v,y) ∗ z 6l c describe a non-empty list segment, whose elements are records with two
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fields: the first is a data field, that keeps a list of locations, which excludes the location assigned to the
global constant c, and the second is used to link the records in a list whose head and tail are pointed
to by x and y, respectively.

An important problem in program verification, arising during construction of Hoare-style correct-
ness proofs, is the discharge of verification conditions, that are entailments of the form φ ` ψ1, . . . ,ψn,
where φ and ψ1, . . . ,ψn are separating conjunctions of points-to, predicates and (dis-)equalities, also
known as symbolic heaps. The entailment problem then asks if every model of φ is a model of some
ψi? In general, the entailment problem is undecidable and becomes decidable when the inductive
rules used to interpret the predicates satisfy three restrictions [8]:
(1) progress, stating that each rule allocates exactly one memory cell,
(2) connectivity, ensuring that the allocated memory cells form a tree-shaped structure, and
(3) establishment, stating that all existentially quantified variables introduced by an inductive rule

must be assigned to some allocated memory cell, in every structure defined by that rule.
For instance, the above rules are progressing and connected but not established, because the ∃z
variables are not explicitly assigned an allocated location, unlike the ∃v variables, passed as first
parameter of the excls(x,y) predicate, and thus always allocated by the points-to atoms x 7→ (z,y) or
x 7→ (z,v), from the first and second rule defining excls(x,y), respectively.

The argument behind the decidability of a progressing, connected and established entailment
problem is that every model of the left-hand side is encoded by a graph whose treewidth1 is bounded
by the size of the largest symbolic heap that occurs in the problem [8]. Moreover, the progress and
connectivity conditions ensure that the set of models of a symbolic heap can be represented by a
Monadic Second Order (MSO) logic formula interpreted over graphs, that can be effectively built
from the symbolic heap and the set of rules of the problem. The decidability of entailments follows
then from the decidability of the satisfiability problem for MSO over graphs of bounded treewidth
(Courcelle’s Theorem) [4]. Initially, no upper bound better than elementary recursive was known to
exist. Recently, a 2-EXPTIME algorithm was proposed [12, 14] for sets of rules satisfying these three
conditions, and, moreover, this bound was shown to be tight [6].

Several natural questions arise: are the progress, connectivity and establishment conditions really
necessary for the decidability of entailments? How much can these restriction be relaxed, without
jeopardizing the complexity of the problem? Can one decide entailments that involve sets of heaps
of unbounded treewidth? In this paper, we answer these questions by showing that entailments
are still 2-EXPTIME-complete when the establishment condition is replaced by a condition on the
(dis-)equations occurring in the symbolic heaps of the problem. Informally, such (dis-)equations must
be of the form x l c (x 6l c), where c ranges over some finite and fixed set of globally visible constants
(including special symbols such as nil, that denotes a non-allocated address, but also any free variable
occurring on the left-hand side of the entailment). We also relax slightly the progress and connectivity
conditions, by allowing forest-like heap structures (instead of just trees), provided that every root
is mapped to a constant symbol. These entailment problems are called equationally restricted (e-
restricted, for short). For instance, the entailment problem excls(x,y)∗excls(y,z) ` excls(x,z), with
the above rules, falls in this category.

We prove that the e-restricted condition loses no generality compared to establishment, because
any established entailment problem can be transformed into an equivalent e-restricted entailment
problem. E-restricted problems allow reasoning about structures that contain dangling pointers, which
frequently occur in practice, especially in the context of modular program analysis. Moreover, the
set of structures considered in an e-restricted entailment problem may contain infinite sequences of
heaps of strictly increasing treewidths, that are out of the scope of established problems [8].

1 The treewidth of a graph is a parameter measuring how close the graph is to a tree, see [7, Ch. 11] for a definition.
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The decision procedure for e-restricted problems proposed in this paper is based on a similar
idea as the one given, for established problems, in [14, 15]. We build a suitable abstraction of the set
of structures satisfying the left-hand side of the entailment bottom-up, starting from points-to and
predicate atoms, using abstract operators to compose disjoint structures, to add and remove variables,
and to unfold the inductive rules associated with the predicates. The abstraction is precise enough to
allow checking that all the models of the left-hand side fulfill the right-hand side of the entailment
and also general enough to ensure termination of the entailment checking algorithm.

Although both procedures are similar, there are essential differences between our work and
[14, 15]. First, we show that instead of using a specific language for describing those abstractions,
the considered set of structures can themselves be defined in SL, by means of formulæ of some
specific pattern called core formulæ. Second, the fact that the systems are not established makes the
definition of the procedure much more difficult, due to the fact that the considered structures can
have an unbounded treewidth. This is problematic because, informally, this boundedness property is
essential to ensure that the abstractions can be described using a finite set of variables, denoting the
frontier of the considered structures, namely the locations that can be shared with other structures. In
particular, the fact that disjoint heaps may share unallocated (or “unnamed”) locations complexifies
the definition of the composition operator. This problem is overcome by considering a specific class
of structures, called normal structures, of bounded treewidth, and proving that the validity of an
entailment can be decided by considering only normal structures.

In terms of complexity, we show that the running time of our algorithm is doubly exponential w.r.t.
the maximal size among the symbolic heaps occurring in the input entailment problem (including
those in the rules) and simply exponential w.r.t. the number of such symbolic heaps (hence w.r.t.
the number of rules). This means that the 2-EXPTIME upper bound is preserved by any reduction
increasing exponentially the number of rules, but increasing only polynomially the size of the rules.
On the other hand, the 2-EXPTIME-hard lower bound is proved by a reduction from the membership
problem for exponential-space bounded Alternating Turing Machines [6].

2 Separation Logic with Inductive Definitions

LetN denote the set of natural numbers. For a countable set S , we denote by ||S || ∈N∪{∞} its cardinal-
ity. For a partial mapping f : A⇀ B, let dom( f ) def

= {x ∈ A | f (x) ∈ B} and rng( f ) def
= { f (x) | x ∈ dom( f )}

be its domain and range, respectively. We say that f is total if dom( f ) = A, written f : A→ B and
finite, written f : A ⇀fin B if ||dom( f )|| <∞. Given integers n and m, we denote by ~n . . m� the set
{n,n + 1, . . . ,m}, so that ~n . . m� = ∅ if n > m. For a relation C ⊆ A×A, we denote by C∗ its reflexive
and transitive closure.

For an integer n ≥ 0, let An be the set of n-tuples with elements from A. Given a tuple a =

(a1, . . . ,an) and i ∈ ~1 . . n�, we denote by ai the i-th element of a and by |a| def
= n its length. By f (a) we

denote the tuple obtained by the pointwise application of f to the elements of a. If multiplicity and
order of the elements are not important, we blur the distinction between tuples and sets, using the
set-theoretic notations x ∈ a, a∪b, a∩b and a \b.

Let V = {x,y, . . .} be an infinite countable set of logical first-order variables and P = {p,q, . . .} be an
infinite countable set (disjoint from V) of relation symbols, called predicates, where each predicate p
has arity #p ≥ 0. We also consider a finite set C of constants, of known bounded cardinality, disjoint
from both V and P. Constants will play a special rôle in the upcoming developments and the fact that
C is bounded is of a particular importance. A term is either a variable or a constant and we denote by
T

def
= V∪C the set of terms.

Throughout this paper we consider an integer K ≥ 1 that, intuitively, denotes the number of fields
in a record datatype. Although we do not assume K to be a constant in any of the algorithms presented
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in the following, considering that every datatype has exactly K records simplifies the definition. The
logic SLK is the set of formulæ generated inductively by the syntax:

φ := emp | t0 7→ (t1, . . . , tK) | p(t1, . . . , t#p) | t1 ≈ t2 | φ1 ∗φ2 | φ1∧φ2 | ¬φ1 | ∃x . φ1

where p ∈ P, ti ∈ T and x ∈ V. Atomic propositions of the form t0 7→ (t1, . . . , tK) are called points-to
atoms and those of the form p(t1, . . . , t#p) are predicate atoms. If K = 1, we write t0 7→ t1 for t0 7→ (t1).

The connective ∗ is called separating conjunction, in contrast with the classical conjunction ∧.
The size of a formula φ, denoted by size(φ), is the number of occurrences of symbols in it. We
write fv(φ) for the set of free variables in φ and trm(φ) def

= fv(φ)∪C. A formula is predicate-free if
it has no predicate atoms. As usual, φ1 ∨φ2

def
= ¬(¬φ1 ∧¬φ2) and ∀x . φ def

= ¬∃x . ¬φ. For a set of
variables x = {x1, . . . , xn} and a quantifier Q ∈ {∃,∀}, we write Qx . φ def

= Qx1 . . .Qxn . φ. By writing
t1 = t2 (φ1 = φ2) we mean that the terms (formulæ) t1 and t2 (φ1 and φ2) are syntactically the same.

A substitution is a partial mapping σ : V⇀ T that maps variables to terms. We denote by
[t1/x1, . . . , tn/xn] the substitution that maps the variable xi to ti, for each i ∈ ~1 . . n� and is undefined
elsewhere. By φσ we denote the formula obtained from φ by substituting each variable x ∈ fv(φ)
by σ(x) (we assume that bound variables are renamed to avoid collisions if needed). By abuse of
notation, we sometimes write σ(x) for x, when x < dom(σ).

To interpret SLK formulæ, we consider an infinite countable set L of locations. The semantics of
SLK formulæ is defined in terms of structures (s,h), where:
s : T⇀ L is a partial mapping of terms into locations, called a store, that interprets at least all the
constants, i.e. C ⊆ dom(s) for every store s, and
h : L⇀fin L

K is a finite partial mapping of locations into K-tuples of locations, called a heap.
Given a heap h, let loc(h) def

= {`0, . . . , `K | `0 ∈ dom(h), h(`0) = (`1, . . . , `K)} be the set of locations that
occur in the heap h. Two heaps h1 and h2 are disjoint iff dom(h1)∩dom(h2) = ∅, in which case their
disjoint union is denoted by h1] h2, otherwise undefined. The frontier between h1 and h2 is the set of
common locations Fr(h1,h2) def

= loc(h1)∩ loc(h2). Note that disjoint heaps may have nonempty frontier.
The satisfaction relation |= between structures (s,h) and predicate-free SLK formulæ φ is defined
recursively on the structure of formulæ:

(s,h) |= t1 ≈ t2 ⇔ t1, t2 ∈ dom(s) and s(t1) = s(t2)
(s,h) |= emp ⇔ h = ∅

(s,h) |= t0 7→ (t1, . . . , tK) ⇔ t0, . . . , tK ∈ dom(s), dom(h) = {s(t0)} and h(s(t0)) = (s(t1), . . . ,s(tK))
(s,h) |= φ1∧φ2 ⇔ (s,h) |= φi, i = 1,2
(s,h) |= ¬φ1 ⇔ fv(φ1) ⊆ dom(s) and (s,h) 6|= φ1
(s,h) |= φ1 ∗φ2 ⇔ there exist heaps h1, h2 such that h = h1] h2 and (s,hi) |= φi, i = 1,2
(s,h) |= ∃x . φ ⇔ (s[x← `],h) |= φ, for some location ` ∈ L

where s[x← `] is the store, with domain dom(s)∪ {x}, that maps x to ` and behaves like s over
dom(s) \ {x}. For a tuple of variables x = (x1, . . . , xn) and locations l = (l1, . . . , ln), we call the store
s[x← l] def

= s[x1← l1] . . . [xn← ln] an x-associate of s. A structure (s,h) such that (s,h) |= φ, is called a
model of φ. Note that (s,h) |= φ only if fv(φ) ⊆ dom(s).

The fragment of symbolic heaps is obtained by confining the negation and conjunction to the
formulæ t1 l t2

def
= t1 ≈ t2 ∧emp and t1 6l t2

def
= ¬t1 ≈ t2 ∧emp, called equational atoms, by abuse of

language. We denote by SHK the set of symbolic heaps, formally defined below:

φ := emp | t0 7→ (t1, . . . , tK) | p(t1, . . . , t#p) | t1 l t2 | t1 6l t2 | φ1 ∗φ2 | ∃x . φ1

Given quantifier-free symbolic heaps φ1,φ2 ∈ SHK, it is not hard to check that ∃x . φ1 ∗∃y . φ2 and
∃x∃y . φ1 ∗φ2 have the same models (provided x , y). Consequently, each symbolic heap can be
written in prenex form, as φ = ∃x1 . . .∃xn . ψ, where ψ is a quantifier-free separating conjunction of
points-to atoms and (dis-)equalities. A variable x ∈ fv(ψ) is allocated in φ iff there exists a (possibly
empty) sequence of equalities x l . . . l t0 and a points-to atom t0 7→ (t1, . . . , tK) in ψ.
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The predicates from P are intepreted by a given set S of rules p(x1, . . . , x#p)⇐ ρ, where ρ is a
symbolic heap, such that fv(ρ) ⊆ {x1, . . . , x#p }. We say that p(x1, . . . , x#p) is the head and ρ is the body
of the rule. For conciseness, we write p(x1, . . . , x#p)⇐S ρ instead of p(x1, . . . , x#p)⇐ ρ ∈ S. In the
following, we shall often refer to a given set of rules S.

I Definition 1 (Unfolding). A formula ψ is a step-unfolding of a formula φ ∈ SLK, written φ⇒S ψ,
if ψ is obtained by replacing an occurrence of an atom p(t1, . . . , t#p) in φ with ρ[t1/x1, . . . , t#p/x#p],
for a rule p(x1, . . . , x#p)⇐S ρ. An unfolding of φ is a formula ψ such that φ⇒∗

S
ψ.

It is easily seen that any unfolding of a symbolic heap is again a symbolic heap. We implicitly assume
that all bound variables are α-renamed throughout an unfolding, to avoid name clashes. Unfolding
extends the semantics from predicate-free to arbitrary SLK formulæ:

I Definition 2. Given a structure (s,h) and a formula φ ∈ SLK, we write (s,h) |=S φ iff there exists a
predicate-free unfolding φ⇒∗

S
ψ such that (s,h) |= ψ. In this case, (s,h) is an S-model of φ. For two

formulæ φ,ψ ∈ SLK, we write φ |=S ψ iff every S-model of φ is an S-model of ψ.

Note that, if (s,h) |=S φ, then dom(s) might have to contain constants that do not occur in φ. For
instance if p(x)⇐S x 7→ a is the only rule with head p(x), then any S-model (s,h) must map a to
some location, which is taken care of by the assumption C ⊆ dom(s), that applies to any store.

I Definition 3 (Entailment). Given symbolic heaps φ,ψ1, . . . ,ψn, such that φ is quantifier-free
and fv(φ) = fv(ψ1) = . . . = fv(ψn) = ∅, the sequent φ ` ψ1, . . . ,ψn is valid for S iff φ |=S

∨n
i=1ψi. An

entailment problem P = (S,Σ) consists of a set of rules S and a set Σ of sequents, asking whether
each sequent in Σ is valid for S.

Note that we consider entailments between formulæ without free variables. This is not restrictive,
since any free variable can be replaced by a constant from C, with no impact on the validity status or
the computational complexity of the problem. We silently assume that C contains enough constants
to allow this replacement. For conciseness, we write φ `P ψ1, . . . ,ψn for φ ` ψ1, . . . ,ψn ∈ Σ, where Σ is
the set of sequents of P. The following example shows an entailment problem asking whether the
concatenation of two acyclic lists is again an acyclic list:

I Example 4. The entailment problem below consists of four rules, defining the predicates ls(x,y)
and sls(x,y,z), respectively, and two sequents:

ls(x,y) ⇐ x 7→ y∗ x 6l y | ∃v . x 7→ v∗ ls(v,y)∗ x 6l y
sls(x,y,z) ⇐ x 7→ y∗ x 6l y∗ x 6l z | ∃v . x 7→ v∗sls(v,y,z)∗ x 6l y∗ x 6l z

ls(a,b)∗ ls(b,c) ` ∃x . a 7→ x ∗ ls(x,c)∗a 6l c sls(a,b,c)∗ ls(b,c) ` ∃x . a 7→ x ∗ ls(x,c)∗a 6l c
Here ls(x,y) describes non-empty acyclic list segments with head and tail pointed to by x and y,
respectively. The first sequent is invalid, because c can be allocated within the list segment defined by
ls(a,b), in which case the entire list has a cycle starting and ending with the location associated with c.
To avoid the cycle, the left-hand side of the second sequent uses the predicate sls(x,y,z) describing an
acyclic list segment from x to y that skips the location pointed to by z. The second sequent is valid. �

The complexity analysis of the decision procedure described in this paper relies on two parameters.
First, the width of an entailment problem P = (S,Σ) is (roughly) the maximum among the sizes of the
symbolic heaps occurring in P and the number of constants in C. Second, the size of the entailment
problem is (roughly) the number of symbols needed to represent it, namely:

width(P) def
= max

(
{size(ρ) + #p | p(x1, . . . , x#p)⇐S ρ}∪ {size(ψi) | ψ0 `P ψ1, . . . ,ψn}∪ {||C||}

)
size(P) def

=
∑

p(x1,...,x#p) ⇐S ρ(size(ρ) + #p) +
∑
ψ0 `P ψ1,...,ψn

∑n
i=1 size(ψi)

In the next section we give a transformation of entailment problems with a time complexity that is
bounded by the product of the size and a simple exponential of the width of the input, such that,
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moreover, the width of the problem increases by a polynomial factor only. The latter is instrumental
in proving the final 2-EXPTIME upper bound on the complexity of the entailment problem.

To alleviate the upcoming technical details, we make the following assumption:

I Assumption 1. Distinct constants are always associated with distinct locations: for all stores s,
and for all c,d ∈ C, we have c , d only if s(c) , s(d).

This assumption loses no generality, because one can enumerate all the equivalence relations on
C and test the entailments separately for each of these relations, by replacing all the constants in
the same class by a unique representative2, while assuming that constants in distinct classes are
mapped to distinct locations. The overall complexity of the procedure is still doubly exponential,
since the number of such equivalence relations is bounded by the number of partitions of C, that
is 2O(||C||·log ||C||) = 2O(||width(P)||·log ||width(P)||), for any entailment problem P. Thanks to Assumption 1,
the considered symbolic heaps can be, moreover, safely assumed not to contain atoms c ./ d, with
./∈ {l, 6l} and c,d ∈ C, since these atoms are either unsatisfiable or equivalent to emp.

3 Decidable Classes of Entailments

In general, the entailment problem (Definition 3) is undecidable and we refer the reader to [9, 1]
for two different proofs. A first attempt to define a naturally expressive class of formulæ with a
decidable entailment problem was reported in [8]. The entailments considered in [8] involve sets of
rules restricted by three conditions, recalled below, in a slightly generalized form.

First, the progress condition requires that each rule adds to the heap exactly one location,
associated either to a constant or to a designated parameter. Formally, we consider a mapping
root : P→ N∪C, such that root(p) ∈ ~1 . . #p�∪C, for each p ∈ P. The term root(p(t1, . . . , t#p))
denotes either ti if root(p) = i ∈ ~1 . . #p�, or the constant root(p) itself if root(p) ∈ C. The notation
root(α) is extended to points-to atoms α as root(t0 7→ (t1, . . . , tK)) def

= t0. Second, the connectivity
condition requires that all locations added during an unfolding of a predicate atom form a set of
connected trees (a forest) rooted in locations associated either with a parameter of the predicate or
with a constant.

I Definition 5 (Progress & Connectivity). A set of rules S is progressing if each rule in S is of the
form p(x1, . . . , x#p)⇐∃z1 . . .∃zm . root(p(x1, . . . , x#p)) 7→ (t1, . . . , tK)∗ψ and ψ contains no occurrences
of points-to atoms. Moreover, S is connected if root(q(u1, . . . ,u#q)) ∈ {t1, . . . , tK}∪C, for each predicate
atom q(u1, . . . ,u#q) occurring in ψ. An entailment problem P = (S,Σ) is progressing (connected) if S
is progressing (connected).

The progress and connectivity conditions can be checked in polynomial time by a syntactic inspection
of the rules in S, even if the root(.) function is not known a priori. Note that this definition of connec-
tivity is less restrictive that the definition from [8], that asked for root(q(u1, . . . ,u#q)) ∈ {t1, . . . , tK}. For
instance, the set of rules {p(x)⇐∃y . x 7→ y∗p(y)∗p(c),p(x)⇐ x 7→ nil}, where c ∈ C is progressing
and connected (with root(p) = 1) in the sense of Definition 5, but not connected in the sense of [8],
because c < (y). Note also that nullary predicate symbols are allowed, for instance q()⇐ c 7→ nil is
progressing and connected (with root(q) = c). Further, the entailment problem from Example 4 is
both progressing and connected.

Third, the establishment condition is defined, slightly extended from its original statement [8]:

2 The replacement must be performed also within the inductive rules, not only in the considered formulæ.
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I Definition 6 (Establishment). Given a set of rules S, a symbolic heap ∃x1 . . .∃xn . φ, where
φ is quantifier-free, is S-established iff every xi for i ∈ ~1 . . n� is allocated in each predicate-free
unfolding φ⇒∗

S
ϕ. A set of rules S is established if the body ρ of each rule p(x1, . . . , x#p)⇐S ρ is

S-established. An entailment problem P = (S,Σ) is established if S is established, and strongly
established if, moreover, φi is S-established, for each sequent φ0 `P φ1, . . . ,φn and each i ∈ ~0 . . n�.

For example, the entailment problem from Example 4 is strongly established.
In this paper, we replace establishment with a new condition that, as we show, preserves the

decidability and computational complexity of progressing, connected and established entailment
problems. The new condition can be checked in time linear in the size of the problem. This condition,
called equational restrictedness (e-restrictedness, for short), requires that each equational atom
occurring in a formula involves at least one constant. We will show that the e-restrictedness condition
is more general than establishment, in the sense that every established problem can be reduced to
an equivalent e-restricted problem (Theorem 13). Moreover, the class of structures defined using
e-restricted symbolic heaps is a strict superset of the one defined by established symbolic heaps.

I Definition 7 (E-restrictedness). A symbolic heap φ is e-restricted if, for every equational atom
t ./ u from φ, where ./∈ {l, 6l}, we have {t,u}∩C , ∅. A set of rules S is e-restricted if the body ρ of
each rule p(x1, . . . , x#p)⇐S ρ is e-restricted. An entailment problem P = (S,Σ) is e-restricted if S is
e-restricted and φi is e-restricted, for each sequent φ0 `P φ1, . . . ,φn and each i ∈ ~0 . . n�.

For instance, the entailment problem from Example 4 is not e-restricted, because several rule bodies
have disequalities between parameters, e.g. ls(x,y) ⇐ x 7→ y ∗ x 6l y. However, the set of rules
{lsc(x)⇐ x 7→ c ∗ x 6l c, lsc(x)⇐ ∃y . x 7→ y ∗ lsc(y) ∗ x 6l c}, where c ∈ C and lsc is a new predicate
symbol, denoting an acyclic list ending with c, is e-restricted. Note that any atom ls(x,y) can be
replaced by lsy(x), provided that y occurs free in a sequent and can be viewed as a constant.

We show next that every established entailment problem (Definition 6) can be reduced to an
e-restricted entailment problem (Definition 7). The transformation incurs an exponential blowup,
however, as we show, the blowup is exponential only in the width and polynomial in the size of the
input problem. This is to be expected, because checking e-restrictedness of a problem can be done in
linear time, in contrast with checking establishment, which is at least co-NP-hard [11].

We begin by showing that each problem can be translated into an equivalent normalized problem:

I Definition 8 (Normalization).
(1) A symbolic heap ∃x . ψ ∈ SHK, where ψ is quantifier-free, is normalized iff for every atom α in ψ:

a. if α is an equational atom, then it is of the form x 6l t (t 6l x), where x ∈ x,
b. every variable x ∈ fv(ψ) occurs in a points-to or predicate atom of ψ,
c. if α is a predicate atom q(t1, . . . , t#q), then {t1, . . . , t#q}∩C = ∅ and ti , t j, for all i , j ∈ ~1 . . #q�.

(2) A set of rules S is normalized iff for each rule p(x1, . . . , x#p)⇐S ρ, the symbolic heap ρ is
normalized and, moreover:
a. For every i ∈ ~1 . . #p� and every predicate-free unfolding p(x1, . . . , x#p)⇒∗

S
ϕ, ϕ contains a

points-to atom t0 7→ (t1, . . . , tK), such that xi ∈ {t0, . . . , tK}.
b. There exist sets pallocS(p) ⊆ ~1 . . #p� and callocS(p) ⊆ C such that, for each predicate-free

unfolding p(x1, . . . , x#p)⇒∗
S
ϕ:

i ∈ pallocS(p) iff ϕ contains an atom xi 7→ (t1, . . . , tK), for every i ∈ ~1 . . #p�,
c ∈ callocS(p) iff ϕ contains an atom c 7→ (t1, . . . , tK), for every c ∈ C.

c. For every predicate-free unfolding p(x1, . . . , x#p)⇒∗
S
ϕ, if ϕ contains an atom t0 7→ (t1, . . . , tK)

such that t0 ∈ V \ {x1, . . . , x#p}, then ϕ also contains atoms t0 6l c, for every c ∈ C.
(3) An entailment problem P = (S,Σ) is normalized if S is normalized and, for each sequent φ0 `P

φ1, . . . ,φn the symbolic heap φi is normalized, for each i ∈ ~0 . . n�.
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The intuition behind Condition (2a) is that no term can “disappear” while unfolding an inductive
definition. Condition (2b) states that the set of terms eventually allocated by a predicate atom is the
same in all unfoldings. This allows to define the set of symbols that occur freely in a symbolic heap φ
and are necessarily allocated in every unfolding of φ, provided that the set of rules is normalized:

I Definition 9. Given a normalized set of rules S and a symbolic heap φ ∈ SHK, the set allocS(φ) is
defined recursively on the structure of φ:

allocS(t0 7→ (t1, . . . , tK)) def
= {t0} allocS(p(t1, . . . , t#p)) def

=
{
ti | i ∈ pallocS(p)

}
allocS(t1 ./ t2) def

= ∅, ./∈ {l, 6l} ∪ callocS(p)
allocS(φ1 ∗φ2) def

= allocS(φ1)∪allocS(φ2) allocS(∃x . φ1) def
= allocS(φ1) \ {x}

I Example 10. The rules p(x,y)⇐ ∃z . x 7→ z ∗ p(z,y) ∗ x 6l y and p(x,y)⇐ ∃z . x 7→ z are not
normalized, because they contradict Conditions (1a) and (2a) of Definition 8, respectively. A
set S containing the rules q(x,y) ⇐ ∃z . x 7→ y ∗ q(y,z) and q(x,y) ⇐ x 7→ y is not normalized,
because it is not possible to find a set pallocS(q) satisfying Condition (2b). Indeed, if 2 ∈ pallocS(q)
then the required equivalence does not hold for the second rule (because it does not allocate y),
and if 2 < pallocS(q) then it fails for the first one (since the predicate q(y,z) allocates y). On the
other hand, S′ = {p(x,y)⇐ ∃z . x 7→ z ∗ p(z,y) ∗ z 6l x ∗ z 6l nil, p(x,y)⇐ x 7→ y,q(x,y)⇐ ∃z . x 7→
y ∗ q(y,z) ∗ z 6l nil , q(x,y)⇐ x 7→ y ∗ r(y),r(x)⇐ x 7→ nil} is normalized (assuming C = {nil}), with
pallocS′(p) = pallocS′(r) = {1}, pallocS′(q) = {1,2} and callocS′(π) = ∅, for all π ∈ {p,q,r}. Then
allocS′ (p(x1, x2)∗q(x3, x4)∗ r(x5)) = {x1, x3, x4, x5}. �

The following lemma states that every entailment problem can be transformed into a normalized
entailment problem, by a transformation that preserves progress, connectivity, e-restricted-ness and
(strong) establishment.

I Lemma 11. A progressing and connected entailment problem P can be translated to an equivalent
progressing, connected and normalized problem Pn, such that width(Pn) = O(width(P)2) in time
size(P) ·2O(width(P)2). Further, Pn is e-restricted if P is e-restricted and (strongly) established if P is
(strongly) established.

I Example 12. The entailment problem P = (S, {p(a,b) ` ∃x,y . q(x,y)}) with:

S
def
=

{
p(x,y) ⇐ ∃z . x 7→ z∗ p(z,y)∗ x 6l y q(x,y) ⇐ ∃z . x 7→ y∗q(y,z)∗ z 6l a∗ z 6l b
p(x,y) ⇐ ∃z . x 7→ z q(x,y) ⇐ x 7→ y

}
may be transformed into (S′, {p1() ` ∃x,y . q1(x,y),∃x,y . q2(x,y)}), where S′ is the set:

p1() ⇐ ∃z . a 7→ z∗ p2(z)∗ z 6l a∗ z 6l b p2(x) ⇐ x 7→ b∗ p3()
p1() ⇐ a 7→ b∗ p3() p2(x) ⇐ ∃z . x 7→ z∗ p2(z)∗ z 6l a∗ z 6l b
p1() ⇐ ∃z . a 7→ z p2(x) ⇐ ∃z . x 7→ z
p3() ⇐ ∃z . b 7→ z q1(x,y) ⇐ ∃z . x 7→ y∗q1(y,z)∗ z 6l a∗ z 6l b

q2(x,y) ⇐ x 7→ y q1(x,y) ⇐ ∃z . x 7→ y∗q2(y,z)∗ z 6l a∗ z 6l b

The predicate atoms p1(), p2(x) and p3() are equivalent to p(a,b), p(x,b) and p(b,b), respectively.
q(x,y) is equivalent to q1(x,y)∨q2(x,y). Note that p2(x) is only used in a context where x 6l b holds,
thus the atom x 6l b may be omitted from the rules of p2(). Recall that a and b are mapped to distinct
locations, by Assumption 1. �

We show that every established problem P can be reduced to an e-restricted problem in time linear
in the size and exponential in the width of the input, at the cost of a polynomial increase of its width:

I Theorem 13. Every progressing, connected and established entailment problem P = (S,Σ) can
be reduced in time size(P) · 2O(width(P)2) to a normalized, progressing, connected and e-restricted
problem Pr, such that width(Pr) = O(width(P)).
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The class of e-restricted problems is more general than the class of established problems, in the
following sense: for each established problem P = (S,Σ), the treewidth of each S-model of a S-
established symbolic heap φ is bounded by width(P) [8], while e-restricted symbolic heaps may have
infinite sequences of models with strictly increasing treewidth:

I Example 14. Consider the set of rules {lls(x,y)⇐ x 7→ (y,nil), lls(x,y)⇐∃z∃v . x 7→ (z,v)∗ lls(z,y)}.
The existentially quantified variable v in the second rule in never allocated in any predicate-free
unfolding of lls(a,b), thus the set of rules is not established. However, it is trivially e-restricted,
because no equational atoms occur within the rules. Among the models of lls(a,b), there are all
n×n-square grid structures, known to have treewidth n, for n > 1 [17] (such a grid can be represented
as a list of length n2, with additional links between the elements at positions i and i + n). �

4 Normal Structures

The decidability of e-restricted entailment problems relies on the fact that, to prove the validity of a
sequent, it is sufficient to consider only a certain class of structures, called normal, that require the
variables not mapped to the same location as a constant to be mapped to pairwise distinct locations:

I Definition 15. A structure (s,h) is a normal S-model of a symbolic heap φ iff there exists:
1. a predicate-free unfolding φ⇒S ∃x . ψ, where ψ is quantifier-free, and
2. an x-associate s of s, such that (s,h) |=S ψ and s(x) = s(y)∧ x , y⇒ s(x) ∈ s(C), for all x,y ∈ fv(ψ).

I Example 16. Consider the formula ϕ = p(x1) ∗ p(x2), with p(x)⇐S ∃z . x 7→ z and C = {a}.
Then the structures: (s,h) and (s,h′) with s = {(x1, `1), (x2, `2), (a, `3)}, h = {(`1, `3), (`2, `3)} and h′ =
{(`1, `4), (`2, `5)} are normal models of ϕ. On the other hand, if h′′ = {(`1, `4), (`2, `4)} (with `4 , `3)
then (s,h′′) is a model of ϕ but it is not normal, because any associate of s will map the existentials
from the predicate-free unfolding of p(x1)∗ p(x2) into the same location, different from s(a). �

Since the left-hand side symbolic heap φ of each sequent φ ` ψ1, . . . ,ψn is quantifier-free and has
no free variables (Definition 3) and moreover, by Assumption 1, every constant is associated a distinct
location, to check the validity of a sequent it is enough to consider only structures with injective
stores. We say that a structure (ṡ,h) is injective if the store ṡ is injective. As a syntactic convention, by
stacking a dot on the symbol denoting the store, we mean that the store is injective.

The key property of normal structures is that validity of e-restricted entailment problems can be
checked considering only (injective) normal structures. The intuition is that, since the (dis-)equalities
occurring in the considered formula involve a constant, it is sufficient to assume that all the existential
variables not equal to a constant are mapped to pairwise distinct locations, as all other structures
can be obtained from such structures by applying a morphism that preserves the truth value of the
considered formulæ.

I Lemma 17. Let P = (S,Σ) be a normalized and e-restricted entailment problem and let φ `P
ψ1, . . . ,ψn be a sequent. Then φ `P ψ1, . . . ,ψn is valid for S iff (ṡ,h) |=S

∨n
i=1ψi, for each normal

injective S-model (ṡ,h) of φ.

5 Core Formulæ

Given an e-restricted entailment problem P = (S,Σ), the idea of the entailment checking algorithm is
to compute, for each symbolic heap φ that occurs as the left-hand side of a sequent φ `P ψ1, . . . ,ψn, a
finite set of sets of formulæ F (φ) = {F1, . . . ,Fm}, of some specific pattern, called core formulæ. The
set F (φ) defines an equivalence relation, of finite index, on the set of injective normal S-models of
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φ, such that each set F ∈ F (φ) encodes an equivalence class. Because the validity of each sequent
can be checked by testing whether every (injective) normal model of its left-hand side is a model of
some symbolic heap on the right-hand side (Lemma 17), an equivalent check is that each set F ∈ F (φ)
contains a core formula entailing some formula ψi, for i = 1, . . . ,n. To improve the presentation, we
first formalize the notions of core formulæ and abstractions by sets of core formulæ, while deferring
the effective construction of F (φ), for a symbolic heap φ, to the next section (§6). In the following,
we refer to a given entailment problem P = (S,Σ).

First, we define core formulæ as a fragment of SLK. Consider a formula loc(x) def
= ∃y0 . . .∃yK . y0 7→

(y1, . . . ,yK) ∗
∨K

i=0 x ≈ yi. Note that a structure is a model of loc(x) iff the variable x is mapped to a
location from the domain or the range of the heap. We define also the following bounded quantifiers:

∃̇x . φ def
= ∃x .

∧
t∈(fv(φ)\{x})∪C¬x ≈ t∧φ ∃hx . φ def

= ∃̇x . loc(x)∧φ
∃¬hx . φ def

= ∃̇x . ¬loc(x)∧φ ∀¬hx . φ def
= ¬∃¬hx . ¬φ

In the following, we shall be extensively using the ∃hx . φ and ∀¬hx . φ quantifiers. The formula
∃hx . φ states that there exists a location ` which occurs in the domain or range of the heap and is
distinct from the locations associated with the constants and free variables, such that φ holds when x
is associated with `. Similarly, ∀¬hx . φ states that φ holds if x is associated with any location ` that is
outside of the heap and distinct from all the constants and free variables. The use of these special
quantifiers will allow us to restrict ourselves to injective stores (since all variables and constants are
mapped to distinct locations), which greatly simplifies the handling of equalities.

The main ingredient used to define core formulæ are context predicates. Given a tuple of predicate
symbols (p,q1, . . . ,qn) ∈ Pn+1, where n ≥ 0, we consider a context predicate symbol Γp,q1,...,qn of
arity #p +

∑n
i=1 #qi. The informal intuition of a context predicate atom Γp,q1,...,qn(t,u1, . . . ,un) is the

following: a structure (s,h) is a model of this atom if there exist models (s,hi) of qi(ui), i ∈ ~1 . . n�
respectively, with mutually disjoint heaps, an unfolding ψ of p(t) in which the atoms qi(ui) occur, and
an associate s′ of s such that (s′,h]

⊎n
i=1 hi) is a model of ψ.

For readability’s sake, we adopt a notation close in spirit to SL’s separating implication (known as
the magic wand), and we write∗n

i=1qi(yi) −−• p(x) for Γp,q1,...,qn (x,y1, . . . ,yn) and emp −−• p(x), when
n = 03. The set of rules defining the interpretation of context predicates is the least set defined by the
inference rules below, denoted CS:

p(x) −−• p(y)⇐CS x l y x∩y = ∅
(I)

p(x)⇐S ∃z . ψ∗∗m
j=1 p j(w j) ∗n

i=1qi(yi) =∗m
j=1γ j

∗n
i=1qi(yi) −−• p(x)⇐CS ∃v . ψσ∗∗m

j=1

(
γ j −−• p j(σ(w j))

) x,z,y1, . . . ,yn pairwise disjoint
σ : z ⇀ x∪

⋃n
i=1 yi

v = z \dom(σ) (II)

Note that CS is not progressing, since the rule for p(x) −−• p(y) does not allocate any location.
However, if S is progressing, then the set of rules obtained by applying (II) only is also progressing.
Rule (I) says that each predicate atom p(t) −−• p(u), such that t and u are mapped to the same tuple
of locations, is satisfied by the empty heap. To understand rule (II), let (s,h) be an S-model of
p(t) and assume there are a predicate-free unfolding ψ of p(t) and an associate s′ of s, such that
q1(u1), . . . ,qn(un) occur in ψ and (s′,h) |=S ψ. If the first unfolding step is an instance of a rule p(x)⇐S
∃z . ψ∗∗m

j=1 p j(w j) then there exist a z-associate s of s and a split of h into disjoint heaps h0, . . . ,hm

3 Context predicates are similar to the strong magic wand introduced in [13]. A context predicate α −−• β is also related
to the usual separating implication α −−∗ β of separation logic, but it is not equivalent. Intuitively, −−∗ represents a
difference between two heaps, whereas −−• removes some atoms in an unfolding. For instance, if p and q are defined
by the same inductive rules, up to a renaming of predicates, then p(x) −−∗ q(x) always holds in a structure with an
empty heap, whereas p(x) −−• q(x) holds if, moreover, p(x) and q(x) are the same atom.
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such that (s,h0) |= ψ[t/x] and (s,h j) |=S p j(w j)[t/x], for all j ∈ ~1 . . m�. Assume, for simplicity, that
u1∪ . . .∪un ⊆ dom(s) and let h1, . . . ,hn be disjoint heaps such that (s,hi) |=S qi(ui). Then there exists
a partition

{
{i j,1, . . . , i j,k j } | j ∈ ~1 . . m�

}
of ~1 . . n�, such that hi j,1 , . . . ,hi j,k j

⊆ h j, for all j ∈ ~1 . . m�.

Let γ j
def
=∗k j

`=1q`(u`), then (s,h j \ (hi j,1 ∪ . . .∪hi j,k j
)) |=CS γ j −−• p j(w j)[t/x], for each j ∈ ~1 . .m�. This

observation leads to the inductive definition of the semantics for∗n
i=1qi(ui) −−• p(t), by the rule that

occurs in the conclusion of (II), where the substitution σ : z ⇀ x∪
⋃n

i=1 yi is used to instantiate4 some
of the existentially quantified variables from the original rule p(x)⇐S ∃z . ψ∗∗m

j=1 p j(w j).

I Example 18. Consider the set S = {p(x)⇐∃z1,z2 . x 7→ (z1,z2)∗q(z1)∗q(z2),q(x)⇐ x 7→ (x, x)}.
We have (s,h) |=S p(x) with s = {(x, `1)} and h = {(`1, `2, `3), (`2, `2, `2), (`3, `3, `3)}. The atom q(y) −−•
p(x) is defined by the following non-progressing rules (we only consider the rules corresponding to
the case where σ is the identity, since the other rules are redundant):

q(y) −−• p(x) ⇐ ∃z1,z2 . x 7→ (z1,z2)∗q(y) −−• q(z1)∗emp −−• q(z2) q(y) −−• q(x) ⇐ x l y
q(y) −−• p(x) ⇐ ∃z1,z2 . x 7→ (z1,z2)∗emp −−• q(z1)∗q(y) −−• q(z2) emp −−• q(x) ⇐ x 7→ (x, x)
The two rules for q(y) −−• p(x) correspond to the two ways of distributing q(y) over q(z1), q(z2).

We have h = h1 ] h2, with h1 = {(`1, `2, `3), (`2, `2, `2)} and h2 = {(`3, `3, `3)}. It is easy to check
that (s[y← `3],h1) |=CS q(y) −−• p(x), and (s[y← `3],h2) |=CS q(y). Note that we also have (s[y←
`2],h′1) |=CS q(y) −−• p(x), with h′1 = {(`1, `2, `3), (`3, `3, `3)}. �

Having introduced context predicates, the pattern of core formulæ is defined below:

I Definition 19. A core formula ϕ is an instance of the pattern:

∃hx∀¬hy .∗n
i=1

(
∗ki

j=1qi
j(u

i
j) −−• pi(ti)

)
∗∗m

i=n+1ti
0 7→ (ti

1, . . . , t
i
K

) such that:

(i) each variable occurring in y also occurs in an atom in ϕ;
(ii) for every variable x ∈ x, either x ∈ ti \

⋃ki
i=1 ui

j for some i ∈ ~1 . . n�, or x = ti
j, for some i ∈

~n + 1 . . m� and some j ∈ ~0 . . K�;
(iii) each term t occurs at most once as t = root(α), where α is an atom of ϕ.

We also define the set of terms roots(ϕ) def
= rootslhs(ϕ)∪ rootsrhs(ϕ), with rootslhs(ϕ) def

= {root(qi
j(u

i
j)) |

i ∈ ~1 . . n�, j ∈ ~1 . . ki�} and rootsrhs(ϕ) def
= {root(pi(ti)) | i ∈ ~1 . . n�}∪ {ti

0 | i ∈ ~n + 1 . . m�}.

Note that an unfolding of a core formula using the rules in CS is not necessarily a core formula,
because of the unbounded existential quantifiers and equational atoms that occur in the rules from
CS. Note also that a core formula cannot contain an occurrence of a predicate of the form p(t) −−• p(t)
because otherwise, Condition (iii) of Definition 19 would be violated.

Lemma 20 shows that any symbolic heap is equivalent to an effectively computable finite disjunc-
tion of core formulæ, when the interpretation of formulæ is restricted to injective structures. For a
symbolic heap φ ∈ SHK, we define the set T (φ), recursively on the structure of φ, implicitly assuming
w.l.o.g. that emp∗φ = φ∗emp = φ:

T (emp) def
= {emp} T (t0 7→ (t1, . . . , tK)) def

= {t0 7→ (t1, . . . , tK)}
T (p(t)) def

= {emp −−• p(t)} T (φ1 ∗φ2) def
= {ψ1 ∗ψ2 | ψi ∈ T (φi) , i = 1,2}

T (t1 l t2) def
=

{
{emp} if t1 = t2
∅ if t1 , t2

T (t1 6l t2) def
=

{
∅ if t1 = t2

{emp} if t1 , t2
T (∃x . φ1) def

= {∃hx . ψ | ψ ∈ T (φ1)}∪ {ψ | ψ ∈ T (φ1[t/x]) , t ∈ (fv(φ1) \ {x})∪C}

For instance, if φ = ∃x . p(x,y)∗ x 6l y and C = {c}, then T (φ) = {∃hx . emp−−• p(x,y), emp−−• p(c,y)}.
Note that T (y 6l y) = ∅, thus emp −−• p(y,y) < T (φ).

4 Note that this instantiation is, in principle, redundant (i.e. the same rules are obtained if dom(σ) = ∅ by chosing
appropriate z-associates) but we keep it to simplify the related proofs.
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I Lemma 20. Assume S is normalized. Consider an e-restricted normalized symbolic heap φ ∈ SHK

with no occurrences of context predicate symbols, and an injective structure (ṡ,h), such that dom(ṡ) =

fv(φ)∪C. We have (ṡ,h) |=S φ iff (ṡ,h) |=CS ψ, for some ψ ∈ T (φ).

Next, we give an equivalent condition for the satisfaction of a context predicate atom, that relies
on an unfolding of a symbolic heap into a core formula:

I Definition 21. A formula ϕ is a core unfolding of a predicate atom ∗n
i=1qi(ui) −−• p(t), written

∗n
i=1qi(ui) −−• p(t) CS ϕ, iff there exists:

1. a rule∗n
i=1qi(yi) −−• p(x)⇐CS ∃z . φ, where φ is quantifier free, and

2. a substitution σ = [t/x,u1/y1, . . . ,un/yn]∪ζ, ζ ⊆ {(z, t) | z ∈ z, t ∈ t∪
⋃n

i=1 ui}, such that ϕ ∈ T (φσ).
A core unfolding of a predicate atom is always a quantifier-free formula, obtained from the translation
(into a disjunctive set of core formulæ) of the quantifier-free matrix of the body of a rule, in which
some of the existentially quantified variables in the rule occur instantiated by the substitution σ. For
instance, the rule emp −−• p(x)⇐CS ∃y . x 7→ y induces the core unfoldings emp −−• p(a) S a 7→ a
and emp −−• p(a) S a 7→ u, via the substitutions [a/x,a/y] and [a/x,u/y], respectively. Note that a
core unfolding of an atom φ may contain variables not occurring in φ, corresponding to the existential
variables occurring in the rules, such as the variable u in the previous example.

We now define an equivalence relation, of finite index, on the set of injective structures. Intuitively,
an equivalence class is defined by the set of core formulæ that are satisfied by all structures in the
class (with some additional conditions). First, we introduce the overall set of core formulæ, over
which these equivalence classes are defined:

I Definition 22. LetVP
def
=V1

P
∪V2

P
, such thatV1

P
∩V2

P
= ∅ and ||Vi

P
|| = width(P), for i = 1,2 and

denote by Core(P) the set of core formulæ ϕ such that roots(ϕ)∩ fv(ϕ)⊆V1
P

, roots(ϕ)\ fv(ϕ)⊆V2
P
∪C

and no variable inV1
P

is bound in ϕ.

Note that Core(P) is a finite set, because bothVP and C are finite. Intuitively,V1
P

will denote “local”
variables introduced by unfolding the definitions on the left-hand sides of the entailments, whereas
V2
P

will denote existential variables occurring on the right-hand sides. The setsV1
P

andV2
P

can be
chosen arbitrarily, provided the conditions of Definition 22 are satisfied. Second, we characterize an
injective structure by the set of core formulæ it satisfies:

I Definition 23. For a core formula ϕ = ∃hx∀¬hy . ψ, we denote byWS(ṡ,h,ϕ) the set of stores ṡ
that are injective (x∪y)-associates of ṡ, and such that:
(1) (ṡ,h) |=CS ψ,
(2) ṡ(x) ⊆ loc(h), and
(3) ṡ(y)∩ loc(h) = ∅.
The elements of this set are called witnesses for (ṡ,h) and ϕ.

The core abstraction of an injective structure (ṡ,h) is the set CP(ṡ,h) of core formulæ ϕ ∈ Core(P)
for which there exists a witness ṡ ∈WS(ṡ,h,ϕ) such that ṡ(rootslhs(ϕ))∩dom(h) = ∅.

An injective structure (ṡ,h) satisfies each core formula ϕ ∈ CP(ṡ,h), a fact that is witnessed by an
extension of the store assigning the universally quantified variables random locations outside of the
heap. Further, any core formula ϕ such that (ṡ,h) |= ϕ and rootslhs(ϕ) = ∅ occurs in CP(ṡ,h).

Our entailment checking algorithm relies on the definition of the profile of a symbolic heap. Since
each symbolic heap is equivalent to a finite disjunction of existential core formulæ, when interpreted
over injective normal structures, it is sufficient to consider only profiles of core formulæ:

I Definition 24. The profile of an entailment problem P = (S,Σ) is the relation F ⊆ Core(P)×
2Core(P) such that, for any core formula φ ∈Core(P) and any set of core formulæ F ∈ 2Core(P), we have
(φ,F) ∈ F iff F = CP(ṡ,h), for some injective normal CS-model (ṡ,h) of φ, with dom(ṡ) = fv(φ)∪C.
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Assuming the existence of a profile, the effective construction of which will be given in Section 6, the
following lemma provides an algorithm that decides the validity of P:

I Lemma 25. Let P = (S,Σ) be a normalized e-restricted entailment problem and F ⊆ Core(P)×
2Core(P) be a profile for P. Then P is valid iff, for each sequent φ `P ψ1, . . . ,ψn, each core formula
ϕ ∈ T (φ) and each pair (ϕ,F) ∈ F , we have F ∩T (ψi) , ∅, for some i ∈ ~1 . . n�.

The proof relies on Lemma 17, according to which entailments can be tested by considering only
normal models. As one expects, Lemma 20 is used in this proof to ensure that the translation T (.) of
symbolic heaps into core formulæ preserves the injective models.

6 Construction of the Profile Relation

For a given normalized entailment problem P = (S,Σ), we describe the construction of a profile
FP ⊆Core(P)×2Core(P), recursively on the structure of core formulæ. We assume that the set of rules
S is progressing, connected and e-restricted. The relation FP is the least set satisfying the recursive
constraints (1), (2), (3) and (4), given in this section. Since these recursive definitions are monotonic,
the least fixed point exists and is unique.
Points-to Atoms For a points-to atom t0 7→ (t1, . . . , tK), with t0, . . . , tK ∈ V1

P
∪C, we have:

(t0 7→ (t1, . . . , tK), F) ∈ FP, iff F is the set containing t0 7→ (t1, . . . , tK) and all core formulæ
of the form ∀¬hz .∗n

i=1 qi(ui) −−• p(t) ∈ Core(P), where z = (t∪u1∪ . . .∪un) \ ({t0, . . . , tK}∪C)
such that emp −−• p(t) CS t0 7→ (t1, . . . , tK)∗∗n

i=1 emp −−• qi(ui) (1)

For instance, if S = {p(x)⇐∃y,z . x 7→ y∗q(y,z), q(x,y)⇐ x 7→ y}, withV1
P

= {u,v} andV2
P

= {z},
then FP contains the pair (u 7→ v,F) with F = {u 7→ v,emp −−• q(u,v),∀¬hz . q(v,z) −−• p(u)}.
Predicate Atoms Since profiles involve only the core formulæ obtained by the syntactic translation
of a symbolic heap, the only predicate atoms that occur in the argument of a profile are of the form
emp −−• p(t). We consider the constraint:

(emp −−• p(t), F) ∈ FP if (∃hy . ψ, F) ∈ FP,emp −−• p(t) CS ψ ∈ Core(P) and y = fv(ψ) \ t (2)

Separating Conjunctions Computing the profile of a separating conjunction is the most technical
point of the construction. To ease the presentation, we assume the existence of a binary operation
called composition:

I Definition 26. Given a set D ⊆V1
P
∪C, a binary operator ~D : 2Core(P)×2Core(P)→ 2Core(P) is a

composition if CP(ṡ,h1)~DCP(ṡ,h2) = CP(ṡ,h), for any injective structure (ṡ,h), such that
(i) dom(ṡ) ⊆V1

P
,

(ii) h = h1] h2,
(iii) Fr(h1,h2) ⊆ ṡ(V1

P
∪C),

(iv) Fr(h1,h2)∩dom(h) ⊆ ṡ(D) ⊆ dom(h).
We recall that Fr(h1,h2) = loc(h1)∩ loc(h2). If S is a normalized set of rules, then for any core formula
φ whose only occurrences of predicate atoms are of the form emp −−• p(t), we define allocCS(φ) as
the homomorphic extension of allocCS (emp −−• p(t)) def

= allocS(p(t)) to φ (see Definition 9). Assuming
that S is a normalized set of rules and that a composition operation ~D (the construction of which
will be described below, see Lemma 30) exists, we define the profile of a separating conjunction:

(φ1 ∗φ2,add(X1,F1)~D add(X2,F2)) ∈ FP, if (φi,Fi) ∈ FP Xi
def
= fv(φ3−i) \ fv(φi), i = 1,2

allocCS (φ1)∩allocCS (φ2) = ∅, D def
= allocCS (φ1 ∗φ2)∩ (fv(φ1)∩ fv(φ2)∪C) (3)

add(x,F) def
= {∃hy∀¬hz . ψ | ∃hy∀¬hz∀¬h x̂ . ψ[x̂/x] ∈ F}, add({x1, . . . , xn},F) def

= add(x1, . . .add(xn,F))
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The choice of the set D above ensures (together with the restriction to normal models) that ~D is
indeed a composition operator. Intuitively, since the considered models are normal, every location
in the frontier between the heaps corresponding to φ1 and φ2 will be associated with a variable,
thus D denotes the set of allocated locations on the frontier. Note that, because P is normalized,
allocCS(φ1 ∗φ2) is well-defined. Because the properties of the composition operation hold when the
models of its operands share the same store (Definition 26), we use the add(x,F) function that adds
free variables (mapped to locations outside of the heap) to each core formula in F.
Existential Quantifiers Since profiles involve only core formulæ obtained by the syntactic translation
of a symbolic heap (Lemma 25), it is sufficient to consider only existentially quantified core formulæ,
because the syntactic translation T (.) does not produce universal quantifiers. The profile of an
existentially quantified core formula is given by the constraint:

(∃hx′ . φ[x′/x], rem(x,F)) ∈ FP, if x ∈ fv(φ), x′ ∈ V2
P

, x′ not bound in φ, (φ,F) ∈ FP, (4)
rem(x,F) def

= {∃h x̂ . ψ[x̂/x] | ψ ∈ F, x ∈ fv(ψ), x̂ not in ψ}∩Core(P)∪{ψ | ψ ∈ F, x < fv(ψ)}
rem({x1, . . . , xn},F) def

= rem(x1, . . . rem(xn,F) . . .)

Note that x̂ is a fresh variable, which is not bound or free in ψ. In particular, if x ∈ roots(ψ), then we
must have x̂ ∈ V2

P
, so that ∃h x̂ . ψ[x̂/x] ∈ Core(P). Similarly the variable x is replaced by a fresh

variable x′ ∈ V2
P

in ∃hx′ . φ[x′/x] to ensure that ∃hx′ . φ[x′/x] is a core formula.
The Profile Function Let FP be the least relation that satisfies the constraints (1), (2), (3) and (4).
We prove that FP is a valid profile for P, in the sense of Definition 24:

I Lemma 27. Given a progressing and normalized entailment problem P = (S,Σ), a symbolic heap
ϕ ∈ SHK with fv(ϕ) ⊆V1

P
, a core formula φ ∈ T (ϕ) and a set of core formulæ F ⊆ Core(P), we have

(φ,F) ∈ FP iff F = CP(ṡ,h), for some injective normal CS-model (ṡ,h) of φ, with dom(ṡ) = fv(ϕ)∪C.

The composition operation ~D works symbolically on core formulæ, by saturating the separating
conjunction of two core formulæ via a modus ponens-style consequence operator.

I Definition 28. Given formulæ φ,ψ, we write φ  ψ if φ = ϕ∗ [α −−• p(t)]∗ [(β∗ p(t)) −−• q(u)] and
ψ = ϕ∗ [(α∗β) −−• q(u)] (up to the commutativity of ∗ and the neutrality of emp) for some formula ϕ,
predicate atoms p(t) and q(u) and conjunctions of predicate atoms α and β.

I Example 29. Consider the structure (s,h) and the rules of Example 18. We have h = h1] h2, with
(s[y← `3],h1) |=CS q(y)−−• p(x) and (s[y← `3],h2) |=S q(y), i.e., (s[y← `3],h2) |=CS emp−−• q(y), thus
(s[y← `3],h) |=CS q(y) −−• p(x)∗emp −−• q(y)  emp −−• p(x). �

We define a relation on the set of core formulæ Core(P), parameterized by a set D ⊆V1
P
∪C:

∃hx1∀¬hy1 . ψ1,∃hx2∀¬hy2 . ψ2 �D ∃hx∀¬hy . ψ (5)
if ψ1 ∗ψ2 

∗ ψ,x1∩x2 = ∅,x = (x1∪x2)∩ fv(ψ),y = ((y1∪y2)∩ fv(ψ)) \x, rootslhs(ψ)∩D = ∅.

The composition operator is defined by lifting the � relation to sets of core formulæ:
F1~D F2

def
= {ψ | φ1 ∈ F1,φ2 ∈ F2,φ1,φ2 �D ψ} (6)

We show that ~D is indeed a composition, in the sense of Definition 26:

I Lemma 30. Let S be a normalized, progressing, connected and e-restricted set of rules, D ⊆
V1
P
∪C be a set of terms and (ṡ,h) be an injective structure, with dom(ṡ) ⊆V1

P
∪C. Let h1 and h2 be

two disjoint heaps, such that:
(1) h = h1] h2,
(2) Fr(h1,h2) ⊆ ṡ(V1

P
∪C) and

(3) Fr(h1,h2)∩dom(h) ⊆ ṡ(D) ⊆ dom(h).
Then, we have CP(ṡ,h) = CP(ṡ,h1)~DCP(ṡ,h2).
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7 Main Result

In this section, we state the main complexity result of the paper. As a prerequisite, we prove that the
size of the core formulæ needed to solve an entailment problem P is polynomial in width(P) and the
number of such formulæ is simply exponential in width(P) + log(size(P)).

I Lemma 31. Given an entailment problem P, for every formula φ ∈ Core(P), we have size(φ) =

O(width(P)2) and ||Core(P)|| = 2O(width(P)3×log(size(P))).

I Theorem 32. Checking the validity of progressing, connected and e-restricted entailment problems
is 2-EXPTIME-complete.

Proof : 2-EXPTIME-hardness follows from [6]; since the reduction in [6] involves no (dis-)equality,
the considered systems are trivially e-restricted. We now prove 2-EXPTIME-membership. Let P be an
e-restricted problem. By Lemma 11, we compute, in time size(P) ·2O(width(P)2), an equivalent normal-
ized e-restricted problem Pn of size(Pn) = size(P)×2O(width(P)2) and width(Pn) = O(width(P)2). We
fix an arbitrary set of variablesVPn =V1

Pn
]V2

Pn
with ||Vi

Pn
|| = width(Pn), for i = 1,2 and we com-

pute the relation FPn , using a Kleene iteration, as explained in Section 6 (Lemma 27). By Lemma 31,
if ψ ∈Core(Pn) then size(ψ) =O(width(P)2) and if (ψ,F) ∈ FPn then ||F|| = 2O(width(Pn)3×log(size(Pn))) =

2O(width(P)8×log(size(P))), hence FP can be computed in 22O(width(P)8×log(size(P)))
steps. It thus suffices to

check that each of these steps can be performed in polynomial time w.r.t. Core(Pn) and size(Pn).
This is straightforward for points-to atoms, predicate atoms and existential formulæ, by iterating
on the rules in Pn and applying the construction rules (1), (2) and (4) respectively. For the disjoint
composition, one has to compute the relation ∗, needed to build the operator ~D, according to (5) and
(6). We use again a Kleene iteration. It is easy to check that φ  ψ⇒ size(ψ) ≤ size(φ), furthermore,
one only needs to check relations of the form φ1 ∗φ2  ψ with φ1,φ2,ψ ∈ Core(Pn). This entails that
the number of iteration steps is 2O(width(P)8×log(size(P))) and, moreover, each step can be performed in
time polynomial w.r.t. Core(Pn). Finally, we apply Lemma 25 to check that all the entailments in Pn

are valid. This test can be performed in time polynomial w.r.t. ||FPn || and size(Pn). J

8 Conclusion and Future Work

We presented a class of SL formulæ built from a set of inductively defined predicates, used to describe
pointer-linked recursive data structures, whose entailment problem is 2-EXPTIME-complete. This
fragment, consisting of so-called e-restricted formulæ, is a strict generalization of previous work
defining three sufficient conditions for the decidability of entailments between SL formulæ, namely
progress, connectivity and establishment [8, 12, 14]. On one hand, every progressing, connected and
established entailment problem can be translated into an e-restricted problem. On the other hand,
the models of e-restricted formulæ form a strict superset of the models of established formulæ. The
proof for the 2-EXPTIME upper bound for e-restricted entailments leverages a novel technique used
to prove the upper bound of established entailments [12, 14]. A natural question is whether the
e-restrictedness condition can be dropped. We conjecture that this is not the case, and that entailment
is undecidable for progressing, connected and non-e-restricted sets. Another issue is whether the
generalization of symbolic heaps to use guarded negation, magic wand and septraction from [15] is
possible for e-restricted entailment problems. The proof of these conjectures is on-going work.
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