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Theoretical methods for ultrastrong light-matter interactions

Alexandre Le Boité1, ∗

1Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France

This article reviews theoretical methods developed in the last decade to understand cavity quantum electro-
dynamics in the ultrastrong-coupling regime, where the strength of the light-matter interaction becomes com-
parable to the photon frequency. Along with profound modifications of fundamental quantum optical effects
giving rise to a rich phenomenology, this regime introduces significant theoretical challenges. One of the most
important is the break-down of the rotating-wave approximation which neglects all non-resonant terms in light-
matter interaction Hamiltonians. Consequently, a large part of the quantum optical theoretical framework has to
be revisited in order to accurately account for all interaction terms in this regime. We give in this article a broad
overview of the recent progress, ranging from analytical estimates of ground-state properties to proper deriva-
tions of master equations and computation of photodetection signals. For each aspect of the theory, the basic
principles of the methods are illustrated on paradigmatic models such as quantum Rabi and spin-boson models.
In this spirit, most of the article is devoted to effective models, relevant for the various experimental platforms
in which the ultrastrong coupling has been reached, such as semiconductor microcavities and superconducting
circuits. The validity of these models is discussed in the last part of the article, where we address recent debates
on fundamental issues related to gauge invariance in the ultrastrong-coupling regime.

CONTENTS

I. Introduction 1

II. Models 2

III. Spectral properties 3
A. Perturbative approach 3
B. Generalized RWA 4
C. Variational methods 5
D. Exact results 6

IV. Open systems 7
A. Master equation 8
B. Input-output theory 10
C. Driven systems 11

V. Waveguide QED 13
A. Ultrastrong coupling to a continuum 13
B. Dynamical Ansätze 13
C. Scattering theory 14

VI. Validity of effective models 14
A. Gauge non-invariance of the two-level

approximation 15
B. Multi-particle configurations and diamagnetic A2

term 16

VII. Conclusion 16

References 17

∗ alexandre.leboite@univ-paris-diderot.fr

I. INTRODUCTION

The search for a microscopic theory of light-matter inter-
actions has played a central role in the development of quan-
tum theory since its origin. A constant refinement of the the-
oretical framework has been fuelled by experimental progress
and technological advances. While quantization of atomic de-
grees of freedom was the essential ingredient of early models
of light-matter interactions in atomic physics, the advent of
the laser made it crucial to build a more complete theory that
accounted also for the quantum nature of light in optical ex-
periments [1]. Decades after the pioneering works that led to
the birth of quantum optics, both its theoretical and experi-
mental aspects are extremely active research fields. Indeed,
the control, at a microscopic level, of coherent interactions
between light and matter is now at the heart of the blooming
field of quantum technologies. In this context, the ability to
increase the light-matter coupling strength has played a cru-
cial role. To achieve this goal, experiments in cavity quantum
electrodynamics (cavity QED) have proved to be extremely
valuable tools [2].

Hallmarks of quantum coherence in cavity-QED setups,
such as vacuum Rabi oscillations, are observed when the light-
matter coupling strength becomes larger than any dissipation
rate in the system. This so-called strong-coupling regime has
now been demonstrated in various platforms, including atomic
cavity QED [3], semiconductor nanostructures [4, 5] and su-
perconducting circuits [6]. From a theoretical standpoint, this
regime is remarkable in that the dynamics of the system must
be understood in terms of hybrid light-matter eigenstates. The
resulting notion of dressed state has been key to our under-
standing of quantum features in the output photon statistics in
the strong-coupling regime, such as photon antibunching [7–
11]. Historically, in the platforms mentioned above, an impor-
tant feature of the strong-coupling regime was that the cou-
pling strength remained much smaller than the frequency of
the cavity mode. As a result, only the resonant terms in the
interaction Hamiltonian (i.e. conserving the number of exci-
tations), play a significant role. The remaining anti-resonant
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(or counter-rotating) terms, couple states that are much wider
apart in energy and their contribution can be neglected. This
so-called rotating-wave approximation (RWA) provides a sim-
pler, intuitive and accurate picture of atom-photon interaction
processes in this regime. The success of the exactly solvable
Jaynes-Cummings model [12], describing the interaction be-
tween a two-level atom and a single cavity mode, in various
contexts is a prominent example.

In the last decade, we entered in a new era of cavity QED
with the achievement [13–18] of the ultrastrong coupling
(USC) regime, where the coupling strength becomes compa-
rable or even larger than the cavity frequency [19–21]. The
rich phenomenology of this new regime of cavity QED has
been the focus of an intense research activity : the USC regime
has indeed proved to induce profound modifications in a vari-
ety of fundamental quantum optical phenomena, ranging from
vacuum radiation [22, 23] to single-photon emission [24, 25],
scattering processes [26] and transport properties [27, 28]. We
refer the reader to Refs. [29, 30] for a detailed presentation
of the USC phenomenology and experimental setups. It was
clear from the first theoretical predictions that the USC regime
would give rise to counter-intuitive phenomena rooted in the
break-down of the RWA and the resulting significant contribu-
tion of non-resonant terms. Equally clear was the necessity of
developing new techniques to handle correctly all interaction
terms, and checking the validity of widely used effective mod-
els in this regime. The need to provide a complete theoreti-
cal framework valid at arbitrary strong coupling strength was
further motivated by recently developed quantum simulation
techniques. Various experimental schemes have made it pos-
sible to [31–35]ultrastrong-coupling physics even in systems
that do not naturally achieve the required interaction strength.

In this article, we review the different theoretical methods
that have been designed in recent years to go beyond the RWA
and treat ultrastrong light-matter interactions. We also dis-
cuss the recent debates on some fundamental issues and lim-
itations of USC cavity QED. As the break-down of the RWA
has dramatic consequences on nearly all aspects of the the-
ory, both in open and closed systems, a wide range of ques-
tions have been revisited to face the challenges of the USC
regime. This includes exact and approximate diagonalization
methods, the treatment of dissipation and driving or the the-
ory of photodetection. Our aim is to provide a pedagogical
overview of these different topics. The term deep-strong cou-
pling (DSC) regime has been introduced in the literature to
designate more specifically the regime in which the coupling
strength becomes larger than the photon frequency [36]. In
the rest of this review we use the term USC in its most gen-
eral sense, which includes the DSC regime. The article is
structured as follows. Notations and effective models of cav-
ity QED that are used throughout the paper are introduced in
Sec. II. Section III is devoted to approximation strategies and
exact results for spectral properties of closed systems in the
USC regime. The treatment of dissipation and external driv-
ing fields is the subject of Sec. IV. Theoretical methods spe-
cific to waveguide QED setups, such as scattering theory, are
discussed in Sec. V. In Sec. VI, we discuss gauge invariance
issues and other fundamental limitations of effective models

in the USC. We conclude in Sec. VII.

II. MODELS

In this section, we introduce the effective models of light-
matter interaction that will be used in the rest of the article to
illustrate the different methods presented. As pointed out in
the introduction there are a variety of experimental platforms
in which the USC regime has been reached. Nevertheless,
the essential features of the USC regime are for the most part
captured by effective models that share platform-independent
characteristics. As the main focus of this review is on gen-
eral methods and tools, we will restrict ourselves to a set of
models that best exemplify the theoretical challenges of USC
cavity QED. All effective models of light-matter considered
in what follows are based on a general non-relativistic for-
mulation of quantum electrodynamics [37] valid within the
long-wavelength approximation. The question of their range
of validity is discussed in Sec. VI.

Among the set of models, a distinction can be drawn be-
tween two classes, based on the nature of the matter degrees
of freedom that they describe. In many setups, the latter can
be well approximated by two-level systems (TLS). Hence the
first paradigmatic family of models are spin-boson Hamilto-
nians. In its most general form it describes the interaction
between an ensemble of TLS with several modes of the elec-
tromagnetic field. Its simplest, single-spin and single-boson
version is the quantum Rabi model [38]

HQRM = ωâ†â +
Ω

2
σ̂z + gσ̂x(â† + â), (1)

where â is the annihilation operator of the cavity mode of
frequency ω. The operators σ̂z , σ̂x are Pauli matrices Ω de-
notes the energy of the TLS and g is the light-matter cou-
pling strength (In all that follows we have set ~ = 1). Equa-
tion (1) has been widely used as model of cavity QED sys-
tems. Therefore, many of the methods presented below were
first applied or originally taylored for this Hamiltonian. Sev-
eral extension of the Rabi model have been studied, includ-
ing two-photon versions [39], where the interaction term also
contains â2 and â†2 operators, N -level extensions [40], re-
placing the TLS by more complex level structures, or models
including chiral light-matter interaction [41]. In this family
of spin-boson model, the multimode version has been widely
used to describe of a single spin strongly coupled to its envi-
ronment [42]

HSB =
Ω

2
σ̂z +

∑
k

gkσ̂x(â† + â) +
∑
k

ωkâ
†â. (2)

It is particularly relevant in the context of waveguide QED,
where a single emitter is coupled to a continuum of modes.

A second class of models for light-matter interaction are
purely bosonic. Originally introduced by Hopfield [43], such
models are relevant when the matter degrees of freedom be-
have as bosonic (quasi)-particles [19, 44, 45]. It is the case in
the first experimental platforms in which a signature of ultra-
strong coupling was reported, where quantum well excitons
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are coupled to an intersubband transition [14]. A two-mode
example of the Hopfield Hamiltonian is the following

H = ωcâ
†â + ωX b̂

†b̂ + ig(â† + â)(b̂† − b̂) +D(â† + â)2,
(3)

where ωX denotes the frequency of the matter degree of free-
dom. The last term, quantified byD, is a diamagnetic term. A
multimode generalization to handle translation-invariant pla-
nar structures is straightforward.

III. SPECTRAL PROPERTIES

In the regime where the rotating-wave approximation is
valid, the task of finding the ground state and other spec-
tral properties of cavity QED systems is greatly simplified.
Indeed, the RWA-version of the Rabi model, the Jaynes-
Cummings Hamiltonian,

HJC = ωâ†â +
Ω

2
σ̂z + g(σ̂+â + σ̂−â

†), (4)

conserves the total number of excitations â†â + σ̂+σ̂− and is
exactly solvable. It is no longer the case when all the terms
of Eq. (1) are included. Finding spectral properties of ultra-
strongly coupled systems becomes highly nontrivial. This sec-
tion surveys the different analytical tools that have been devel-
oped for this purpose. Note that although the advent of USC
cavity QED has motivated most of the works reported here,
some of the idea presented in the following where introduced
much before the first proposals of USC experiments [46].
We begin this section by reviewing different approximation
schemes, based on perturbation theory, generalized RWA and
variational approaches. The last part is devoted to exact re-
sults, such as the one leading to an analytical solution for the
spectrum of the quantum Rabi model [47].

A. Perturbative approach

A first approach is to handle non-resonant terms as a per-
turbation of a Hamiltonian H0, containing both the free terms
and the resonant part of the interaction.

a. Effective Hamiltonian This choice for the ”unper-
turbed” Hamiltonian is motivated by the following feature.
The spectrum of H0 is structured around subspaces EN
spanned by eigenstates that are close in energy within one
of theses subspaces but far from any other eigenstate belong-
ing to another subspace EN ′ . Under such circumstances, the
dominant effect of the perturbation is to affect the dynamics
within each subspace, while the coupling between different
subspaces can be neglected at lowest order. As explained be-
low, the label N is related to the symmetry of the Hamilto-
nian and refers to a quantity that is conserved by the reso-
nant part of the Hamiltonian. For example, for the quantum
Rabi model, H0 is given by the Jaynes-Cummings Hamilto-
nian HJC and N corresponds to the total number of excita-
tions. The space EN and EN+1 are separated by an energy

of order ω, while the level spacing within one subspace is of
order g.

A precise formulation of these ideas consists therefore in
finding a effective Hamiltonian accounting for the effect of
the perturbation within each subspace EN [48]. Formulated by
Schrieffer and Wolff [49] in the context of condensed-matter
physics, the method is quite general and has found many ap-
plications [50]. In quantum optics, these ideas were applied
to strongly driven systems in the form of quantum averaging
techniques [51]. Making use of symmetry properties and of
the underlying Lie Algebra structure of light-matter interac-
tion models, Klimov et al. also gave a systematic algebraic
formulation known as the “small rotation method” [52–54].
More recently, this approach was exploited to obtain effective
low-energy approximations to finite-component Hamiltonians
exhibiting a superradiant phase transition [55, 56]. A mathe-
matical expression for the general perturbation scheme is the
following. Consider the general Hamiltonian [57]

H = H0 + εV, (5)

and a conserved quantity N̂ , such that [H, N̂ ] = 0 that defines
the subspaces EN . One looks for a unitary transformation eεW

such that in the transformed Hamiltonian H̃ = e−εWHeεW ,
the effect of the perturbation outside of EN is of second order:

H̃ = H0 + εD̂ + ε2V̂2, (6)

with [N̂ , D̂] = 0. In many light-matter interaction Hamilto-
nians, W is constrained by the underlying algebraic structure
of H [54]. In particular, the perturbative expansion can be
derived in a systematic way when V = X+ +X−, such that

[H0, X±] = ±X± and [X+, X−] = P (H0), (7)

with P a polynomial function. Under these assumptions the
operator W takes the form

W ∝ X+ −X−. (8)

b. Bloch-Siegert corrections and multiphotonic reso-
nances Applied to the QRM Hamiltonian, this perturbation
scheme gives the so-called Bloch-Siegert corrections to the
energy spectrum [58]. In this case, the counter-rotating terms
define the operators X+ = â†σ̂+ and X− = (X+)†. Apply-
ing first U1 = exp

[
g

ω+Ω (âσ̂− − â†σ̂+)
]

yields at first order

H̃1 = U†1HU1 =HJC +
g2

ω + Ω
[σ̂z(â

†â +
1

2
)− 1

2
]

+
g2

ω + Ω
[(â†2 + â2)σz]. (9)

The last term does not commute with N̂ . This comes from
the fact that the algebra of Eq. (7) is only obtained if H0 is
the non-interacting Hamiltonian. This last term is generated
by the resonant interaction terms and can be eliminated by a
second small rotation U2 = exp

[
g2

2ω(ω+Ω) σ̂z(â
2 − â†2)

]
that
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FIG. 1. Generalized rotating wave approximation applied to the
Rabi HamiltonianHQRM. Comparison of RWA (dotted-dashed line),
limit Ω = 0 (dotted line), and GRWA (dashed line) with the exact
spectrum (solid line). Reproduced with permission [60]. Copyright
2007, American Physical Society.

produces no additional first order terms. Hence the Bloch-
Siegert effective Hamiltonian is given by

HBS = HJC +
g2

ω + Ω
[σ̂z(â

†â +
1

2
)− 1

2
]. (10)

Note that the unitary transformations U1 and U2 also give the
first correction to the eigenstates.

The validity of this approximation for the QRM has been
extensively studied [59–61]. In the resonant case, the first Jud-
dian points [62], defined as the first energy-level crossings in
the spectrum, were proposed as a boundary for the perturba-
tive regime [61]. This perturbative approach is consistent with
the first experimental observations involving an ultrastrongly
coupled qubit-oscillator system in circuit QED [16].

Perturbation theory also applies to the study of implicit res-
onances induced by counter-rotating terms. For certains val-
ues of the detuning between the atom and the cavity, some
multiphotonic processes involving intermediate states con-
nected through counter-rotating terms may become resonant.
An effective Hamiltonian that captures the dynamics of these
processes can be derived within the general algebraic frame-
work mentioned above [54, 63]. Other derivations have been
obtained by adiabatic elimination of the fastest dynamical
variables in the relevant truncated Hilbert space [64, 65]. Sev-
eral proposals have been made in recent years to exploit this
feature of the USC regime and engineer various nonlinear op-
tical analogs [66–69].

To go beyond the perturbative USC regime, other approx-
imation schemes have been developed. We first discuss the
generalized rotating wave approximation.

B. Generalized RWA

In H0 defined above, the free Hamiltonian is taken as the
Hamiltonian at g = 0. The subsequent separation into res-

onant and non-resonant interaction terms, as well as the per-
turbative treatment of non-resonant terms is relative to this
reference point. It turns out that more accurate results at large
g can be obtained by starting instead from the Hamiltonian
at g/Ω → +∞ (or equivalently Ω = 0). More precisely, the
Generalized RWA introduced by Irish [60] combines the RWA
selection of resonant contributions with a unitary transforma-
tion yielding a free Hamiltonian in the limit g/Ω → +∞.
Hence one changes the noninteracting Hamiltonian with re-
spect to which the RWA is applied. Note that in contrast to
the perturbation method described above, the unitary trans-
formation need not be a small rotation. The implementation
of the generalized RWA for the quantum Rabi model is the
following [60]. The new exactly solvable Hamiltonian that is
considered reads

H ′ = ωâ†â + gσ̂x(â† + â). (11)

The eigenstates of this Hamiltonian are factorized and doubly
degenerate. They are of the form |±〉| ± α,N〉, where |±〉
are the eigenstates of the operator σ̂x and |±α,N〉 is the N th

Fock state, displaced by the operatorD[α] = exp(αâ†−α∗â).
It is actually more convenient to introduce the basis |Ψ±,N 〉 =

1/
√

2(|+〉|α,N〉 ± |−〉| − α,N〉), the operator σ̂x being di-
agonal in the subspace spanned by {|Ψ+,N 〉, |Ψ−,N 〉}. Note
that the states |Ψ±,N 〉 have a defined parity of the number of
excitations. The change of basis outlined above is given by
the following unitary transformation

|Ψ−,N 〉 = Û | ↓, N〉 = e
g
ω σ̂x(â−â†)| ↓, N〉, (12)

with the parameter α = −g/ω. In this new basis the QRM
Hamiltonian of Eq. (1) is expressed as

H̃QRM = ωâ†â +
Ω

2
σzexp

[
−2g

ω
σ̂x(â† − â)

]
. (13)

The GRWA consists in keeping in H̃QRM only the resonant
terms. It can indeed be shown that in matrix form, H̃QRM has
the same structure as the original Hamiltoninan. Hence the
GRWA yields a block-diagonal Hamiltonian, whose blocks
are spanned by the eigenstates {|ΨN,−〉, |ΨN−1,+〉}. Indeed
the resulting Hamiltonian can be expressed as

H̃GRWA = ω̃â†â +
Ω̃

2
σ̂z + g̃[f(â†â)â†σ̂− + f∗(â†â)âσ̂+],

(14)
where the coupling constants are in general renormalized with
respect to the original Hamiltonian and f is an analytical func-
tion coming from the series expansion of Eq. (13). Note that
resonant terms in H̃GRWA do not conserve the number of ex-
citations. Indeed, in the transformed basis, the spin degree of
freedom represents the parity of the number of excitation and
not the original spin. The GRWA spectrum, obtained after di-
agonalization of H̃GRWA within each {|ΨN,−〉, |ΨN−1,+〉}-
subspace was also derived earlier by other methods [57, 70].
Interestingly, whereas the RWA for the Rabi model breaks
down at the first level-crossing, the GRWA gives more ac-
curate results for a wider range of parameters (see Fig. 1).
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FIG. 2. Physical picture undelying the ab initio approach described in
Eqs. (19) and (20). (left) Bare description of the coupled light-matter
ground state in terms of many virtual excitations of the emitter state
and the bare cavity photons. (right) Quasiparticle description of the
coupled system as a factorizable state of an effective emitter in its
ground state and the vacuum of an effective photonic degree of free-
dom. Reproduced with permission [75]. Copyright 2019, American
Physical Society.

The GRWA approach has been successfully applied to other
light-matter interaction models related to the QRM, namely
to the two-qubit Rabi model [71] and to a biased version of
the QRM [72]. A so-called symmetric implementation the
GRWA, that exploit more efficiently the symmetries of the
model has also been proposed for the single- and two-photon
models [73]. A possible explanation for the wider range of
validity of the GRWA is the following. In the RWA, the de-
generacy in the energy spectrum associated with the resonant
terms is exact only when Ω = ω and g = 0. The resonant
terms in the GRWA are related to a degeneracy that is exact
for Ω = 0 (or g → ∞), which represents a larger part of the
parameter space.

An extension of these ideas was put forward by Zhang [74],
who suggested to add to the displacement defined in Eq. (12),
a squeezing operation. The starting point for the RWA now
becomes

H̃ = V̂ †Û†HÛV̂ , (15)

with

Û = eβσ̂x(â−â†) and V̂ = eλ(â†2−â2). (16)

In contrast to the transformation of Eq. (12), the displacement
and squeezing parameters β and λ, are not determined from
the diagonalization of a new free Hamiltonian, but are com-
puted variationally by minimizing the ground state energy.
After this change of basis, the Hamiltonian is simplified in
the same way as before. After the transformation, the Hamil-
tonian still takes the general form of Eq. (14), with the addi-
tional subtlety that the renormalized atomic frequency is also
a function of â†â. Nevertheless, the problem is reduced to the
diagonalization of 2× 2 matrices.

C. Variational methods

In the previous section, we have seen that GSRWA method
combined the generalized rotating wave approximation with a

variational determination of additional squeezing paramaters.
More generally, the ground-state properties of various models
have been investigated using a variational method.

a. Polaron picture In the case of spin-boson models,
multi-polaron test functions and their generalization have
proved to be efficient Ansätze. For the spin-boson model of
Eq. (2), a multi-polaron wave function is defined as [76]

|Ψ〉 =

Npol∑
n=1

Cn[|+, α(n)〉 − |−,−α(n)〉], (17)

where |α(n)〉 = |α1, α2 . . . 〉 is a multimode coherent state,
|α〉 = exp(

∑
n αnâ

†
n − α∗nân)|0〉.

In the case of the quantum Rabi model, the state |Ψ−,0〉 in-
troduced in Eq. (12) is an example of a single polaron wave-
function. As mentioned above, this state is the exact ground
state in the limit Ω = 0. The relevance of polaron wave func-
tions as trial functions for the ground state of the QRM was
actually recognized in early studies of the model, long before
the advent of USC cavity QED [46]. The reasoning is based
on the parity symmetry of the QRM. As the parity of the num-
ber of excitations, given by the operatorP = σ̂ze

iπâ†â , is con-
served, the problem is simplified by considering separately the
two subspaces of states with odd or even parity. Restricted to
such subspaces, the Hamiltonian becomes purely bosonic and
can be expressed as [46, 77]

H± = ωb̂†b̂ + g(b̂† + b̂)± Ω

2
cos(πb̂†b̂), (18)

where the ± signs refer to the odd and even parity subspaces.
A coherent state in this representation of the Hamiltonian cor-
respond to a polaron state in the original basis.

Such an ansatz was later improved by considering squeezed
coherent states [77], and deformed, frequency renormalized
polarons [78, 79]. This approach was also applied to the
two-qubit [80] and two-photon [81] Rabi models. Unlike
the GRWA or the effective Hamiltonians presented above,
these polaron-based methods have been used mostly to ex-
tract ground-state properties, although possible extensions to
excited states have been proposed [78]. Other applications of
polaron transformations in the context of QED are presented
in Sec. V B.

b. Ab initio approaches Variational methods have also
been developed to tackle more complex QED systems in
which it is essential to take into account complex electronic
configurations and multiple cavity modes. Inspired by density
functional theory and its recent extension to quantum electro-
dynamics [82, 83], such methods take as a starting point the
general light-matter Hamiltonian in the Coulomb gauge. In
this context, a variational principle able to tackle ultrastrongly
coupled systems was recently proposed by Rivera et al. [75].
The ground-state is assumed to be a product of a Fermi sea of
quasi-particules parametrized by one-particle wavefunctions
ψi(r), and of the vacuum of effective photonic degrees of free-
dom (see Fig. 2). The photonic variables are the cavity mode
functions Fi(r), defined such that the vector potential Â(r)

is expressed as Â(r) =
∑
i[Fi(r)â†i + F ∗i (r)âi]. The set
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FIG. 3. . Transcendental G+(x)[red] and G−(x) [blue] whose ze-
ros give the energy levels of the Rabi Hamiltonian of Eq. (1). The
parameters are ω = 1, g = 0.7 and Ω = 0.4. Reproduced with
permission [47]. Copyright 2011, American Physical Society.

of coupled equations for the dressed one-particle wave func-
tion ψi(r), effective photonic mode functions Fi(r) and mode
frequency ωi are obtained by minimizing the ground state en-
ergy, under normalization constraints. The set of equations
takes the general form

(
p2

2m
+ vext(r))ψi(r) + F [{ψ}]

+
~e2

4mε0

(∑
n

1

ωn
F 2
n(r)

)
ψi(r) = Eiψi(r), (19)[

∇×∇× ω2
i

c2
(1−

ω2
p(r)

ω2
i

)

]
Fi(r) = 0, (20)

where ω2
p(r) = e2

mε0

∑
n |ψ2

n(r)| defines a position-dependent
plasma frequency. Given the form of the Ansatz, the interac-
tion term proportional to A · p in the Hamiltonian does not
enter into the above equations. The effect of this term is taken
into account self-consistently by means of second-order per-
turbation theory. So far, a proof of principle has been given for
a single emitter placed in a 1D cavity. Comparison with ex-
act numerical calculation for the ground state and one excited
state shows that the self-consistent corrections to the dressed
wave function and photonic modes make the scheme accurate
also in the ultrastrong coupling regime.

A type of variational computation based on quantum algo-
rithms has been recently adapted for cavity QED in the USC
regime [84]. However, algorithms relying on quantum hard-
ware lie outside of the scope of this review.

D. Exact results

Although for most cavity QED problems one has to rely
on approximation methods, such as the one presented in the
preceding sections, there exist exact analytical solutions for
the eigenvalue problem of a class of light-matter interaction
models, including the Rabi model. The exact solution of the
Rabi model found by Braak [47] has triggered an important

research activity bringing together both theoretical physicists
and mathematicians [85].

a. Bargmann space representation Braak’s solution to
the eigenvalue problem of the quantum Rabi model is based
on the Bargmann space representation of bosonic creation and
annihilation operators [86]. The first application of Bargmann
space methods to quantum optical models dates back to the
late 60s [87] and was used to establish several analytical re-
sults [88, 89] prior to the proof of the exact solution. In this
representation, the Hilbert space of physical states is that of
analytical functions of a complex variable z, on which the cre-
ation and annihilation operators act in the following way

â† → ∂

∂z
and â → z. (21)

The inner product in this Hilbert space is defined as

〈ψ|φ〉 =
1

π

∫
dzdz∗e−zz

∗
ψ∗(z)φ(z), (22)

which also specifies the normalization requirement for the
wave functions 〈ψ|ψ〉 < ∞. The Schrödinger equation is
therefore mapped to a differential equation in the complex
plane in which the energy E enters as a parameter. The re-
quirement that the function ψ(z) be analytical in the whole
complex plane imposes some constraints on the admissible
values of E. These constraints, along with all the symmetry
properties of the model can be exploited to extract an exact
(but implicit) expression for the spectrum of the Hamiltonian.

In the case of the quantum Rabi model, due to the spin de-
gree of freedom, the total wave function in Bragmann space
has two components (φ1(z), φ2(z)). After a π/2-rotation of
the spin, the Hamiltonian reads

H =

(
ωz∂z + g(z + ∂z)

Ω
2

Ω
2 ωz∂z − g(z + ∂z)

)
, (23)

which yield the following Schrödinger equation

(z + g)∂zφ1(z) + (gz − E)φ1(z) +
Ω

2
φ2(z) = 0, (24)

(z − g)∂zφ2(z)− (gz + E)φ2(z) +
Ω

2
φ1(z) = 0. (25)

From Eqs. (24) and (25), the spectrum can be extracted in
different equivalent forms. Due to the Z2 symmetry of the
model, the problem can be solved separately in the odd and
even parity subspace. Braak’s solution exploits this feature by
working directly on the Bargmann representation of Eq. (18).
It is then shown that E belongs to the spectrum if and only if
x = E + g2 belongs to the set of zeros of some transcenden-
tal functions G±(x), where the index ± indicates the parity
subspace (see Fig. 3). The functions G±(x) are expressed as
power series whose coefficients can be computed recursively
through the Taylor expansion of the solutions to Eqs. (24) and
(25). Maciejewski et al. [90] gave an equivalent solution for
the energy spectrum by relating Eqs. (24) and (25) to the gen-
eral theory of Heun differential equations [91]. By mapping
the original problem to a second order Heun confluent equa-
tions, the results can be expressed in terms of confluent Heun
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functions. For a detailed presentation of these special func-
tion we refer the reader to Ref. [92]. Note that applications
of the Bargmann representation and the theory of complex
differential equation is not limited to parity-symmetric mod-
els. Solutions to the more general class of anisotropic Rabi
models, where the symmetry is explicitly broken by an ad-
ditional σ̂x term and in which resonant and anti-resonant in-
teraction terms depend on two-different coupling constants,
were later derived [93, 94]. Exact solutions have also been
found for other generalizations of the Rabi model such as the
two-photon model [39]. A more complete presentation of the
solution for these models can be found in Ref. [95].

b. Generalized coherent states and Bogoliubov operators
Within the family of spin-boson models with a finite number
of bosonic modes, the insight provided by the “polaron pic-
ture” – displaced states of the oscillators conditioned by the
σ̂x projection of the TLS – has been used to derive analytical
and numerical exact results. The generalized coherent state
approach can be viewed as an algebraic implementation of
this idea, in which displacements are introduced in the form of
Bogoliubov transformations on the bosonic operators [96]. In
contrast to the GRWA or variational approaches, this method
is not restricted to the low-lying energy states but was imple-
mented to obtain exact results on the full spectrum of several
light-matter interaction models. We illustrate the principle of
this method in the specific case of the Rabi model, for which
it provides an alternate derivation of the exact results obtained
trough the Bargmann space representation of the wave func-
tion. Given the role played by the σx (and its relation to the
symmetry of the model), the first step is to apply a π/2 ro-
tation of the spin and write the Hamiltonian in matrix form
as [97]

H =

(
â†â + g(â† + â) Ω

2
Ω
2 â†â − g(â† + â)

)
. (26)

Displacements of the oscillator are subsequently introduced in
the form of two Bogoliubov transformations â → Â = A+ g

and â → B̂ = â − g. Applying each one of these of this
transformation yields a Hamiltonian of the form(

Â†Â − g2 Ω
2

Ω
2 Â†Â − 2g(Â† + Â) + 3g2

)
. (27)

The Schrödinger equation can now be written in the displaced
Fock basis {|n〉A = (Â†)n√

n!
|0〉A}, or equivalently using the

basis {|n〉B = (B̂†)n√
n!
|0〉B}, where the states |0〉B and |0〉A

are the coherent states such that B̂ |0〉B = 0 and Â|0〉A = 0.
Writing the wave function as

|Ψ〉 =

(∑∞
n=0

√
n!en|n〉A∑∞

n=0

√
n!fn|n〉A

)
, (28)

the Schrödinger equation translates into recursion relations for
en and fn that depend on the energy E. Applying the same
reasoning to the second Bogoliubov transformation yields a
second set of recursion relation relative to the basis {|n〉B}.
As the two representations correspond to a unique state, an

FIG. 4. (Top) A sketch of the input-output theory in the form of
Langevin equations as originally presented in Ref. [44]. Labels k
and q correspond to in-plane and orthogonal wave vector respec-
tively. Reproduced with permission [44]. Copyright 2006, American
Physical Society. (Bottom) Example of failure of the phenomeno-
logical master equation Eq. (29) in the form of an excess of photon
(black line) in the seady-state |g, 0〉 with respect to the true ground
state ˜|g, 0〉. Simulations are performed for the Rabi Hamiltonian with
Ω/2π = ω/2π = 6GHz and γ/2π = κ/2π0.1 GHz. Red dots corre-
spond to one minus the fidelity. Dotted lines are the result computed
with the correct master equation. Reproduced with permission [102].
Copyright 2011, American Physical Society.

implicit equation for E can be extracted, equivalent to the so-
lution of Ref. [47]. The method has first been applied to the
finite-size Dicke model [96], for which it provided an efficient
way of computing ground-state observables for a large num-
ber of atoms and with arbitrary precision. More recently it has
also been applied to the two-mode Rabi model [98–100] and
the quantum Rabi-Stark model [101].

IV. OPEN SYSTEMS

The methods and results presented in the previous section
dealt only with closed systems, setting aside the issue of the
experimental signature of the various spectral features in re-
alistic setups [103–105]. It proved particularly fruitful to ad-
dress this question within the more general framework of open
quantum systems, where dissipative processes stemming from
the coupling of the system to its environment play a crucial
role. In this context, it was recognized that without proper
modifications, the usual approach would lead to unphysical
predictions such as the emission of photons by a system in its
ground state [22, 102, 106]. The theory described in this sec-
tion is structured around three elements. The first one is the
master equation, governing the dynamics of the internal de-
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grees of freedom of the system. The second one is the input-
output theory, relating the signal observed via a given detec-
tion scheme to the internal degrees of freedom and to possible
input field. The last aspect that is discussed is the specific case
of open systems driven by an external periodic field. In this
context, Floquet theory can be employed to efficiently treat
the time dependency in an exact way.

A. Master equation

Master equations form an important branch of the theory
of open quantum systems which has found numerous applica-
tions in quantum optics [107]. It has successfully been applied
to the paradigmatic model of cavity QED, i.e. a system com-
posed of a TLS and a cavity mode. At temperature T = 0,
the usual quantum optical master equation for the density ma-
trix ρ of such a system takes the canonical Lindblad form and
reads

dρ

dt
= −i[H, ρ] +

γ

2
[2âρâ† − â†âρ− ρâ†â]

+
κ

2
[2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−], (29)

where κ and γ are damping rates associated with the cavity
and the atom respectively. The non-unitary terms in this equa-
tion translate the fact that both the cavity and the atom are cou-
pled to their environment. It remains partly phenomenologi-
cal, as dissipative processes involving the atom and the cavity
are treated independently. The total dissipator in Eq. (29) is
indeed the sum of the dissipators obtained if the cavity and the
atom were not coupled. In the absence of pumping terms in
the Hamiltonian, such a master equation will drive the system
to d the state |g〉|0〉. It is clear that Eq. (29) cannot correctly
account for the dynamics in the USC since the state |g〉|0〉 is
no longer the ground state of the system. Such a master equa-
tion would lead in particular to emission of photons in the
ground state (see Fig. 4) [102, 106].

A first approach to handle corrections to the phenomeno-
logical equation is to go back to the microscopic deriva-
tion of Markovian master equations [107]. First applied to
the Jaynes-Cummings [108–110], this method was later ex-
tended to the Rabi model [102], providing a realistic descrip-
tion of dissipative processes in the USC. In particular, it was
shown that unphysical predictions arise even when the effect
of counter-rotating terms in the atom-cavity Hamiltonian can
be treated perturbatively. In order to highlight the correction
to Eq. (29), we first recall the basic principles on which the
microscopic derivation is based, as outlined, e. g., in Ref.
[107].

a. Setup and notations Let us consider the typical sys-
tem - bath Hamiltonian

H = HS +HB +
√
γA⊗B, (30)

where HS and HB are respectively the system and bath
Hamiltonians. In the interaction term, A and B are Hermitian
operators acting only on the system and bath Hilbert spaces re-
spectively. The bath is typically assumed to be an infinite col-
lection of harmonic oscillators. Generally speaking, the effect

of the bath on the system dynamics is to induce transitions be-
tween eigenstates of the system Hamiltonian HS . Transitions
at frequency ω are determined by the following jump operator

A(ω) =
∑
ωki=ω

|i〉〈i|A|k〉〈k|, (31)

where the |i〉 are eigenstates of HS and ωki are the corre-
sponding Bohr frequencies. As we will see in the following, it
is essential in the USC regime to write Eq. (31) in the dressed-
state basis of the full system. Note that the operators A(ω)
introduce a decomposition of A, such that A =

∑
ω A(ω).

The aim of the master equation is to obtain an approximate
equation of motion for the reduced density matrix ρ of the
system by tracing out the bath degrees of freedom. Instead of
keeping track of all its microscopic degrees of freedom, the
relevant information on the bath is encoded in the functions

Γ(ω) = γ

∫ +∞

0

dτeiωτ 〈B(τ)B(0)〉. (32)

b. Born-Markov approximation The derivation of the
master equation relies on two main assumptions (Born-
Markov approximation): a perturbative treatment, up to
second-order, of the system-bath interaction and a fast decay
of the bath correlation functions on the time scale of the sys-
tem’s internal dynamics. These assumptions are not a priori
incompatible with the USC regime, as the latter only quan-
tify the strength of the interactions within subparts of the sys-
tem. This approximation scheme, along with the trace over
bath degrees of freedom, it is most conveniently expressed in
the interaction picture, where the time evolution of A(ω) is
straightforwardly given by A(ω, t) = e−iωtA(ω). Within this
framework, the equation of motion for the reduced density
matrix reads

dρ

dt
=
∑
ω,ω′

ei(ω
′−ω)tΓ(ω)(A(ω)ρA†(ω′)−A†(ω′)A(ω)ρ)

+
∑
ω,ω′

ei(ω−ω
′)tΓ∗(ω)(A(ω′)ρA†(ω)− ρA†(ω)A(ω′)),

(33)

which yields the following equation in the Schrödinger picture

dρ

dt
= −i[HS , ρ]+

∑
ω,ω′

Γ(ω)(A(ω)ρA†(ω′)−A†(ω′)A(ω)ρ)+h.c.

(34)
The particularity of this equation is that it does not guarantee
complete positivity of the density matrix. This requirement is
fulfilled by assuming an additional simplification, the secular
approximation.

c. Secular approximation If |ω − ω′| � γ for ω 6= ω′,
one can perform a rotating-wave approximation in Eq. (33)
and keep only the terms for which ω = ω′. This gives a Lind-
blad equation

dρ

dt
= −i[HS , ρ]+

∑
ω

Γ(ω)(A(ω)ρA†(ω)−A†(ω)A(ω)ρ)+h.c.,

(35)
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which guarantees that the dynamical map it defines is com-
plete positive and trace preserving. For the physical inter-
pretation of the different terms, it is useful to write Γ(ω) =
γ(ω) + iD(ω). With these notations the general expression of
the master equation at T = 0 reads

dρ

dt
= −i[HS +HL, ρ] +D[ρ], (36)

with

HL =
∑
ω>0

D(ω)A†(ω)A(ω), (37)

D[ρ] =
∑
ω>0

γ(ω)(2A(ω)ρA†(ω)− {A†(ω)A(ω), ρ}). (38)

The operator HL gives a Lamb shift that is usually absorbed
in HS by redefining the system Hamiltonian, while the dissi-
pator D[ρ]) governs the non-unitary part of the dynamics. In
the particular case introduced at the beginning of this section,
where both the atom and the cavity are coupled to a bath, there
are two operators, A1 = â†+ â and A2 = σ+ +σ−, coupling
the system to its environment. In light of the above considera-
tions, the essential corrections to Eq. (29) imposed by the USC
regime can be formulated in the following way. As the cou-
pling strength becomes comparable to the cavity frequency,
one cannot assume that γ(ω) ≈ γ(ωcav) for all transitions.
Moreover, as the structure of the energy levels in the USC
regime is expected to differ drastically from the uncoupled
system, the jump operators can be defined consistently only
in the dressed-state basis. In the case of the Rabi model, it
was shown that for realistic experimental implementation in
circuit QED and for a large range of coupling strengths, the
correct dissipator in the USC regime includes individual jump
operators for all possible transition [24, 25, 102]. In other
words all transitions have to be considered non-degenerate, in
sharp contrast to Eq. (29).

d. quasi-degenerate spectrum For extreme values of the
coupling strength, such that it dominates all other energy
scales, a wide of class of systems exhibit quasi-degenerate
eigenstates [111]. In driven-dissipative setups, such degen-
eracies can be lead to appearance of long-lived metastable
states [112]. Under such circumstances, the assumption that
|ω − ω′| � γ for ω 6= ω′, underlying the secular approxima-
tion breaks down. It is however possible to recover a Lindblad
equation such as Eq. (35) by extending the definition of this
approximation. Suppose that approximate equivalent classes
of frequencies can be defined as P(ω̄) = {ω : γ(ω) ' γ(ω̄)},
and let us write ω1 ≡ ω2 if P(ω1) = P(ω2). In the
general experssion of the dissipator in the interaction pictutre
given in Eq. (33), terms involving frequencies ω and ω′ such
that ω ≡ ω′ factorize. Expressing the secular approximation
as |ω̄1 − ω̄2| � γ for ω̄1 6≡ ω̄2, one recovers a dissipator in
the Lindblad form, which reads

D[ρ] =
∑
ω̄>0

γ(ω̄)(2Ã(ω̄)ρÃ†(ω̄)− {Ã†(ω̄)Ã(ω̄), ρ}), (39)

where the sum is now performed over inequivalent frequen-
cies only and the jump operators are defined as Ã(ω̄) =

∑
ω∈P(ω̄)A(ω) In this formulation of the secular approxima-

tion, problems arise when ω̄1 6≡ ω̄2 and |ω̄1 − ω̄2| ∼ γ. This
can be a serious issue in the case of strongly driven systems.
To go beyond the secular approximation in the USC regime, a
more general formalism was introduced by Settineri et al. in
the context of hybrid quantum systems [113].

e. Non-Markovian effects To account for non-
Markovian effects, an exact master equation for a gen-
eral open quantum system can be written following the
Nakajima-Zwanzig projection method [107]. Without further
approximation, such an equation is integro-differential and
contains an involved time convolution with a memory kernel,
but approximation strategies relying on a perturbative expan-
sion of the coupling to the bath are available to make the
master equation local in time while going beyond the Markov
approximation. Before the study of Beaudoin et al. [102], De
Liberato et al. [22] have followed such an approach, called
the second-order time-convolutionless operator approach,
to correct the master equation in the USC regime. It was
also implemented by Nataf et al. in a proposal for protected
superconducting qubits in the USC regime [114]. The form
of the master equation is

dρ

dt
= −i[H, ρ] +

∑
j

(ÛjρŜj + ŜjρÛ
†
j − ŜjÛjρ− ρÛ

†
j Ŝj),

(40)

where the operators Ûj are time-dependent and given by

Ûj(t) =

∫ ∞
0

vj(τ)e−iH(t)τ Ŝje
iH(t)τdτ, (41)

with, at T = 0, v(τ) = 〈B(τ)B(0)〉. When the Born-Markov
approximation is justified, the two approaches yield the same
master equation.

f. Counter-rotating terms in the system-bath Hamiltonian
In the approach of Beaudoin et al. [102], a rotating-wave ap-
proximation is still carried out in the system-bath Hamilto-
nian. Bamba et al [45] performed a detailed study of correc-
tions to the master equation when no RWA is performed at
that stage. These authors focused on a system where the mat-
ter part is composed of (quasi-bosonic) excitons. As a result,
the system Hamiltonian is bosonic and quadratic, which from
a methodological point of view offers additional possibilities.
In particular, by performing an exact diagonalization of the
full system-bath Hamiltonian, they show that the reduced den-
sity matrix of the bath in the true ground state is not a vacuum
state. As a result, considering the bath to be in a vacuum state
when deriving the master equation induce a non-physical ex-
citation of the system resulting in a non-vanishing polariton
population (in the absence of driving). The solution to this
paradox is to estimate the correlations induced in the reservoir
by its coupling to the system when the latter is in its ground
state and the former in the vacuum state. A consistent master
equation is then obtained when injecting the corrected bath
correlations functions in the microscopic derivation. Correc-
tions to the dissipative dynamics beyond the Born-Markov ap-
proximation due to counter-rotating terms in the system-bath
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Hamiltonian have also been recently studied for spin-boson
models by means of a dynamical polaron ansatz [115] (see
Sec.V). Note that in all this section we have considered the
correction to the standard master equation of a given system-
bath Hamiltonian. A discussion on meaningful ways of deriv-
ing such Hamiltonians is presented in Ref. [116].

B. Input-output theory

While the master equation describes the dynamics of the
internal degrees of freedom of the system, the input-output
theory relates these internal variables to external ones at the
origin of input and output signals. Another aspect of the input-
output formalism is that it allows to formulate the dynamics
of the system in term of Langevin equations. This approach
is particularly fruitful when dealing with quadratic bosonic
Hamiltonians, in which case the associated Langevin equa-
tions are linear [44]. As the input-output theory gives access
to quantities such as transmission or fluorescence spectra and
correlation functions, it is well suited to tackle questions re-
lated to the experimental signatures of the USC. For exam-
ple, in the case of a two-dimensional electron gas in multiple-
quantum-well structures, a signature of the USC was identi-
fied in the form of an asymmetric anticrossing of polariton
modes visible in the optical spectra [14]. Within this theoret-
ical framework, several works have studied the output photon
statistics for systems described by the Rabi model and its gen-
eralizations. In particular essential modification of the phe-
nomenology of the photon blockade effect have been reported
in the USC regime of single [24, 25] and two-photon mod-
els [117]

a. Input-output relation for nonlinear systems The gen-
eral setting is the same as that of Eq. (30). In this section we
explicitly write the interaction part of the system-bath Hamil-
tonian in the following form :

HI = X̂ ⊗
∑
k

γki(â
†
k − âk). (42)

where X̂ is a generic Hermitian operator acting on the Hilbert
space of the system and the operators âk are bosonic annihila-
tion operators defining the bath modes. The bath Hamiltonian
and given byHB =

∑
k ωkâ

†
kâk. The input-output relation is

derived from the Heisenberg equations of motion which for
the bath modes read

dâk
dt

= −iωkâk + X̂(t), (43)

which yields

âk(t) = e−iωk(t−t0)âk(t0) + γke
−iωkt

∫ t

t0

eiωkτ X̂(τ)dτ,

(44)
for an arbitrary initial time t0. With the defini-
tion of the input and output field as âout(in)(t) =

limt0→±∞
1√
2π

∫
dωeiω(t−t0)â(t0) and combining the above

equation for t0 → +∞ and t0 → −∞ we obtain

âout(t)− âin(t) =
∑
k

γke
−iωktX̂(ωk), (45)

where X̂(ωk) denotes the Fourier transform of X̂(t). In
the continuous limit, where

∑
k γk →

∫ +∞
0

dωγ(ω), the
r.h.s. becomes the inverse Fourier transform of the quantity
γ(ω)Θ(ω)X̂(ω), where Θ(ω) is the Heaviside step function.
Note that the operator Θ(ω)X̂(ω) is the Fourier transform of
the positive-frequency part of X̂ , which in principle should
be defined with respect to the full system-bath Hamiltonian.
However, when the coupling to the bath is weak, one can de-
fine to a good approximation, the positive-frequency part from
the eigenstates of HS alone. Hence in the frequency domain,
the general input-output relation for a weak system-bath cou-
pling reads

âout(ω)− âin(ω) =
√

2πγ(ω)X̂+(ω), (46)

with

X̂+ =
∑
ωi<ωj

Xij |i〉〈j|, (47)

andXij = 〈i|X̂|j〉. It is clear from the above expressions that
we recover the key elements specific to the USC regime that
appeared in the derivation of the master equation: the “white
noise” assumption γ(ω) ≈ γ is not legitimate in the general
case [44]. In addition, X̂+ differs from â when the cavity
mode is ultrastrongly coupled to the quantum emitter [24].

The input-output relation in Eq. (46) allows to compute
various correlation functions of the output field by combin-
ing Eq. (46) with the master equation approach. Indeed,
the key quantities are now correlation functions of the field
X̂+(t), which may in turn be calculated via the quantum re-
gression theorem. However, such a scheme requires to find
an explicit time-domain expression for Eq. (46), which de-
pends on microscopic details of the model, such as the bath
spectral density γ(ω). For specific setups in which the fre-
quency dependence of γ(ω) can be neglected even in the
USC, this expression takes the simple form âout − âin ∝
X̂+ [118, 119]. Note that alternative definitions for the in-
put and output fields may be considered, depending on the
actual measurement scheme under consideration. For exam-
ple, considering a circuit QED model in which the resonator
is coupled to a waveguide, Ridolfo et al. [24] defined the out-
put field as limt0→+∞

∫
dω
√
ωeiω(t−t0)â(t0), whose corre-

lation functions are directly proportional to photodection sig-
nals from the electric field. For this setup, a relevant choice
for the spectral density γ(ω) ∝

√
ω [24, 120], leading to

an input-output relation of the form âout − âin ∝ d
dtX̂

+. In
the bosonic model considered in [45] to describe intersubband
polaritons, the output field is defined as the field operator that
couple in to the upper and lower polariton branches.

b. Langevin equations When the system Hamiltonian is
quadratic, the coupled Heisenberg equations of motion defin-
ing the exact system-bath dynamics can be cast into analyti-
cally solvable Langevin equations. This approach was applied
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to a bosonic model such as the one of Eq. (3) [44, 121]. To the
equation on the bath variables, that defined the input-output
relation, must be added the equation on the internal degrees
of freedom (see Fig. 4). The underlying physical system is of-
ten a planar structure, where quasiparticles are labeled by their
in-plane momentum k. As we only sketch the method here,
we omit this label here. Denoting by â the cavity modes, the
general form of the equations for the photonic field is

da

dt
= − i

~
[a,Hsys]−

∫ ∞
−∞

dt′Γ(t− t′)a(t′) + F (t), (48)

where the memory kernel Γk involves the spectrum of the pho-
tonic bath and is responsible for the complex energy shifts of
the photonic mode. The force Fk can be written as a function
of the input or output field depending of what initial time is
chosen. A similar equation is derived for the matter degrees
of freedom. Due to the linearity of the system, one can obtain
a algebraic expression relating input and output fields in the
frequency domain. The final results take the general form.(

αout(ω)
βout(ω)

)
= U(ω)

(
αin(ω)
βin(ω)

)
, (49)

where this relation combines the input-output relation, as
given e.g. by Eq. (46) and the algebraic representation of the
Langevin equations of Eq. (48) expressed in Fourier space.
Assuming that the latter is written formally as

M(ω)


â(ω)

b̂(ω)
â†(−ω)

b̂†(−ω)

+ i


Fc(ω)
Fe(ω)
F †c (−ω)
F †e (−ω)

 . (50)

with the Fourier transform of the Langevin forces F (ω) di-
rectly proportional to the input fields, the key quantity enter-
ing in the expression for U(ω) is the Green function G(ω) =
−iM−1(ω). In the matrix M(ω) appear the complex fre-
quency dependent damping rates Γ(ω) that give rise to damp-
ing terms and Lamb shifts, as in the derivation of the master
equation.

c. Photodection The considerations underlying the
derivation of the input-output relations are also relevant for
the theory of photodetection, whose aim is to determine the
relevant observable of the output field that one need to com-
pute to reproduce photodetection signals. The basic princi-
ple of Glauber’s original theory [1] are also valid in the USC
regime. However, as pointed out by Di Stefano et al [122],
its application requires the same kind of adjustments that lead
to Eq. (46). In this spirit, the theory can be established for
a device coupled to a generic light-matter system. Hence,
the operator involved in the system-detector coupling Hamil-
tonian is not limited to the electric field. In return, the fre-
quency dependence of the system-detector coupling coeffi-
cient has to be taken into account. The general setting is for-
mally very similar to was was presented above. In particular,
the system-detector coupling Hamiltonian may be written as
Hsd =

∑
gn(ĉ†n + ĉn) ⊗ X̂ , where the operators ĉn are an-

nihilation operators for the nth mode of the detector and need

not be bosonic. X̂ is an operator acting only on the system.
Within this framework, the equivalent of Glauber’s formula,
giving the expression of the detector probability of being ex-
cited, is obtained through the Fermi golden rule and reads

dW

dt
= 〈Ô−Ô+〉, (51)

where the operator Ô+ is similar to the quantity that appear in
the r.h.s. of Eq. (46). It is such that its Fourier transform is
given by

Ô(ω) =
√

2πg(ω)X̂+, (52)

where the positive-frequency part is defined relative to the
system Hamiltonian, assuming weak coupling to the detector.
The notation g(ω) refers to the continuous limit of gn.

C. Driven systems

A typical way to study, e.g., the output photon statistics
of a cavity QED device is to couple it to an external co-
herent field. Such driving mechanism is accounted for in
the theoretical description by adding a term proportional to
F cos(ωd + φ) in the Hamiltonian of the system, where ωd
denotes the frequency of the field and F its amplitude. In
a regime where all counter-rotating terms can be safely ne-
glected, the time-dependence induced by the driving term is
subsequently removed by expressing all quantities in a frame
rotating at the driving frequency ωd. In the ultrastrong cou-
pling regime the Hamiltonian is still time-dependent in the
rotating frame but other strategies, relying on Floquet theory,
are available to handle the driving term. The use of Floquet
theory in quantum mechanics is not restricted to open systems
and was first employed to treat strong driving in closed sys-
tems [123–125]. We restrict ourselves here to its application
to the master equation, although other approaches have also
been proposed [126, 127].

a. Floquet-Liouville approach A rigorous and general
derivation of the master equation for a time-dependent Hamil-
tonian is not a trivial task [128]. However when the driv-
ing is weak, one can assume that there is no “dressing of
the dressed-state” by the external field and that the dissipa-
tor is left unchanged. A possible strategy, designated as the
Floquet-Liouville approach [129, 130], is then to apply Flo-
quet theory to the resulting time-periodic master equation,
∂tρ = L (t)ρ, where L (t + T ) = L (t), with T = 2π/ωd.
Here L (t) denotes the Liouvillian superoperator defined by
Eq. (36). The Floquet theorem [131] states that there exist
solutions of the master equation of the form

ρ(t) =
∑
α

cαe
ΩαtRα(t). (53)

Here, Rα(t) is a periodic function of period T and Ωα is a
complex number, which are eigenfunctions and eigenvalues,
respectively, of the following operator

(L (t)− ∂t)Rα(t) = ΩαRα(t). (54)
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Practical implementations of the Floquet-Liouville approach
amount to finding an algebraic representation of Eq. (54) that
makes the problem time-independent. This is carried out by
introducing the so-called Floquet Hilbert spaceH2⊗T , where
T denotes the Hilbert space of T -periodic functions. A natu-
ral choice of basis for the space T , is obviously the functions
φn(t) = e−inωdt. Following Refs. [124, 132], we denote φn
by |n). In this basis, the generic expression for an element
|A〉〉 of H2 ⊗ T , |A〉〉 =

∑+∞
n=−∞A(n) ⊗ |n) coincides with

its Fourier series expansion A(t) =
∑+∞
n=−∞A(n)e−inωdt.

Note that the scalar product on the Floquet space derives from
the usual scalar product on T , (f |g) = 1

T

∫ T
0
f∗(t)g(t)dt

and the scalar product on H2, 〈A|B〉 = Tr[A†B]. Within
this framework, the quantities Rα(t) are represented as right-
eigenvectors |Rα〉〉 (corresponding to the eigenvalue Ωα), of
a non-Hermitian superoperator L̃ in Floquet space. The ma-
trix elements of this operator derive from the expression of
Eq. (54) in Fourier space, which reads

∞∑
m=−∞

L (n−m)R
(m)
α,k + inωdR

(n)
α,k = ΩαR

(n)
α,k, (55)

Note that the range of the index α in Eq. (53) is equal to the
dimension of the physical space of density matrices. However,
given the dimension of the Floquet space it is necessary to
label the eigenstates |Rα,k〉〉 of L̃ with an extra index k ∈
Z. This apparent discrepancy reflects the fact that, similarly
to Bloch functions in solid state physics, the matrices Rα(t)
in Eq. (53) are not uniquely defined. Indeed, the equation
is left invariant by the transformation {Ωα → Ωα − ikωd,
Rα(t) → eikωdRα(t)}. The full dynamics can be expressed
as a function of eigenstates and eigenvectors of L̃ leading to
the Floquet space equivalent of Eq. (53)

|ρ(t)〉〉 =
∑
α,k

cα,ke
Ωα,kt|Rα,k〉〉, (56)

where cα,k = 〈〈Lα,k|ρ0〉〉, with 〈〈Lα,k| the left-eigenvectors
of L̃ . In this expression the periodic part of the time evolution
is implicitly encoded in |Rα,k〉〉 Note that for a given initial
density matrix ρ0, the choice of the |ρ0〉〉 is not unique, but this
arbitrariness has no influence on the dynamics. One possible
choice is for example |ρ0〉〉 = ρ0⊗|0). In addition, due to the
degeneracy mentioned above, the sum over k can always be
suppressed and all quantities expressed as a functions of Ωα,0
and |Rα,0〉〉. More generally the propagator for the master
equation can be expressed as

ρ(t+ τ) = U(t+ τ, t)[ρ(t)]

=
∑
α,k

e−iΩα,kτ 〈〈Lα,k|ρ〉〉Rα,k(t+ τ). (57)

This algebraic formulation of the master equation in Flo-
quet provides an efficient way of computing the dynamics
for driven-dissipative systems with a small number of compo-
nents, without numerically integrating a time-dependent mas-
ter equation. In this respect, this approach was particularly

useful to address the question of metastability in the driven-
dissipative Rabi model [112]. It also allowed to find semi-
analytical expressions for the fluorescence spectrum of ultra-
strongly coupled devices [117].

b. Floquet-Markov approach A related application of
Floquet theory to the master equation is the Floquet-Markov
approach. Originally conceived for quantum systems in strong
driving fields [133–135] it consists in deriving the master
equation directly in the Floquet basis associated with the pe-
riodic Hamiltonian. Let |uα(t)〉 be the Floquet eigenstate sat-
isfying |uα(t+ T )〉 = |uα(t)〉 and

US(t, 0)|uα(0)〉 = e−iεαt|uα(t)〉. (58)

In the Schrödinger picture, operators are defined in the basis
|u(0)α〉 and the matrix elements of the density matrix as

ρα,β(t) = 〈uα(t)|ρ(t)|uβ(t)〉. (59)

In the interaction picture relative to the Floquet basis, in which
the master equation is derived, the matrix elements of an op-
erator A(t) are

〈uα(0)|A(t)|uβ(0)〉 = 〈uα(0)|U†S(t, 0)AUs(t, 0)|uβ(0)〉
= ei(εα−εβ)t〈uα(t)|A|uβ(t)〉

=

+∞∑
k=−∞

e−i(εβ−εα+kωd)tA
(k)
αβ . (60)

Once a meaningful interaction picture has been defined, a pro-
cedure similar to the one outlined at the beginning of this sec-
tion applies. The relevant jump operators are now of the form

A(ω) =
∑

εβ−εα+kωd=ω

A
(k)
αβ |uα(0)〉〈uβ(0)|, (61)

from which we recover an equation that is formally equiva-
lent to Eq. (33). Summing over indices α, β, k rather than fre-
quencies ω, the equation (without the secular approximation)
reads [133]

dρ

dt
=

∑
α,β,k,α′,β′,k′

[
ei(Ωα′β′ (k

′)−Ωαβ(k))tA
(k)
αβA

(k′)∗
α′β′ × (62)

× Γ(Ωα,β(k))[Pαβ , ρP
†
α′β′ ]

]
+ h.c.,

(63)

with Ωα,β(k) = εβ − εα + kωd and Pαβ = |uα(0)〉〈uβ(0)|.
An autonomous equation in the interaction picture is obtained
only when performing the secular approximation, i.e. the as-
sumption ω 6= ω′ =⇒ |ω − ω′| � γ. In this setting, the
transitions frequencies not only involve the the quasienergies
εα but also all equivalent quasienergies obtain by adding a
multiple of the frequency ωd. When the secular approxima-
tion understood in this way is valid, the final expression for
the master equation (in the interaction picture) reads

dρ

dt
=
∑
α,β,k

|A(k)
αβ |

2Γ(Ωα,β(k))[Pαβ , ρP
†
αβ ] + h.c. (64)
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V. WAVEGUIDE QED

The methods presented in the previous sections where first
and foremost tailored to solve cavity QED problems where
a finite (and usually small) number of emitters interact ultra-
stongly with a finite number of cavity modes. As the result,
even when the coupling to a continuum of modes was consid-
ered in Sec. IV to model the environment, the system-bath
coupling was considered small enough, so that the bath de-
grees of freedom could be effectively traced out. The possi-
bility of reaching the USC regime in waveguide QED, where
an atom is coupled to the continuum of electromagnetic modes
propagating in a 1D waveguide, raises a new set of theoretical
issues. While the paradigmatic model of Sections III and IV
was the quantum Rabi model (Eq. (1)), this section focuses
on the spin-boson model, presented in Eq. (2).

A. Ultrastrong coupling to a continuum

In the context of waveguide QED, a typical situation is to
consider a single quantum emitter of frequency Ω emitting
light into the waveguide with a rate Γ. The system enters the
strong coupling regime when the the emission rate Γ becomes
larger than the decoherence rate or any other dissipation rate
into other channels, while the relation Γ � Ω still holds. In
analogy with cavity QED, the USC regime is reached when Γ
becomes a significant fraction of Ω. Such a regime is achiev-
able with superconducting architectures involving supercon-
ducting qubits coupled to a 1D transmission line [17, 21]. In
this settings, an experimental signature of the different cou-
pling regime may be obtained by measuring the transmitted
coherent scattering. For example, in an open setting involving
a single atom and single-photon pulses, a hallmark of strong
interaction between the atom and propagating photons is the
extinction of the transmitted light, resulting from an interfer-
ence process between the incoming light and the light emitted
collinearly by the atom [120, 136]. As in driven-disspative
cavity QED scenarios, non-poissonian statistics of the trans-
mitted and reflected field are also a manifestation of strong-
light matter interaction [137–139]. From a theoretical per-
spective, the most important underlying model is the spin-
boson Hamiltonian [42]. It is indeed the simplest model de-
scribing the coupling of an atom, assumed for simplicity to
be a TLS, to a continuum of bosonic modes modelling the
waveguide. The model, which is related to quantum impu-
rity problem [140, 141] has numerous application outside of
quantum optics and only a small fractions of the theoretical
literature is touched upon here.

Within this framework, several strategies are available to
compute the output of scattering experiments. We note first,
that in the strong-coupling regime, when the coupling to the
waveguide modes is still much weaker than the atom fre-
quency, a microscopic master equation approach is legitimate.
Scattering amplitudes and correlation functions of the out-
put field are linked to the density matrix of the atom via
standard input-output relations [142]. In the USC regime, it
was shown that numerical schemes based on Matrix Product

States [143] could successfully be adapted to scattering prob-
lems [144, 145]. They have in particular been used to bench-
mark two of the methods that are presented below: the dy-
namical polaron ansatz [146] and the extension to the USC of
field-theoretic scattering theory [26].

B. Dynamical Ansätze

The polaron states such as the one introduced in Eq. (17)
proved also useful to tackle scattering problems, and more
generally dynamical quantities relevant to waveguide QED se-
tups. In particular Diaz-Camacho et al. [146] have developed
a variational semi-analytical approach to the dynamics of the
spin-boson model based on a dynamical polaron ansatz. Note
that this general framework is well suited to multi-spin config-
urations. The first step of the method is to find an optimized
static polaron transformation that minimize the ground-state
energy. The rationale behind and the way it is implemented
is similar to what was done for scattering theory: the static
polaron transformation allows to disentangle spins and boson.
More precisely, the general static ansatz is expressed through
the polaron transformation

UP [fik] =
⊗
i,k

eσ
x
i (f∗ikâ

†
k−fikâk), (65)

where the fik are the variational parameters of the transfor-
mation. For a multi-spin system there are additional variable
parametrizing the ground state, namely the spin degrees of
freedom defining the spin state,

|ψs[cσ]〉 =
∑

σ∈{↑,↓}Ns
cσ
⊗
|σi〉. (66)

The optimal polaron state is therefore the state |ΨP 〉 =

U†P [fik]|0〉|ψs[cσ]〉, for the values of fik and σ minimize the
energy. Once the optimized polaron transformation is found,
it defines a new basis, the polaron picture in which to express
the dynamics of the system. The time evolution is then han-
dled within a subspace with a defined number of excitation.
For example, in the one-excitation subspace the general state
is parametrized as

UP [fik]W [αs(t), αk(t)]|0〉 ⊗ |ψg.s.〉, (67)

where

W [αs(t), αk(t)] =

Ns∑
s=1

αs(t)|0〉⊗ |ψes〉〈ψg.s.|+
∑
k

αk(t)â†k.

(68)
The equations of motion for the coefficients αk,s(t) that de-
fines the dynamics take the form of Euler-Lagrange equa-
tions.The corresponding Lagrangian is derived from the en-
ergy functional for αk,s associated with the Hamiltonian.

Starting similarly from a optimized static polaron wave-
function for the ground-state of the system, Gheeraert et
al. [147, 148] have proposed an alternative dynamical ansatz,



14

referred to as the“Multimode Coherent States ansatz”. Con-
sidering general superpositions of multimode coherent states
they derived a formalism that proved efficient in predicting
phenomena intrinsic to the USC regime such as frequency
conversion processes arising in off-resonant inelastic scatter-
ing [148].

C. Scattering theory

Polaron transformations have also found application in the
extension to the USC regime of scattering theory [26]. The
possibility of applying to quantum optics the theoretical appa-
ratus developed in the context of high-energy physics to com-
pute the S matrix is not restricted to the USC regime. The
formalism is indeed general and aims at extracting transmis-
sion rates and correlation between outgoing photons from the
quantity [140, 149]

S = T exp[−i
∫ +∞

−∞
Hint(t)dt], (69)

where T denotes the time-ordering operation and Hint(t) is
the atom-waveguide interaction Hamiltonian expressed in the
interaction picture. from the S-matrix are extracted the scat-
tering amplitudes

out〈f |i〉in =in 〈f |S|i〉in, (70)

where the input and output states are asymptotically free mul-
tiphoton states. Several approaches are available to com-
pute the S-matrix both for single and multi-photon scat-
tering. Early results were obtained through integrability-
based methods [150, 151], other approaches rely on the
Lippmann-Schwinger formalism [152–154]. Path integral
methods have also been developed to treat photonic scatter-
ing problems [140]. They exploit the Lehmann-Symanzik-
Zimmermann (LSZ) reduction, which relates the connected
T -matrix to the photonic Green function. The Green function
itself is then computed via a path-integral representation of its
generating functional.

Shi et al. succeeded in extending the range of application
of these computational techniques to the ultrastrong coupling
by finding an effective low-energy particle-conserving Hamil-
tonian. In the spirit of the GRWA, they first applied an op-
timized polaron transformation to find the effective ground
state, before applying the rotating-wave approximation. The
model gave good results in the single photon regime and cap-
tures the renormalization of the spin frequency and strong
Lamb shift characteristic of this regime. As the validity of
the GRWA is not easy to prove in this case, the robustness
of the approximation is established by comparing the results
with MPS numerical simulations.

VI. VALIDITY OF EFFECTIVE MODELS

In this last section we present some of the recent debates
regarding fundamental limitations of effective models in the

ultrastrong-coupling regime. While these models proved to
be successful in predicting experimental results for currently
achievable coupling strength, the prospect of reaching larger
values of the interaction strength, where g � ω, lead to ques-
tion some of the approximations they are inevitably based
on [156]. It was shown for example that the usually neglected
diagmagneticA2 term can act as a potential barrier and lead to
a decoupling of light and matter in the USC regime [157, 158].
The role of the diamagnetic term has also been the focus of
vivid debates in the context of the Dicke superradiant phase
transition [159–166]. We focus more specifically in the fol-
lowing on recent developments regarding the related question
of gauge invariance.

Attempts in deriving a microscopic model for cavity QED
setups share a common background: the theory is based
on a non-relativistic formulation of quantum electrodynam-
ics within the long-wavelength approximation. At the clas-
sical level, this formulation is conveniently expressed in the
Coulomb gauge [37], from which quantization of the theory
follows the canonical procedure. A general expression for the
classical Hamiltonian of a system of charges interacting with
the electromagnetic field is the following [167]

H =
∑
α

(pα − qαA)2

2mα
+

∫
D
dr3(∇U)2 +Hfield, (71)

where Hfield may be expressed as

ε0
2

∫
D
dr2

[(
Π

ε0

)2

+ c2(∇×A)2

]
, (72)

where U is the scalar potential and Π the canonical conjugate
momentum to A. In the context of cavity QED, the domain
D in which the field lives is not the free space. Therefore,
as pointed out by Vukics et al. [167], boundary conditions
on the fields such as U |∂D = 0 and A × n = 0|∂D, must
be added to the Coulomb gauge condition ∇ ·A = 0, in or-
der to completely remove gauge ambiguities. In view of a
non-relativistic quantum treatment of the problem the Hamil-
tonian is further simplified by the long-wavelenth approxima-
tion. The charges are assumes to form well localized clusters
of small radius, such that the position dependence of the field
A(r) can be neglected at this scale. A difficulty inherent to
such formulation of cavity QED problems, is that the notion
of the charge clusters forming (natural or artificial) atoms are
not gauge invariant concepts. Moreover, the effective models
presented in the previous sections also rely on additional sim-
plifications such as the two-level approximation for the atom
or a single-mode description of the electromagnetic field. If
not applied carefully, these approximations break the gauge
invariance and may result in unphysical predictions. In the
following we split the discussion into two parts, presenting
first the debates focusing on the two-level approximations in
various gauges. In a second part we review microscopic mod-
els that were build to describe many-particle systems, with
emphasis on the existence of superradiant transitions and the
role of the A2 term.



15

FIG. 5. Monitoring the break-down of gauge invariance. The energy spectra of the quantum Rabi Hamiltonian HC in the Coulomb gauge
(red dotted curves), derived from Eq. (76) is shown for various order of the Taylor expansion. Each panel also shows the exact spectra (black
continuous curves). Reproduced with permission [155]. Copyright 2019, Springer Nature.

A. Gauge non-invariance of the two-level approximation

Several recent works [155, 168–171] have identified impor-
tant issues arising in the USC when performing the two-level
approximation in different gauges. A systematic study of the
two-level approximation in the dipole and Coulomb gauge
was performed by De Bernardis et al. [168]. It is shown that
already at the level of a single electric dipole coupled to a
single cavity mode, serious discrepancies appear in two-level
models resulting from different choice of gauges. It is ex-
emplified in the computation of the matrix elements of the
interaction Hamiltonian in the eigenbasis of the atom: while
truncation of the particle Hilbert space gives consistent results
for the terms ix̂(â − â†) present in the electric dipole gauge,
the same truncation scheme is not justified for the operator
p̂(â + â†) stemming from the Coulomb gauge, The quality
of the approximation depend also on the type of confining
potential that is considered. Interestingly, comparison with
exact diagonalization in the Coulomb gauge shows that the
Rabi model is robust in the ultrastrong coupling regime when
the charge confining potential is a double well, when derived
in the electric dipole gauge. Conversely for a square-shape
confining potential no Rabi Hamiltonian reproduces the exact
result. Stokes et al. [169] tackle the validity of the two-level
approximation in a more general setting by considering a fam-
ily of gauge transformations parametrized by a real parameter
0 ≤ α ≤ 1. The relation between gauge-invariant variable
and gauge-dependent canonical conjugate variables are given
by

mṙ = pα − q(1− α)A (73)

ET = −Πα − α
ε(d · ε)
V

M, (74)

where A is the transverse vector potential, ET the transverse
electric field, ε and V are the cavity polarization vector and
volume and d the matter dipole moment. The electric dipole
and Coulomb gauges are recovered for α = 1 and α = 0
respectively. The unitary gauge transformation going within
this one-parameter family is Rαα′ = ei(α−α

′)d·A. They
show that, for each value α, the TLA results in a general-
ized Rabi Hamiltonian with potentially asymmetric rotating
and counter-rotating terms. Given the importance of counter-
rotating terms in the phenomenology of the USC reigme,
such arbitrariness may seem paradoxal. In particular it im-
plies that there exists a value of α for with the TLA yields a
Jaynes-Cumming Hamiltonian, whose validity does not rely
on the RWA. Numerical simulations regarding the first two-
level and eigenstates and energy show that the TLA in the
Jaynes-Cummings gauge may give more accurate results than
the other two gauges considered.

Following these studies, a prescription for recovering con-
sistent results in systems involving a charged particule in a
confining potential interacting with a single mode of the elec-
tromagnetic field, was proposed by Di Stefano et al. [155].
As in previous studies, the long-wavelength approximation
is assumed to be valid and the electromagnetic field is uni-
form in space. The reason for the failure of the TLA in the
Coulomb gauge presented above was identified as related to
the non-local character of the potential after truncation of the
Hilbert space. Hence, starting from the Rabi Hamiltonian in
the dipole gauge

HD = ωâ†â +
Ω

2
σ̂z + igσ̂x(â† − â), (75)

which has proved to be in good agreement with the exact one,
the change of gauge and subsequent truncation of the Hilbert
space can be written as a true unitary transformation. The
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correct Rabi Hamiltonian in the Coulomb gauge preserving
gauge invariance is

HC = ωâ†â+
Ω

2
(σ̂z cos[

2g

ωc
(â†+ â)] + σ̂y sin[

2g

ωc
(â†+ â)]).

(76)
Interestingly, by expanding the cosine and sine functions in
the above expression, one can monitor the “break-down”
of gauge invariance with increasing coupling strengths (see
Fig. 5). Note that in a general setting the approach outlined
above involve computing the image of some arbitrary opera-
tors (functions of x̂ and p̂) under a given gauge transfomation.
It can be performed through the Baker-Campbell-Hausdorff
formula.

B. Multi-particle configurations and diamagnetic A2 term

The debate over the validity of effective models was partic-
ularly intense in the context of multi-dipole models of cavity
QED. As mentioned above, one of main questions is the role
played by theA2 term in the Dicke model and its consequence
on the existence of the superradiant phase transition.

More generally, a crucial question in evaluating the valid-
ity of effective models is to provide realistic bounds on the
possible coupling strength appearing in the model. In order
to answer to such fundamental questions from first princi-
ples, several minimal models for cavity and circuit QED have
been recently proposed [172–176]. A microscopic theoreti-
cal description based on the Power-Zineau-Woolley transfo-
mation was first developed for cavity QED systems involv-
ing 2D [172] and 3D [173] electron gases in solid-state struc-
tures. While first designed to describe the regime of high
electronic density, this framework was extended to the few-
electron regime by considering the interaction of the electron
gas with a quantum LC resonator [174]. Interestingly, chang-
ing the number of electrons in such a model allows to continu-
ously interpolate between effective Rabi and Hopfield Hamil-
tonians.

In the context of atomic QED, starting from the classical
Hamitonian Eqs. (71), (72), it was shown that through a proper
generalization of the Power-Zineau-Woolley transformation,
the Hamiltonian in the multipolar gauge could in be mapped
to the Dicke Hamiltonian [167]. The strategy was to elimi-
nate the A2 term and the inter-atomic dipole interaction ex-
actly, by a proper gauge choice at the classical level, taking
into account the specific geometry of cavity QED setups with
respect to free space. The obtained general expression for the
Hamiltonian in the multipolar gauge reads

H ′ =
∑
α

p2
α

2mα
+Hfield +

1

2ε0

∫
D
d3rP2− 1

ε0
d3D ·P, (77)

where P is the polarization density and D = ε0E + P.
The elimination of dipole-dipole interaction is meaningful
only within the long wavelength approximation and the as-
sumptions of well separated atoms. In this case, the kinetic
and P2 terms in Eq. (77) define the internal structure of the
atoms. Within this framework a correspondence with the

Dicke model is established through canonical quantization of
the resulting Hamiltonian. However finding realistic bounds
on the interaction strength requires to find an explicit formula
for the atomic polarization field. General estimates for atomic
cavity QED showed that the values of the interaction needed
to observe critical phenomena in the USC regime come too
close to the limit of validity of the independent dipole approx-
imation to provide a definitive answer [175].

Another model for which precise statements could be made
was put forward in the context of quantum circuits [176]. The
setup considered is composed of N electric dipoles interact-
ing with the electromagnetic modes of a lumped-element LC
resonator. The dipoles are described as effective particles of
mass m in a confining potential V . For this model the quan-
tization procedure is carried out from the Lagrangian of the
circuit [168]

L =C
Φ̇2

2
− Φ2

2L
+ Φ̇Qin

+
∑
i

[
m

2
ξ̇2
i − V (ξi)]−

mω2
p

2

∑
i 6=j

Dijξiξj , (78)

where Φ is the is the magnetic flux through the inductor of the
LC circuit, ξi the displacements between the dipole charges
and Qin the charge induced by the dipole distribution for zero
voltage drop accross the capacitor.The dipole-dipole interac-
tion, in particular its geometric aspects are parametrized by
the quantity Dij . The analysis of coupling strength at play
in this model reveals that the dipole-dipole direct interaction
and the dipole-field coupling cannot be treated independently.
Hence the effective model obtained after performing the two-
level approximation is an extended-Dicke model, which in-
cludes spin-spin interactions. Within this theoretical frame-
work a rich phase diagram is predicted including superradi-
ant and subradiant phases with antiferromagnetic order of the
dipoles.

VII. CONCLUSION

We have reviewed in this Progress Report the recent the-
oretical advances in our understanding of ultrastrong light-
matter interactions. The counterintuitive phenomenology of-
fered by this new regime of cavity QED, has led to fruitful
developments in many aspects of the theory. Approxima-
tion strategies and variational schemes have been developed
to compute the effect of counter-rotating terms on spectral
properties. In this context, polaron transformations proved to
be valuable tools go get physical insight into the eigenstates
of systems described by Rabi and spin-boson models. Ele-
gant exact mathematical results on the energy spectrum have
also been obtained. In driven-dissipative settings, a conse-
quence of the USC is that the frequency dependence of the
noise spectrum cannot be neglected. This may affect drasti-
cally the outcome of photodetection signals and correlation
measurements. Besides, any output fields can be computed
in a meaningful way only with respect to the dressed-basis
of the full light-matter system. The counter-rotating terms
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also impact the treatment of external driving fields, as it is
no longer possible to eliminate the time-dependency of the
Hamiltonian through a simple change of reference frame. In
this context, the Floquet theorem applied to the master equa-
tion in the form of the Floquet-Liouville or Floquet-Markov
approaches give tools to treat the time-dependency exactly. In
the field of waveguide QED, the possibility of reaching the
USC regime has led to an extension of scattering theory and
to the developments of new numerical tools such as dynami-
cal polaron and multimode coherent states ansätze or specifi-
cally tailored MPS-based simulations. At a more fundamental
level, the prospect of reaching extreme values of the interac-

tion between light and matter has deepened our understand-
ing of the validity effective models for cavity QED. Inspired
by the paradigmatic setting of cavity QED including only a
single atom and a single cavity mode, many of the methods
presented in this article were primarily designed for systems
with only a small number of particles. Although collective
effects such as superradiant phase transitions have attracted a
great deal of interest in the last decades, the interplay between
many-body effects and ultrastrong-coupling phenomenology
still offers numerous perspectives [177–179]. In this respect,
the recent progress in the the field of strongly-correlated pho-
tonic phases [180–182], will play a significant role.
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