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Deterministic observer design for vision-aided inertial navigation

Tarek Hamel, Minh-Duc Hua and Claude Samson

Abstract— The purpose of this tutorial is to report results
developed over the last three years for state estimation prob-
lems arising with unmanned mobile robots equipped with
a monocular camera and a 3-axis gyrometer, complemented
with either a velocity sensor, or a 3-axis accelerometer, or an
optical flow sensor. Definition and characterization of uniform
observability for linear time-varying systems, followed by an
observer design framework exploiting first-order approxima-
tions of a class of nonlinear systems, are first recalled. The
resulting Riccati observers are locally uniformly exponentially
stable when associated uniform observability conditions are
satisfied. This framework is subsequently applied, with detailed
explanations, to a set of practical problems, namely i) classical
PnP camera pose estimation using known source points and
bearing measurements, ii) the adaptation of this problem
to unknown source points by using epipolar constraints, iii)
camera pose and velocity estimation using bearing and IMU
measurements, and iv) camera velocity and depth estimation
using optical flow and IMU measurements from the observation
of a planar target. The observer solutions proposed for these
last two problems are validated with experimental data.

I. INTRODUCTION

State estimation (position, velocity, orientation, etc.) is a
central problem in the fields of robotics and autonomous
systems. It consists in designing sensor fusion algorithms
that reconcile various measurements through the use of a
dynamical model to produce state estimates. When the state
estimates are used in a control law, these algorithms are
required to operate in real time, with high bandwidth and
low latency. This puts severe constraints on the sensor fusion
algorithms, from both theoretical and practical points of
view. A variety of methods and sensory modalities have been
proposed in the literature for state estimation of autonomous
systems.

The most commonly used proprioceptive sensors are in-
ertial sensors (e.g., accelerometer, gyrometer) and Doppler
velocity sensors that have the advantage of producing mea-
surements at a high rate with relatively low latency. However,
they only provide relative motion measurements that are
furthermore often impaired by significant drifts. Propriocep-
tive sensors are often complemented with Global Positioning
Systems (GPS) to provide a global position measurement at
a relatively high rate [7], [10], but with low precision and,
more annoyingly, with limited applicability when the GPS
signal is severely degraded in urban canyon environments,
to the point of being inoperable in indoor environments.
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These sensors are also often complemented with onboard
exteroceptive sensors, such as laser range finders, acoustic
sensors and stereo cameras that, beyond the estimation of
the system state, provide information about the surrounding
environment. Early approaches for state estimation were
based on Extended Kalman Filters (EKF) [3], unscented
Kalman filters (UKF) [14] and particle filters [1]. However,
these early solutions have limitations, mostly in terms of
robustness. The nonlinearity of autonomous systems dynam-
ics is much related to the inherent nonlinearity of their
state space, well exemplified by the Lie groups of rotation
SO(2) and SO(3). Exploiting the structure of Lie groups
for state estimation is a fruitful approach that has motivated,
during the last fifteen years, an increasing interest in the
design of nonlinear observers [2], [5], [16] and invariant
extended Kalman filters (IEKF) [4] for autonomous systems.
All observers in this class take into account the specificity of
sensory devices that translate the action of a Lie group on a
measurement space. However, this entails a certain number
of complications at the design level that need to be over-
come. In particular, the estimation of the pose of a moving
monocular camera on the basis of proprioceptive sensors
measurements, complemented with bearing measurements of
a set of source points identified in the camera image, the
coordinates of which in the inertial frame are either known
(the case of the classical Perspective-n-Point (PnP) problem),
or unknown (the essential matrix estimation problem), yields
challenging problems. A variety of methods dealing with
these problems have been proposed. Let us cite, for instance,
algebraic algorithms [6], [20] and iterative algorithms based
on gradient search [9] for the PnP problem, and nonlinear
optimization algorithms for essential matrix estimation [15].
There is also a rich literature addressing these problems with
EKF algorithms, typically in the context of Simultaneous
Localization And Mapping (SLAM) and Visual Odometry
[13].

In this paper we show that the deterministic Riccati
observer framework developed in [8], which exploit first-
order approximations of a class of nonlinear systems, and
may formally be viewed as a generalisation of the so-called
multiplicative extended Kalman filter (MEKF) [18], [19],
applies to a number of applications involving proprioceptive
sensors and monocular vision.

The remainder of the paper is organized as follows. In
Section II, after specifying the notation used throughout the
paper, basic definitions related to uniform observability of a
time-varying linear system –a property whose satisfaction is
central to proving the exponential stability of the proposed
observers– and a generic dynamic system verifying a set of



structural properties, complemented with a generic Riccati
observer, are recalled. Section III shows how the proposed
observer framework applies to the estimation of the camera
pose when using bearing measurements of a set of source
points whose coordinates in the inertial frame are either
known (the classical PnP problem) or unknown (use of epipo-
lar constraints). In Section IV, an adaption of the observer to
the generalized PnP problem for which the linear velocity is
unknown is proposed, and its performance is validated with
experimental data. In Section V, another dynamic problem
involving the estimation of the camera’s attitude, of its linear
velocity and of the distance between the camera and a
planar target (depth), on the basis of optical flow and IMU
measurements, is addressed. The observer’s performance is
also validated with experimental data. Concluding remarks
are presented in Section VI.

II. PRELIMINARY MATERIAL

A. Notation

We denote by Rn the n-dimensional Euclidean space,
by {e1, . . . , en} the canonical basis of Rn and by |x| the
Euclidean norm of the vector x ∈ Rn. The set Bnr := {x ∈
Rn : |x| ≤ r} is the closed ball in Rn with radius r. The null
matrix and the identity matrix of dimension n×n are denoted
by 0n and In, respectively. The null matrix of dimension
m× n is denoted by 0m×n .

The set Sn := {x ∈ Rn+1 : |x| = 1} is the n-dimensional
sphere embedded in Rn+1 with radius equal to one. For any
p ∈ Sn, the projection onto the tangent space of the unit
n-dimensional sphere at the point p is denoted by Πp :=
(In+1 − pp>). The Special Orthogonal group of order n is
denoted by SO(n) := {R ∈ Rn×n : det(R) = 1, R>R =
RR> = In}. For any x, y ∈ R3, x× is the skew symmetric
matrix associated with the cross product, i.e. x×y = x× y.

With f denoting a vector-valued function depending on
the two variables x and y, and on the time variable t, we
write f = O(|x|k1 |y|k2) with k1 ≥ 0 and k2 ≥ 0 if ∀t :
|f(x, y, t)|/(|x|k1 |y|k2) ≤ γ < ∞ in the neighbourhood of
(x = 0, y = 0). If f depends only on x and t then we write
f(x, t) = O(|x|k) if ∀t : |f(x, t)|/|x|k ≤ γ < ∞ in the
neighbourhood of x = 0.

B. Uniform observability of a linear time-varying system

Consider a Linear Time-Varying (LTV) system of the
form: {

ẋ = Ā(t)x+ B̄(t)u

y = C̄(t)x

with x ∈ Rn, u ∈ Rl, y ∈ Rm, and Ā(t), B̄(t), C̄(t) de-
noting continuous matrix-valued functions with adequate di-
mensions. Let Q(t) denote a continuous m×m-dimensional
matrix-valued function, positive definite for all t ∈ R+.
The Riccati observability Gramian associated with the triplet
(Ā, C̄, Q) is the non-negative definite matrix-valued function
defined by

W Ā,C̄
Q (t, t+ δ) :=

1

δ

∫ t+δ

t

Φ>(s, t)C̄>(s)Q(s)C̄(s)Φ(s, t)ds

where Φ(s, t) is the transition matrix associated with Ā, i.e.
d
dsΦ(s, t) = Ā(s)Φ(s, t),∀s ≥ t, Φ(t, t) = In.

If Ā(t) and C̄(t) are bounded and if there exist δ > 0 and
ε > 0 such that W Ā,C̄

In
(t, t+ δ) > εIn, ∀t ≥ 0, then we say

that the pair (Ā(t), C̄(t)) is uniformly observable.

C. Riccati Observer for a Class of nonlinear Systems

In this section we define a class of nonlinear systems of
interest, along with a concise description of the proposed
observer design methodology. This material is taken from
[8].

Every member of this class of systems lives in Bn1
r ×Rn2 ,

and its state is denoted as x = [x>1 , x
>
2 ]>, with x1 ∈ Bn1

r

and x2 ∈ Rn2 . The output of this system, denoted as y ∈
Rm, is assumed to be a function of x, x̂2, and t, with x̂2

denoting an estimate of x2. This system evolves according
to the following equations:

ẋ = A(x1, t)x+

[
u1

u2(t)

]
+O(|x1|2) +O(|x1||u1|)

y(x, x̂2, t) = C1(x1, x̂2, t)x1 + C2(x1, x̂2, t)x2

+O(|x1|2) +O(|x1||x2 − x̂2|) +O(|x2 − x̂2|2)

(1)

where
• A(x1, t) is a continuous matrix-valued function uni-

formly bounded with respect to (w.r.t.) t and uniformly
continuous w.r.t. x1. Furthermore, it is of the form

A(x1, t) =

[
A11(t) 0n1×n2

A21(x1, t) A22(t)

]
• C(x, x̂2, t) := [C1(x, x̂2, t)

>, C2(x, x̂2, t)
>]> ∈

Rm×(n1+n2) is a continuous matrix-valued function
uniformly bounded w.r.t. t and uniformly continuous
w.r.t. x and x̂2.

It is also assumed that u2(t) is a bounded input and that
the solutions to this system belong to a compact set D
independently of the choice of the input u1, whose role is
to make x1 converge to zero. By setting

u1 = −K1(y − C2x̂2) , (2)

an estimate of x is (x̂>1 , x̂
>
2 )>, with x̂1 ≡ 0 and x̂2 calculated

according to:{
˙̂x2 = A22x̂2 + u2 +K2(y − C2x̂2)

Ṗ = AP + PA> − PC>Q(t)CP + V (t)
(3)

with x̂2(0) ∈ Rn2 , P (0) ∈ R(n1+n2)×(n1+n2) a symmetric
positive definite matrix, Q and V bounded continuous sym-
metric positive semi-definite matrix-valued functions, and
K := [K>1 ,K

>
2 ]> given by

K = k(t)PC>Q (4)

with 0.5 ≤ k(t) ≤ kmax <∞ and P the solution, obtained
by numerical integration, to the continuous Riccati equation
(CRE) specified in (3).

Let x̃ := ((x1− x̂1)>, (x2− x̂2)>)> denote the estimation
error. Then, as proven in [8, Corollary 3.2], the equilibrium



x̃ = 0 is locally uniformly exponentially stable when Q(t)
and V (t) are both larger than some positive matrix and the
pair (A(0, t), C(0, x2(t), t)) is uniformly observable.

III. OBSERVER DESIGN FOR KINEMATIC SYSTEMS
INVOLVING MONOCULAR VISION

In this section we focus on kinematic systems evolving
in SO(3)×R3, with measurements performed in the camera
frame, and we show how the equations of this type of system
can fit the framework described in the previous section in
order to derive observers of interest in practice. The problem
at hand consists in providing an estimate of the camera
pose given measurements of the camera linear and angular
velocities (both assumed to be bounded), and by using either
the inertial coordinates of a set of n ≥ 3 static source points
identified in the image, or epipolar constraints when these
coordinates are not known.

Let {I} denote an inertial (fixed) frame of reference and
let {B} denote a frame of reference attached to the camera.
Let R ∈ SO(3) denote the orientation of the camera frame
{B} w.r.t. the inertial frame {I}. Let ξ̊ ∈ R3 denote the
position of the camera in the inertial frame {I} and define
ξ := R>ξ̊ ∈ R3, its expression in {B} w.r.t. {I} expressed
in {B}. Then the equations of motion of the camera satisfy{

Ṙ = RΩ×

ξ̇ = −Ω×ξ + V
(5)

where V ∈ R3 and Ω ∈ R3 denote the linear and the
angular velocity of the camera expressed in the frame {B},
respectively. Assume that V and Ω are measured by means
of a linear velocity sensor (e.g., a Doppler sensor) and an
Inertial Measurement Unit (IMU), respectively.

The inertial coordinates of the source points are denoted by
P̊i, and we assume that their calibrated projective coordinates
pp
i onto the camera plane expressed w.r.t. the frame {B} are

measured (see Figure 1). Denoting by Pi the coordinates of
the ith source point w.r.t. the frame {B} expressed in {B},
and by zi its third component, one verifies that pp

i = Pi/zi.

Fig. 1. Intuitive representation of inertial coordinates P̊i, planar projective
coordinates ppi and spherical projective coordinates pi of the ith source
point.

Rather than perspective outputs, typically used in com-
puter vision algorithms, we prefer using the direction (bear-
ing) vectors:

pi :=
pp
i

|pp
i |

=
R>(P̊i − ξ̊)
|P̊i − ξ̊|

=
R>P̊i − ξ
|R>P̊i − ξ|

∈ S2 (6)

obtained by projecting the source points onto a virtual
spherical image. These outputs can always be calculated from
the image data. They differ from perspective outputs only by
a scaling factor, and using them contributes to the simplicity
of the observer design methodology exposed in the present
paper.

A. Observer equations and model adaptation

The estimate of R is denoted by R̂ ∈ SO(3), and the
estimate of ξ (resp. ξ̊) is denoted by ξ̂ ∈ R3 (resp. ˆ̊

ξ ∈ R3).
The proposed observer has the following form:{

˙̂
R = R̂Ω× − R̂σR×
˙̂
ξ = −Ω×ξ̂ + V − σξ

(7)

with initial conditions (R̂(0), ξ̂(0)) ∈ SO(3) × R3, and
σR, σξ ∈ R3 the innovation terms to be determined there-
after. In practice, it is advantageous to calculate the unit
quaternion (λ̂0 ∈ R, λ̂v ∈ R3) associated with R̂, and then
translate this quaternion into a rotation matrix. The corre-
sponding equation, which then replaces the first equation in
(7), is:

d
dt (λ̂0, λ̂v) = 0.5 (λ̂0, λ̂v) ◦ (0,Ω− σR)

+ k (1− λ̂2
0 − |λ̂v|2) (λ̂0, λ̂v)

(8)

with ◦ denoting the quaternion product, and k a positive
gain ensuring the numerical stability of the quaternion’s norm
(equal to one).

Define the attitude error matrix

R̃ := R̂>R (9)

One could also use R̃ := RR̂> as an alternate definition of
this error. From (5) and (7) one verifies that the attitude error
kinematics are given by

˙̃R = −Ω×R̃+ R̃Ω× + σR×R̃ (10)

The following step involves developing a first-order ap-
proximation of (10). From the Rodrigues’ formula, the first-
order approximation of R̃ is given by

R̃ = I3 + λ̃× +O(|λ̃|2) (11)

with λ̃ ∈ B3
2 equal to twice the vector part of the quaternion

associated with the attitude error matrix R̃, and whose
convergence to zero implies the convergence of R̂ to R.
One then deduces from (10), (11), and the identity a×b× −
b×a× = (a× b)×, ∀a, b ∈ R3, that

˙̃
λ = −Ω×λ̃+ σR +O(|λ̃|2) +O(|λ̃||σR|) (12)



From (12) and the second equation of (5), and by setting
x = [x>1 , x

>
2 ]> := [λ̃>, ξ>]>, u1 := σR and u2(t) := V ,

one obtains the system equation in (1) with

A(x1, t) = A(0, t) :=

[
−Ω× 03

03 −Ω×

]
Note that this latter matrix valued-function is independent of
x1 for this particular case. Using RR̂>, instead of R̂>R
for the attitude error, and using the corresponding error
quaternion, would have led to the same result but with a
different matrix A and a different input u1.

Once there, it remains to determine the output y and
the matrix-valued function C, depending on the problem at
hand, i.e. either the PnP problem with known source points
coordinates in the inertial frame, or the case of unknown
source points’ coordinates and the use of epipolar constraints.

B. System output associated with the PnP problem

In this case the inertial coordinates P̊i of the source points
are known. From (6), and by definition of the projector Πpi ,
one has Πpipi = 0, ∀i = {1, . . . , n}. It follows that

0 = −|P̊i − ξ̊|Πpipi
= Πpiξ −ΠpiR

>P̊i
= Πpiξ −ΠpiR̃

>R̂>P̊i
= Πpiξ −Πpi(I3 − λ̃×)R̂>P̊i +O(|λ̃|2))

= Πpiξ −ΠpiR̂
>P̊i −Πpi(R̂

>P̊i)×λ̃+O(|λ̃|2)

By setting yi := ΠpiR̂
>P̊i one obtains

yi = Πpiξ −Πpi(R̂
>P̊i)×λ̃+O(|λ̃|2) (13)

for i = 1, . . . , n. Now, by defining the system output as y :=
[y>1 , . . . , y

>
n ]>, one easily verifies that the output equation in

(1) is satisfied with

C1 =

−Πp1(R̂>P̊1)×
...

−Πpn(R̂>P̊n)×

 , C2 =

Πp1
...

Πpn


From there, one deduces from (3) and (7) the innovation
terms σR = u1 = −K1(y−C2ξ̂) and σξ = −K2(y−C2ξ̂).

Uniform observability of (A(0, t), C(0, x2(t), t)) then
guarantees the (local) exponential stability of the equilibrium
(R̃, ξ − ξ̂) = (I3, 0). This observability issue is not treated
here due to space limitation, but one may refer to [8] where
it is addressed in relation to the number and possible singular
locations of source points, combined with body motion and
the measurement of the camera linear velocity, either in the
body-fixed frame or in the inertial frame.

C. System output when using Epipolar Constraints in the
case of Unknown Source Points

In the case where the camera pose w.r.t. to the inertial
frame is unknown, alike the inertial coordinates of the source
points, it is not possible to recover the camera pose from the
sole bearing measurements of the source points. However, if
the inertial frame is taken as the initial frame of the camera
(i.e. at time t=0), then the camera pose (R = I3, ξ = 0) is

initially known, by definition of this particular frame. This
entails that, ∀i = {1, . . . , n}, the (constant) unit vector p̊i :=
P̊i

|P̊i|
, which is initially equal to pi, is measured. It is then

possible to estimate future camera poses w.r.t. this frame
by using source points bearing measurements (that do not
depend on the chosen inertial frame). To this aim, one can
exploit the fact that Pi = R>(P̊i − ξ̊) = R>P̊i − ξ, from
which the ith epipolar constraint:

p̊>i Rξ×pi = 0, (i = 1, . . . , n) (14)

is easily deduced. This constraint is typically presented in
the form p̊>i Epi = 0, where E := Rt× (with t := ξ/|ξ|)
is the essential matrix involved in the constraint (14).

From (14), and using (11), one deduces that

0 = −p̊>i R̂R̃ξ×pi
= −p̊>i R̂(I3 + λ̃×)ξ×pi +O(|λ̃|2)

= p̊>i R̂(ξ × pi)×λ̃+ p̊>i R̂pi×ξ +O(|λ̃|2)

= p̊>i R̂(ξ̂ × pi)×λ̃+ p̊>i R̂pi×ξ +O(|λ̃|2) +O(|ξ̃||λ̃|)

Therefore, by defining y as the vector in Rn with zero entries,
the output equation in (1) is satisfied with

C1 =

p̊
>
1 R̂(ξ̂ × p1)×

...
p̊>n R̂(ξ̂ × pn)×

 , C2 =

p̊
>
1 R̂p1×

...
p̊>n R̂pn×


As in the PnP case, one deduces that the innovation terms
are σR = u1 = −K1(y − C2ξ̂) and σξ = −K2(y − C2ξ̂).

The issue of uniform observability of
(A(0, t), C(0, x2(t), t)), whose verification ensures the
local exponential stability of the observer so obtained,
is addressed in [12]. In particular, uniform observability
is proven in the case of three non-aligned source points
provided that the camera’s translational motion is sufficiently
exciting.

IV. OBSERVER DESIGN FOR POSE AND LINEAR
VELOCITY ESTIMATION FROM BEARING AND IMU

MEASUREMENTS

In this section, an extension of the PnP problem, address-
ing the combined estimation of the camera’s pose and of the
camera’s linear velocity, is presented. The material is taken
from [17]. This extension is motivated by a large number of
applications where sensors measuring this velocity directly
are not available. It also contributes to demonstrate the
applicability of the proposed observer design methodology
for a broad range of estimation problems encountered in
practice.

The so-called specific acceleration aB ∈ R3 of the camera,
i.e. the difference between the camera’s linear acceleration
and the gravity acceleration, both expressed in the body-
fixed frame, can be measured by a 3-axis accelerometer. By
definition (and assuming that the accelerometer is fixed to
the camera):

aB = V̇ + Ω×V − gR>eg (15)



with g denoting the gravity constant and eg ∈ S2 denoting
the gravity direction expressed in the inertial frame {I}. In
practice, the estimates of both gravity constant and gravity
direction may be slightly erroneous. This leads to a bias
between the gravity acceleration expressed in the inertial
frame ag := geg and its estimate amg . From experience, a
good estimate of this bias significantly improves the quality
of the camera pose and velocity observer.

Let bg := R>(ag − amg ) denote the gravity bias expressed
in the body-fixed frame {B}. The time-derivative of this
vector satisfies the relation

ḃg = −Ω×bg (16)

so that, in view of (15)

V̇ = −Ω×V +R>amg + bg + aB

Using the first-order approximation (11) of R̃ (= R̂>R)

V̇ = −Ω×V + R̃>R̂>amg + bg + aB

= −Ω×V + (I3−λ̃×)R̂>amg + bg + aB +O(|λ̃|2)

= −Ω×V + b̄g + R̂>amg + aB +O(|λ̃|2)

(17)

with
b̄g := bg + (R̂>amg )×λ̃

Using (12) and the first equation of (7) in the calculation of
the time-derivative of the new bias b̄g , one verifies that

˙̄bg = −Ω×b̄g + (R̂>amg )×σR +O(|λ̃|2) +O(|λ̃||σR|) (18)

In view of (5), (17) and (18), the proposed observer takes
the following form:

˙̂
R = R̂Ω× − R̂σR×
˙̂
ξ = −Ω×ξ̂ + V̂ − σξ
˙̂
V = −Ω×V̂ + ˆ̄bg + R̂>amg + aB − σV
˙̄̂
bg = −Ω×

ˆ̄bg + (R̂>amg )×σR − σb

with initial conditions (R̂(0), ξ̂(0), V̂ (0), ˆ̄bg(0)) ∈ SO(3) ×
R3×R3×R3. As for the innovation terms σR, σξ, σV , σb ∈
R3, they are again derived from the observer design frame-
work.

The bearing measurements of n source points whose
inertial coordinates are known yield the output equations
(13), as for the PnP problem addressed in subsection III-B.

Define the state variable x := [x>1 , x
>
2 ]>, with x1 := λ̃ ∈

B3
2 and x2 := [ξ>, V >, b̄>g ]> ∈ R9, and the output y :=

[y>1 , . . . , y
>
n ]> ∈ R3n, with yi := ΠpiR̂

>P̊i. Then, from
(12), (13) , (17), (18) and the second equation of (5), one
obtains the system equations (1) with

A11 = −Ω×, A21 = 03×9, u1 = σR

A22 =

−Ω× I3 03

03 −Ω× I3

03 03 −Ω×

 , u2 =

 03×1

R̂>amg + aB

(R̂>amg )×σR



C1 =


−Πp1(R̂>P̊1)×

...
−Πpn(R̂>P̊n)×

 , C2 =


Πp1 03 03

...
...

...
Πpn 03 03



The innovation terms, derived from (3) and (4), are

σR = u1 = −K1(y − C2x̂2)

[σ>ξ , σ
>
V , σ

>
b ]> = −K2(y − C2x̂2)

Establishing the uniform observability of the matrix pair
(A(0, t), C(0, x2(t), t)), which in turn guarantees the (local)
uniform exponential stability of the observer, is not a simple
task. It is out of scope of the present paper. However, by
analogy with the PnP problem, explicit conditions of non-
uniform observability are established in [17].

A. Experimental validation

In this subsection the performance of the proposed ob-
server, when using a time-synchronised camera-IMU sys-
tem, is tested experimentally. Details about the experimental
setup, the observer implementation, and tuning measures
are given in [17]. In particular, point-feature detection and
matching operations are performed with the ArUco library
included in OpenCV.

The proposed observer is compared to the popular alge-
braic algorithm solvePnP() in OpenCV, and to the ground-
truth data obtained from an Optitrack motion capture system
MOCAP.

Figure 2 shows the time evolution of the estimated camera
position obtained with the proposed Riccati observer (red),
with solvePnP() (yellow) and with ground truth data (blue).
One observes that the position estimates obtained with the
proposed Riccati observer and the solvePnP() algorithm are
very similar. These estimates are close to the ground-truth
values except for the third component, when the distance
between the camera and the target increases significantly
during the time-interval (85 sec, 140 sec). We attribute this
degradation of the estimates to the low resolution of the
camera in relation to the ArUco points extraction algorithm.

On the other hand, one observes from Figure 3 showing
the time evolution of the estimated and ground-truth attitudes
(represented by roll, pitch and yaw Euler angles) that the
proposed observer outperforms the solvePnP() algorithm,
especially when the camera’s pose changes quickly. More
precisely, when the camera’s motion combines a rapid dis-
placement along the third axis (cf. third subplot of Figure
2) and a fast yaw rotation (cf. third subplot of Figure 3)
during the time-interval (145 sec, 185 sec), the figure shows
that the solvePnP() algorithm switches between two possible
pitch angle solutions.

V. OBSERVER DESIGN FOR LINEAR VELOCITY, GRAVITY
DIRECTION, AND DEPTH ESTIMATION OF A CAMERA

OBSERVING A PLANAR TARGET FROM OPTICAL FLOW
AND IMU MEASUREMENTS

This classical problem has been revisited in [11] by adopt-
ing the proposed observer design framework. A monocular
camera and an IMU provide the measurements needed for
the estimation process. More precisely, it is assumed that
the camera images and IMU are perfectly time synchronised
so that one can extract from consecutive images the optical
flow φ := V/d, with d the distance between the camera



Fig. 2. Camera positions given by the proposed Riccati observer,
solvePnP() algorithm and MOCAP ground truth.

and the observed planar scene, and also the flow divergence
φ⊥ := −ḋ/d (see, e.g., [11] for more explanations). It
is further assumed that the measurements of the angular
velocity Ω and of the specific acceleration aB provided by
the IMU are available at a fast sampling rate.

By denoting s := 1/d, the equations of motion involved
in the observer design are

Ṙ = RΩ×

V̇ = −Ω×V + gR>e3 + aB

ṡ = φ⊥s

(19)

In view of the above equations, the proposed observer has
the following form

˙̂
R = R̂Ω× − σR×R̂
˙̂
V = −Ω×V̂ + gR̂>e3 + aB − σV
˙̂s = φ⊥ŝ− σs

with initial conditions (R̂(0), V̂ (0), ŝ(0)) ∈ SO(3)×R3×R3,
and with σR, σV , σs ∈ R3 the innovation terms to be derived
from the observer design framework, using the measurement
of φ.

Fig. 3. Camera attitudes (Euler angles) given by the proposed Riccati
observer, solvePnP() algorithm and MOCAP ground truth.

The next step consists in transforming the considered
system into the form (1). First, the following attitude error
is considered (instead of (9))

R̃ := RR̂>

whose time-derivative is given by (instead of (10))

˙̃R = R̃σR×

By defining λ̃ as twice the vector part of the unit quaternion
associated with the attitude error matrix R̃, one verifies that

R̃ = I3 + λ̃× +O(|λ̃|2)
˙̃
λ = σR +O(|λ̃||σR|)

(20)

Rewriting the dynamics of V in (19) using the first-order
approximation of R̃, one gets

V̇ = −Ω×V + gR̂>R̃>e3 + aB

= −Ω×V + gR̂>(I3 − λ̃×)e3 + aB +O(|λ̃|2)

= −Ω×V + gR̂>e3×λ̃+ gR̂>e3 + aB +O(|λ̃|2)

= −Ω×V + gR̂>e2λ̃1 − gR̂>e1λ̃2

+ gR̂>e3 + aB +O(|λ̃|2)

(21)



Concerning the measurement of φ (= V
d = V s), one

has

φ = ((V − V̂ ) + V̂ )((s− ŝ) + ŝ)

= V̂ s+ (V − V̂ )ŝ+O(|V − V̂ ||s− ŝ|)
= V̂ s+ (ŝI3)V − V̂ ŝ+O(|V − V̂ ||s− ŝ|)

By defining the system output as y := φ+ V̂ ŝ, the previous
equality rewrites as

y = V̂ s+ (ŝI3)V +O(|V − V̂ ||s− ŝ|) (22)

Let us set x := [x>1 , x
>
2 ]>, with x1 := [λ̃1, λ̃2]> ∈ B2

2

and x2 := [s, V >]> ∈ R4. In view of (21), (22), the third
equation of (19) and the second equation of (20), one obtains
the system equation (1) with

A11 = 02, A21 =

[
0 0

gR̂>e2 −gR̂>e1

]
, u1 = σR

A22 =

[
φ⊥ 01×3

03×1 −Ω×

]
, u2 =

[
0

gR̂>e3 + aB

]
C1 =

[
03×1 03×1

]
, C2 =

[
V̂ ŝI3

]
The innovation terms, derived from (3) and (4), are

σR = u1 = −K1(y − C2x̂2)

[σs, σ
>
V ]> = −K2(y − C2x̂2)

A persistent excitation condition, involving only the cam-
era’s translational motion, whose satisfaction ensures uni-
form observability of the matrix pair (A(0, t), C(0, x2(t), t))
and thus (local) uniform exponential stability of the observer,
is given in [11].

A. Experimental validation

Experimental validations of the proposed observer has
been carried out using a time-synchronised camera-IMU
system. Details about the experimental setup, the observer
implementation and tuning measures are reported in [11].
Ground-truth data are obtained from an Optitrack motion
capture system. The experiment is performed with the camera
looking downward to observe an horizontal textured planar
pattern on the ground. A demo video of this experiment is
available at: https://youtu.be/R09oTjr4s40

The time evolutions of the estimated ground-truth atti-
tudes, linear velocities and depths are shown in Figures 4–
6. During the first 60 seconds, depth, gravity direction (i.e.
roll and pitch Euler angles) and linear velocity estimates
approach the corresponding ground-truth values closely, due
to the satisfaction of condition of persistent excitation. By
contrast, the camera being kept motionless during the time
interval (60 sec, 69 sec), the condition of persistent excitation
is not satisfied and one can observe that the depth estimate
slightly drifts away from the ground-truth value. At the same
time, both gravity direction and linear velocity estimates
remain close to the corresponding ground-truth values. Once
the condition of persistent excitation is again satisfied on the
time interval (69 sec, 89 sec), as a consequence of the camera

Fig. 4. Estimated and ground-truth attitudes represented by roll, pitch and
yaw Euler angles (deg) versus time (s)

Fig. 5. Estimated and ground-truth linear velocity components in body-
fixed frame (m/s) versus time (s)

Fig. 6. Estimated and ground-truth depth inverse (m−1) versus time (s)

motion, the depth estimate rejoins the ground-truth value.
From Figure 4, the yaw angle estimate drifts away from the
ground-truth value. This is expected, and not a shortcoming
of the estimation of the state x. Indeed, the yaw angle error
corresponds to the third component of λ̃ which is not part
of the state. Its estimate, obtained via simple integration of
the gyros, is for this reason imperfect. To summarize, the
reported experiment shows that (practical) convergence of the
gravity direction and linear velocity estimates to the ground-
truth values is always achieved, whereas the convergence of
the depth estimate to the corresponding ground-truth value
is obtained only when the condition of persistent excitation



is satisfied.

VI. CONCLUSIONS

After briefly recalling a deterministic Riccati observer
design framework proposed in [8], which exploits first-order
approximations of a generic class of nonlinear systems, and
formally generalises the multiplicative extended Kalman fil-
ter, the present paper addresses different estimation problems
involving proprioceptive sensors and monocular vision to
illustrate the applicability of the proposed observer design
methodology for a range of estimation problems encountered
in practice. The efficiency of the proposed observers for the
last two problems are illustrated by means of experiments
implementing a time-synchronised camera-IMU system. The
proposed methodology is clearly applicable to many other
practical problems, such as visual odometry (VO) and vi-
sual SLAM (VSLAM). This tutorial also points out the
importance of verifying the satisfaction of adequate uniform
observability conditions in order to ascertain the good con-
ditioning and good performance of the obtained observers.
In this respect, further work to simplify this verification and
render it easier will be valuable.
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