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Optomechanical discrete-variable quantum teleportation scheme

Samuel Pautrel, Zakari Denis, Jérémy Bon, Adrien Borne ®, and Ivan Favero”
Matériaux et Phénomenes Quantiques, Université de Paris, CNRS UMR 7162, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
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‘We propose an experimental protocol to realize discrete-variable quantum teleportation using optomechanical
devices. The photonic polarization superposition state of a single photon is teleported to a phononic superposition
of two micromechanical oscillators by means of photon-phonon entanglement generation and optical Bell state
measurement using two-photon interference. Verification of the protocol is performed by coherent state transfer
between the mechanical devices and light. Simulations show the feasibility of the proposed scheme at millikelvin
temperatures using state-of-the-art gigahertz optomechanical devices.
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I. INTRODUCTION

Quantum teleportation [1] consists in transferring (tele-
porting) an arbitrary quantum state between two objects that
are possibly distinct in nature, and possibly distant from
one another. Quantum teleportation protocols always rely on
entanglement, a resource at the heart of several quantum
technologies, and they have been implemented in a variety
of systems: first with optical photons [2,3], then among
distinct atoms of a molecule [4] or of a linear trap [5-7],
and more recently from a photon to a solid-state spin [8]
and between two solid-state qubits [9,10]. In an effort to
extend these teleportation principles to a macroscopic scale,
protocols were theoretically proposed to transfer quantum
states between light and vibrating mechanical systems, in the
case of continuous variables [11-14]. However, to date there is
no report of optomechanical quantum teleportation following
these propositions, and an experimental gap remains. The
emergence of nanoscale gigahertz optomechanical resonators
[15-17] may allow us to fill this gap, as suggested by recent
experiments in the quantum realm such as the optical entan-
glement of mechanical systems [18] and the test of related
Bell inequalities [19].

In this paper, we introduce a discrete-variable optomechan-
ical quantum teleportation scheme compatible with current
technology. In the present scheme, the state of a single-
photon polarization-encoded qubit is teleported onto a dual-
rail phononic qubit encoded in two mechanical resonators.
Our approach relies on measurement-induced entanglement
in the experimentally relevant weak-coupling and good-cavity
(resolved-sideband) regime, with mechanical systems orig-
inally cooled close to their ground state. We analytically
and numerically model the full protocol, and quantify its
resilience against various sources of noise and disorder. The
calculated efficiencies and fidelities, the latter exceeding 0.9
with realistic parameters, indicate that storing the quantum
information conveyed by a single photon within a long-lasting
mechanical excitation is now an objective at reach.
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II. PRINCIPLE

The scheme we propose uses two identical optomechanical
resonators with an optical resonant frequency w. coupled to
a mechanical mode of angular frequency €2,, with a single-
photon coupling rate gy, placed at millikelvin temperatures
in order to initially reside in their mechanical ground state.
The protocol setup is depicted in Fig. 1. Each resonator is
placed in one arm of a balanced Mach-Zehnder interferom-
eter. The devices are driven with a linearly polarized (say,
horizontally polarized H) laser and the light at the output
of the two arms is recombined on a polarizing beam splitter
(PBS) after rotation of one arm’s polarization with a half-wave
plate (1/2). The resulting light is bandpass filtered with a
high-finesse Fabry-Perot cavity in order to select the photons
scattered at the resonant frequency w, and then directed to
one of the two measurement units involving single-photon
detectors (SPDs), which respectively implement Bell state
measurement and quantum state tomography. The protocol
we present is reminiscent of a former protocol involving ions
[7], and starts with both mechanical resonators in their ground
state (n; = np = 0, where 7 is the phonon number). It consists
of two steps: (i) teleportation of the quantum information from
a photonic qubit to a phononic qubit, and (ii) optical readout
of the teleported state.

In (i) a blue-detuned H-polarized pulse (frequency w, =
w: + 2,,) generates a phonon in one of the two optome-
chanical devices OM; or OM, with low probability via a
cavity-enhanced optomechanical (Raman) interaction (Stokes
process). The creation of such a delocalized mechanical ex-
citation is concomitant with the presence of one photon at
the cavity frequency w, at the output of the interferometer,
after filtering the much stronger blue-detuned pump tone
[18]. In order to erase the which-path information, the optical
cavity frequencies must be as close as possible to maximize
the indistinguishability of their output photons. At this point
and in the ideal case, the two mechanical resonators are
entangled with the optical output of the Mach-Zehnder in a
state proportional to [01V) 4 |10H), where |n;n,P) denotes
the product state with n; phonons in OM;, n; phonons in OM,
and a photon with polarization P = H or V.

©2020 American Physical Society
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FIG. 1. Schematics of the protocol setup with its two steps. A
blue-detuned pulse (1) probabilistically generates a phonon in one
of the two resonators, entangling them with the output optical mode.
After filtering out the pump tone, we interfere the output photon with
an arbitrarily polarized, but otherwise indistinguishable, photon. A
coincidence event on the two SPDs heralds the teleportation (see text
for details). A red-detuned pulse (2) coherently maps the mechanical
state onto a photon whose polarization state is subsequently analyzed
by means of quantum optical tomography.

We then perform a two-photon interference experiment on
a 50:50 beam splitter between the previous scattered photon
and an arbitrarily polarized single photon whose state |P) =
a|H) + B|V) is to be teleported. Assuming these two photons
are spectrally indistinguishable, a coincidence on the two
SPDs at the output ports of the beam splitter indicates the
projection of the bipartite photonic state in the antisymmetric
Bell state |[W ™) = %(|H V) — |VH)) before the beam splitter.
This is a partial canonical Bell state measurement (BSM).
Thus a coincidence event following this blue-detuned pulse
heralds the teleportation of arbitrary amplitudes « and B
into a bipartite dual-rail phononic state encoded on the two
mechanical resonators 1 and 2, |W/% ) = B|10) — «|01) (i).

To retrieve the stored information, we apply (ii) a red-
detuned pulse (frequency w_ = w. — 2,,) to implement a
beam-splitter interaction through cavity-enhanced optome-
chanical (Raman) scattering (anti-Stokes) and coherently map
the mechanical state onto a single photon at w., whose po-
larization state is then analyzed by conventional optical quan-
tum state tomography. If not analyzed, the obtained photon
could be guided to a remote similar experiment in order to
perform teleportation again, propagating the quantum infor-
mation. The mechanical resonators would then act as quantum
memories [20], an approach that appears relevant now that
nanomechanical dissipation mechanisms are well understood
[21] and promise Oxf factors (mechanical quality factor
times frequency) approaching 102 [21,22].

III. MODEL
A. General model and evolution operators

We start from the Hamiltonian for a driven-dissipative
optomechanical system with initial mechanical occupancy
ny < 1, resonant cavity frequency w,, optical linewidth x
dominated by the extrinsic decay rate «., mechanical fre-
quency €2, and mechanical damping rate y,,. The optical

cavity is driven with a laser at frequency w+ = w, £ ,,. The
total Hamiltonian reads:

H = Hy + Hin + Heny + Hyrs (1a)
Hy = hw.a'a + 1Q,b'b (1b)
Hi = —higoa'a(b™ + b) (1c)
Hyre = h(s5e a4 spe™a"), (1d)

where Hi, and H.,, account for the optomechanical interac-
tion and for the environment respectively, and ﬁd,i is the
driving term with |s1| = \/kPy/hws the incoming photon
flux for a laser power P.. H, is the bare Hamiltonian for the
two harmonic oscillators where a (13) is the annihilation op-
erator for the optical (mechanical) mode under consideration.
Starting from the Heisenberg picture, we rotate our operators
with respect to Ho, following Ref. [23]. We then assume to be
in the good-cavity (resolved-sideband) regime, and consider
interaction times t shorter than 27 (n9),,)"" but longer than
2l

27
noYm <K - LKk K Q- )

This allows us to neglect all terms rotating faster than €2,
in the temporal envelope of the cavity field, to ignore the
cavity transient behavior, and to neglect mechanical damping
[23,24]. Since in the experiment photons are filtered around
w, at the resonator output; we focus below on the component
a of the cavity operator evolving close to the cavity frequency
[23,24], which is linked to the input and output of the cavity
through a,, = —&, + +/ka. Neglecting the transient dynam-
ics, the following relations are then obeyed:

&i,out = &in + i\/ 22151 (3)
db .
Dl NG “

under the condition of weak interaction gy < «, w,,. In the
terms on the right, note the implication of l;, a;, for the
drive — and of their adjoints for the drive 4. g+ = Zg%)nC LK
with n,, = W the number of intracavity photons at
frequency w+.

With these approximate relations, we can now model the
effect of blue- and red-detuned pulses with an error that we
checked to be negligible for the investigated parameter space,
when compared to simulations of the dynamics under the
action of the complete Liouvillian. A blue drive pulse of
duration T, with weak power P, implements a squeezing
operator that creates photon-phonon pairs in equal proportion,
while the subsequent red pulse of duration 7_ and weak
power P_ implements a beam-splitter-like interaction convert-
ing phonons into photons at frequency w,, allowing the state
transfer from mechanics to optics. In order to describe these
two sequences, we introduce the following temporal modes
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already considered in Refs. [13,25]:

N 2g:l: ! ! FBal' A ’
Axin(t) = \/e:F§it(€§it = A dt'e™$ ai, (t') (5a)

N 28+ ' =S FRAPN /
A:l:,out(t) - \/eigit(gg’it — e*gil) /(; dt et a:l:,out(t )
(5b)

and look for Aevolution operators lA/i(Ti) thatA satisfy
Asou(Te) = UL (T)Asin(Te)0s(Te)  and  b(Te) =
U (T2)b(0)0+(Ty). As detailed in Appendix A, we find
as a solution for the blue pulse:

0,.(T,) = i tanh AL 57 (0)

1At A . Btk . A A
X (COSh q) 1-A} At in—b (O)b(O)elt<lnhqA+_,"b(0) (6)

with cosh ¢ = exp(g4+ 7). For the red pulse we obtain:

N Y S AN R BHOV(O) itan A . B
U (T_) — eltdn rA*«"”b(O)(COS I") Al A intb (O)b(())ettdn rA_ b (0)
)

with cosr = exp(—g_7_), an expression that strictly coin-
cides with that found in Ref. [25], despite a different ordering
choice for operators (see Appendix A).

B. Application to our protocol

We consider now the experimental setup described in
Fig. 1, featuring two identical optomechanical resonators
OM;, i€ {l1,2} whose mechanical degree of freedom is
initially in a thermal state with equal average occupancy
nop = ngy = (" /&7 _ 1)~ « 1. Possible differences be-
tween the two resonators and their consequences on the per-
formances of the present protocol are discussed in Appendix
C. Since we start in the vacuum state for both optical modes,
the initial total density matrix is

Protin = 100)(00]4,4, ® P} (n0) ® pj'(mo), ®)

where we adopt back a Schrodinger picture (but rotated by
ﬁo) and where A; = Ai’in(T) and l3,- = l;i(O). The first step of
the protocol consists in driving the devices with a blue pulse
that generates a phonon delocalized over the two mechanical
resonators [18]. We apply the evolution operator for a blue
pulse of duration 7'y of strength g, (tunable via laser power)
and obtain the density matrix at the end of the interaction:

Protout = U(T) pron,inU> (T (9a)
0_[:[ — UiAlbl) ® U-(kAZbZ)' (9b)

Note that postselecting on the presence of a photon at the
interferometer output and tracing on the optical modes would
produce a mechanical density matrix close to |01)(01},,,, +
[10)(10[p,5,, such as investigated elsewhere [18]. Here we
instead perform a multiple-photon interference with the op-
tical state to be teleported |®) = «|H) + |V by applying a
perfect 50:50 beam-splitter operator Ups and postselecting the
events where at least one photon goes out of each port. At
this stage, the teleportation (i) is performed. We can compute
the fidelity 7, of the mechanical state with respect to |[W™ )

mech
as well as the probability p, for such a coincidence event to

happen. For the subsequent readout of the teleported state (ii),
we apply a red-detuned pulse of duration 7_ with interaction
strength g_ and trace on the mechanical modes, in cases where
one photon a least was detected. Similarly, we compute the
fidelity F_ of the obtained optical density matrix with respect
to the ideal rotated state |Wgpi) = BIH) — a|V) = —oy0,| D),
as well as the probability p_ that a photon was indeed de-
tected.

IV. NUMERICAL SIMULATIONS

We compute numerically the fidelity and probability of
success for the two steps (i) and (ii) of the protocol, as a
function of the initial occupancy ny and of the interaction
strengths g, 7 and g_7_ for the blue and red pulses. Unless
explicitly specified, we work with real and equal amplitudes
a=p=1/J2.

A. Dependence on the initial phonon occupancy

The results shown in Figs. 2(a) and 2(b) for g, T, /27 =
g_T_/2m =4.9x1073 feature a clear deterioration of the
fidelity as ng increases, for both steps (i) and (ii). Indeed, a
larger initial thermal population of phonons implies a less pure
ground state, an error that propagates to the mechanical state
obtained after teleportation. The counterpart of this degraded
mechanical state is that the probability to obtain coincidences
events after the blue pulse (p.) and to obtain a photon after
the red pulse (p_) also increase, equally drastically. In other
words the probability of the protocol to be completed is
increased, but at the expense of its fidelity. The increase of
P+ can be understood by an approximate analytical treatment
(see Appendix B), while a larger ng also implies that a larger
number of phonons are available for annihilation by the red
pulse, explaining the increase in the probability p_.

The fidelity F_ after step (ii) is larger than the mechanical
fidelity F after step (i), a result that may appear counter-
intuitive at first. Indeed, at the end of step (i), the obtained
mechanical density matrix has multiphonon terms because of
nonzero initial phonon occupancy. Its mapping to an optical
density matrix in step (ii) is not faithful since postselection
on single anti-Stokes photons at w, is performed at that stage.
This reduction of the relevant Hilbert space is accompanied
by a reduction of information, letting single and multiphonon
terms in the mechanical density matrix lead to indistinguish-
able optical contributions. This purifies the obtained optical
state with respect to the mechanical state it was mapped
from. The situation is different for the mechanical Hilbert
space, whose dimensions must be large enough to cover all
significantly populated Fock states, and where the presence of
multiphonon terms decrease the fidelity to the target mechan-
ical state.

B. Dependence on interaction strengths

We now choose an initial phonon occupancy of 1073 in or-
der to operate in a regime of large fidelity, a reachable regime
with very high mechanical frequency resonators and mil-
likelvin temperatures, and set g_T_/2m = 4.9x10~3 while
we sweep g, T,. Conversely, we set 3,7, /2m =4.9%x1073
and sweep g_T_. The results are shown on Figs. 2(c)-2(f).
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FIG. 2. (a) Fidelities F.. and (b) probabilities of success p. after the two steps of the protocol as a function of the initial phonon occupancy,

for a fixed .. T /27 of 4.9x 1073, Blue dashed lines: F, of the dual-rail-encoded phononic state with respect to the rotated ideal state |,

rot
llt?ech>’

and probability p, of successful coincidence event; red solid lines: F_ of the photon state obtained after state transfer with respect to |\IJ{,";“),
and probability p_. (c) Fidelities F. and (d) probabilities of success p. as a function of g, 7., /27 while g_T_/27 is set to 4.9x 107 and n
to 1073, (e) Fidelity F_ and (f) probability p_ as a function of g_7_ /2 while g, T, /27 is set to 4.9x 103 and ng to 1073,

As expected, a too strong blue pulse triggers multiple
phonon generation that deteriorates the fidelity, while increas-
ing the probability of success of the first step. The results of
Figs. 2(e) and 2(f) show that we can increase the red pulse
strength in order to increase the probability of success of the
second step, while conserving a decent associated fidelity.
This is of course in the ideal case in absence of transient
heating during the pulse, which would populate higher phonon
Fock states [26]. In such case, a strong red-detuned pulse
could annihilate more than one phonon, inducing random
multiphoton states before the optical tomography. Note that
the requirement of small g, 7, combined with 7 > 27K
translates into the experimentally relevant weak coupling

regime go./Mcx <K K.

C. Experimental feasibility

Let us now discuss the feasibility of this scheme with
concrete experimental parameters, compatible with recent
realizations [18-20,26]:

Q,, /27 [GHz] T [mK] «./27w [MHz] go/2m [kHz] Ti [ns] n.s

5.0 20 200 700 10 100

and use the three following dimensionless parameters relevant
to the protocol:

no 8+Ty /27 §-T_/2m

3x1072 4.9x1073 4.9%x1073

which lead to expectations for the fidelities and probabilities
of success of the two steps:

Fi F- P [%] p- %] pp- (%]
0.87 0.93 33 7.5 0.25

The condition that the pulse duration is longer than 27« ~!
is respected by a factor of only five in this example, under-
lining the need for good optical cavities. At equal interaction
strength g7, the pulse can be made longer at the expense of
a lower intracavity photon number, which will degrade the
signal to noise ratio (see Appendix C). Still, these results show
that our protocol can lead to relatively high fidelities already
with realistic parameters.

V. CONCLUSION

We have described an optomechanical discrete variable
quantum teleportation scheme that is readily implementable
with state-of-the-art optomechanical devices. Based on a

063820-4



OPTOMECHANICAL DISCRETE-VARIABLE QUANTUM ...

PHYSICAL REVIEW A 101, 063820 (2020)

heralded probabilistic principle, this protocol enables telepor-
tation, mechanical storage and further readout of an arbitrary
qubit state originally encoded on a single photon. The protocol
is expected to allow high fidelity, not only for the storage of
the qubit in the mechanical memory (F;), but also for the
retrieval of the single-photon flying qubit at the output, with
an expected fidelity F_ reaching 0.93. These features pave the
way for future experiments in the realm of quantum communi-
cations and memories with optomechanics, a technology that
is yet to be explored in this context.

Note added. Recently, a related manuscript was posted
[27].
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APPENDIX A: EVOLUTION OPERATORS OF OUR MODEL

Starting from the Langevin equations [Eqgs. (3) and (4)]
and from the definition of the temporal mode [Egs. (5a) and
(5b)], whose exponential shape is an approximation valid in
the adiabatic regime go < k, we obtain below the evolution
operators U. By integrating Egs. (3) and (4), we reexpress
AAiyom and Ei:

Asou(t) = €31 A4 (1) + iv/eF=! (e8! — e=2:1)b(0)
(A1)

bi(t) = e™¥b(0) + iy/etk1 (e8+! — e~8D)AL (). (A2)

The procedure to express the evolution operator for
the blue pulse (i) obeying A, ou(t) = U] ()AL 1)U, (1)
and by (1) = UL ()b(0)U,(r) follows closely a work by
Truax [28]. By defining cosh(q) = ¢+’ and sinh(q) =
A28+t — 1, we show that the unitary operator Uy(t) =
explig(A+ in(t)b(0) + H.c)] realizes the desired rotation. By
writing Uf_(t) = exp B, we have indeed:

A+,oul(t) = eBA+,in (t )E_B

1 7 A A A
=) BB, .. [B. A+ in(D]] (A3)
keN k times
= COSh(Q)A+,in @)+ l'Sinh(q)éT(())’ (Ad)

where we used tthlt the nested commutators equal qkfiﬁ in(®)
for k even and ig*b"(0) for k odd. Similarly:

b, (1) = cosh(¢)b(0) + i smh(q)A+ @)

retrieving indeed Eqgs. (A1) and (A2).
We express now U+(t) in a more convenient man-
ner. We note that U, (t) = explig(L, + L )] wlth L, =

LT = Ak (t)b (0), such that by defining Ly = %[l +

(A5)

Protin = 0)(0l5, ® [0)(014, ® o}y (n0) ® P}y (no)

pyi(no) = (1= p) Y pi|

n;

+ - (t)A+ in(?) + bt (0)b+ (0)], we obtain three generators of
the su(1, 1) Lie algebra (L, L+] = 2Ly, [Lo, Ls] = £Ly).
From Eq. (23b) of Ref. [28], one obtains the evolution op-
erator for the blue pulse:

U,(t) = i tanh AL ;,57(0)

L inAin=b'(©)5(0) ,itanh gA. 1nb(0)

x (coshg)™'~Asan (A6)

The procedure to obtain the red pulse (ii) evolu-
tion operator is similar and starts by defining cos(r) =
e %" and sin(r) = v/1 — e=2&-. Let us show that U_(r) =
exp[ir(A:m(t)lAJ(O) + H.c.)] realizes the desired rotation
A_ou() = ULOA_in()0_(t) and b_(t) = U (1)b(0)U_().
Writing U'@t)= exp B, we have:

A_oult) = LA m(r)e—’§
= Z B.....[B,A_w®l (A7)
kEN k times
_ (=DF 24 (=DF JIaEYS
=> [ G A + it bO)
keN
(A8)
= cos(r)A_ (1) + i sin(r)h(0) (A9)
b_(t) = cos(r)b(0) + isin(rA_ i (1). (A10)
Again, U_ (t)_exp[zr(L+ +L.)] but this time
the  operators L+ =I' = AT ln(t)b 0), fLo= f,g =

%[A:in(t )A,,m(t) — l;(O)b*(O)] are three generators of the

su(2) Lie algebra ([L_, L+] = —2Lo, [Lo, L+] = £L4). Then

from Eq. (23a) of Ref. [28], one has:

A in+bt (O)b(()) itan rA_ bt ©)
(Al 1)

0_(t) ltdn rAt mb(O)(COS r)

APPENDIX B: APPROACHED ANALYTICAL
CALCULATION

We develop an approached analytical description of the
proposed protocol, providing an explicit expression of the
mechanical density matrix after the first pulse in the simplified
case where the detectors are photon-number resolving. We
compute the probability for a coincidence event to happen,
adding explanations to the results of Fig. 2. We then treat the
red pulse and describe the contribution of dominant terms.

1. Blue pulse

We drop the + in this blue-detuned section. We start from
the initial total optomechanical density matrix describing the
two mechanical modes b; as well as the two optical modes A;:

(BI)

nl| Pi = n()l/(l + nOl) (BZ)
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and apply to each OM resonator the blue pulse evolution operator of duration 7', allowing for various ¢; and ny;.

1 =pDd —p2) Z

0" P Ay, o, 1y, b 1y, DI b, Iy, LIy, 15, I, 4 B3
(cosh q1 cosh g ) P P2 Ay na, Ly by Ly D)V byny + Lyng + D)L bym + 1, ma + L) (B3)

Prot,out =

m.i’lz,[],lz,[;,lé

with A(ny, no, Iy, b, I}, 13) = (itanh g;)" (i tanh g2)" (—i tanh g, )/ (=i tanh g,)5  / @Y feadb)l JOELE JUebBl g —

I'ny! b'ny! I{'ng! 15y !
pi cosh qi_2|ll, l, ny, ny) is the state with /; photons at @, and n; phonons at €2,, in the resonator OM;.
After conditioning on the detection of one (and only one) photon with the projector C = (|01){(01]4,4, + [10){10]4,4,) ® 1,1,
and tracing on the optical modes, we obtain the normalized bipartite mechanical state:

tanh’>g,  tanh® ¢, >_l

cond= 1—p 1—p —n]—nz<
P = =pA=p) Y p" p T—p) T a=p»

x [tanh® g (ny + Dlny + 1, m2)(n + 1, ny| + tanh® ga(ny + 1)lny, ny + 1) (ny, ny + 111, (B4)

This last state corresponds to the situation investigated in Ref. [18]. We now treat the Bell state measurement. We restart from the
2 *

unconditioned total density matrix after blue pulse and tensor product it with the to-be-teleported density matrix p, = ((‘fi'ﬁ “"ﬁﬁz)

describing a photonic qubit in the H/V basis.
In order to condition on coincidences, i.e., on the Bell state |V ™) = %(|HV) — |VH)) = 4. (JHO1) — [V10)) we employ

2
the following conditioning operator, which acts before the Bell measurement beam splitter:

K = L[|HO1)(HO1| + [V10)(V10| — |[HO1)(V10] — [V10)(HO1|] ® L,5,. (B5)

After tracing on the optical modes, we obtain the unnormalized mechanical density matrix conditioned to a successful
coincidence event:

cond,coin — (1 - pl)(l - p2)
2(cosh g cosh ¢ )?

> 5" Wy, m)) (g, )| (B6)

np,ny

with |W(ny, ny)) = Btanh g;+/ny + 1|ny + 1, np) — atanh go+/ny + 1|1y, np + 1). The matrix must then be normalized:

(1 —p)A = pa) and T — |B|? tanh? g, |a|? tanh? g,
2(cosh g cosh ¢»)? A=p)*A—p) A =p)>0—p)

Setting g = ¢, and p; = p,, we observe that the product ET is an increasing function of p, hence of ny, which explains the
results of Fig. 2. Finally, the normalized mechanical density matrix is:

Tr[pe"din] = B with 2 (B7)

peondeon® = Z 1" PR W (ny, n2)) (W(ny, o). (B8)

np,ny

2. Red pulse

For the red pulse, we compute the effect of the evolution operator on a generic mechanical state with the optical modes in the
vacuum state:

U0, 0, ny, np) = Z F(y, byny,m)|ly, b,ny — 1,y — b) (B9)
Li<ny,L<ny
ny ny (- ligs 153 Vl]! I’lz!
F(ly,l,ny, ny) = cosr' cosry*(itanry)" (i tan ry) « Iy YL (B10)
11— L)yt 2 — 2)i!

Such that the generic term in a density matrix evolves as:
010, 0, n1, n2)(0, 0,y my| U (B11)

= > > F.bon.n)F( Bnhnh) . bony = hong = D)L B.nh = 1 = ). (B12)

h<ny, LSy [ <, 1<y

We apply this formula to the four terms of |0, 0) ® |W(n;, n2))(¥(n, nz)| ® (0, 0] for each (n;, ny) in Eq. (B8) before
conditioning on one output photon with the projector C = (|01)(01]4 4, + [10){10]4,4,) ® Ip,1,. Tracing on the mechanical
modes leads to the final optical density matrix, which is analyzed by tomography at the end of the protocol. As an example, the
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action of U on the dominant term of Eq. (B8) (n; = n, = 0) finally results in the following optical density matrix:

Trineeh [010, 0) @ [W(0, 0))(W(0, 0)] & (0, 0[]

= {|F (0,0, 1,0)]*|8|* tanh® g; + |F (0, 0, 0, 1)|*|o|* tanh* g>}|00) (00| + |F (1, 0, 1, 0)|*| B]* tanh* g;10)(10]
+|F(0, 1,0, 1)|*|er|* tanh? ¢,|01) (01| — F (1,0, 1,0)F*(0, 1, 0, 1)Ba* tanh ¢, tanh ¢»|10) (01|

—F*(1,0,1,0)F(0, 1,0, 1)B*« tanh g, tanh ¢»]|01)(10].

(B13)

We recall that in this notation |[10) = |H) and |01) = |V). Projecting on the nonvacuum state removes the first line and

assuming (r; = ry, q1 = ¢q2) leaves us with a density matrix proportional to: (_‘f;‘a

_lf‘oé*) = 0,0,0.0,0, in the H/V basis. The

calculation for the next term (n; = 1, n, = 0) leads to the following result:

Trmeen[U10, 0, W(1, 0))(0, 0, W(1, 0)[T**"7]

= {2|F (0, 0,2, 0)]*|8]* tanh? ¢, + |F (0, 0, 1, 1)|*|a|* tanh? ¢2}100) (00|

parasitic term

+ (2IF (1,0,2,0)]*|B|* tanh® ¢, + [F (1,0, 1, 1)|*|ee|* tanh® g, ) [10)(10] + |F (0, 1, 1, 1)|*|er|* tanh® g2]01)(01]

— /2Ba* tanh gy tanh ¢, F (1, 0,2, 0)F*(0, 1, 1, 1)]10)(01| — ~/28*« tanh ¢ tanh ¢, F (0, 1, 1, 1)F*(1, 0, 2, 0)]01)(10]
+2|F(2,0,2,0)*|8]* tanh* ¢1120)(20| + |F (1, 1, 1, 1)|*|er|* tanh? g |11)(11]

— /2Ba* tanh gy tanh ¢, F (2, 0,2, 0)F*(1, 1, 1, 1)]20)(11| — ~/28*a tanh g tanh ¢ F (1, 1, 1, 1)F*(2, 0, 2, 0)|11)(20],

(B14)

where multiphoton states are present that degrade the computed fidelity. A parasitic term proportional to |«|? induces a finite
matrix element |10) (10| even if 8 = 0. This makes the fidelity state dependent as discussed in Appendix C.

3. Realistic projectors

The above calculation is simplified since we considered ideal photon-number resolving detectors, allowing us to express K
with only two-photon states. The numerical simulations presented in the main text apply instead a 50:50 beam-splitter interaction
before conditioning on coincidence events in the four output modes of the Bell state measurement beam splitter (two polarization
modes H/V x two spatial modes L/R) with the following projector, which acts after the beam splitter:

A~

K =

Tty Rury — (1 = Naeteer)*10000)(0000] — (1 = Naerect)  »_, 100i)(00i | +1ij00)(ijO0] | & Ty,

(B15)
(6,)#(0,0)

where we took into account the detector’s dark count rate I'ga. Let I're, be the repetition rate of the protocol, a click on a detector
has a probability ngetect = [gark/(I'dark + T'rep) to be a false positive. Similarly the right projector to use during the red pulse is
C' = [Ta,4, — (1 = Netect)|00) (00[] ® T, in order to allow for multiple-photon states to be treated by the tomography unit with

noisy detectors.

APPENDIX C: TECHNICAL CHALLENGES

1. Noise equivalent phonon number

As shown in Fig. 2 high fidelities are attained for low
interaction strengths g.7. For fixed device parameters g
and «, there is hence an upper bound to the product n.7T%.
In addition a minimal n. is required, which prevents from
arbitrarily increasing T.. This is shown by an analysis of
the noise-equivalent phonon number nygp, a figure already
introduced in past work [26]:

Tgark + T r  \
nngp = dark + pump K7l dark +A(K m) (C1)

Tsp - Akngine 2K.80

[

with Tgq the dark-count rate of the photodetectors, I'pump
the arrival rate of pump photons that are not properly filtered
and leak to the detection, I"gp the sideband photon rate, A the
attenuation factor from the filter and n the total measurement
efficiency, including optical losses from the resonator to the
detectors and detector efficiency. In Fig. 3, we plot nygp as a
function of n, and n for the parameters of Sec. IV C, but for
the optical coupling, which we assume to be critical ¥ = 2«,.
We consider A = —100 dB and I'g,x = 100 Hz.

With such strong filtering but limited detection efficiency,
a value of n. > 100 is required to maintain nygp below 0.1.
Combining this constraint with the bound on n.7T explains
why T cannot be increased arbitrarily, hence our choice of
Ty =10 ns.
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FIG. 3. Noise-equivalent phonon number as a function of intra-
cavity photon number 7. and total optical detection efficiency 7. The
black star corresponds to the parameters considered in the text and
ensures that nygp < 0.1.

2. Waiting time and probability of success in experiments

We wish to estimate the minimal waiting time between
two successful completions of the protocol, i.e., a coinci-
dence event during step (i) followed by a detection event on

(@)
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-0.00010 / m— o1 =No2 =0.01 \
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0.01 o p2 / L
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| * PpA
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I /7
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FIG. 4. Fidelity after the red pulse as a function of the initial state
to teleport | (6, ¢)) = cos(8/2)|H) + €' sin(8/2)|V), Vo. For all
plots, 3.7 /2w = 4.9x1073.
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- —_—————
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FIG. 5. (a) Fidelities and (b) probabilities of success of the two
steps of the protocol with respect to C. The parameters are those
considered in the text.

one of the detectors during step (ii). We impose a maximal
duration Togr < v, ! between the blue and the red pulse, in
order to protect the coherence of the generated mechanical
state. Numerical simulations show indeed that the fidelity
of the mechanical state generated by the blue pulse decays
approximately like e~/ over the first few y, !. But in
order to ensure that the devices are at equilibrium with the
thermal bath, we also wait at least Tiox (typically more than
afew y, 1) between two realizations of the protocol. The time
taken to realize the protocol and reinitialize the setup is then
Tper = Ty + Tyt + T- + Tielax. The probability of success of
the whole protocol (teleportation and read out) iS psyccess =
(Msps - N+P+ - n—p—), with n. the linear efficiencies of the two
subsequent optical measurements associated to steps (i) and
(ii) and 7, the efficiency of the single-photon source whose
photon states are to be teleported. Since Ty is dominated
by Tielax, One can think of reducing the mechanical quality
of the devices in order to decrease Tper/Psuccess> but this will
affect their memory capabilities. Since small values of py
are required to ensure large fidelities, it is crucial to develop
efficient filtering and optical detection paths.

3. Nonidentical resonators

In practice, the two nanofabricated optomechanical devices
will present differences in their exact dimensions, typically at
the part per thousand level or less [29], producing a detuning
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in their optical and mechanical frequencies. Differences in
their optical and/or mechanical dissipation can also be sizable.
Part of this problem can be compensated by driving in an
asymmetric way [18]. One can shift the drive frequency to
match the mechanical sideband and balance the drive power
in the two arms in order to compensate for different g3/«
ratio. However, a difference in €2, implies that the two
mechanical degrees of freedom precess at different speeds
during the off time between pulses, producing an evolutive
dephasing. Moreover the need for indistinguishable photons
after scattering in both devices puts a central constraint on
their cavity frequency: |w.; — w¢2| should be as low as pos-
sible. These aspects can be treated by the use of postprocess
techniques to reduce the resonator-to-resonator disorder, such
as the photoelectrochemical tuning technique demonstrated in
nano-optomechanical devices [29].

4. Dependence on « and 8

An interesting feature is that all states on the Bloch sphere
are not equally handled by the protocol. Indeed, even for
equal initial phonon occupancy of the two disks, equatorial
states are retrieved with a better fidelity after the red pulse
[see Fig. 4(a)]. If the state to teleport sits on the pole (¢ = 1,
B = 0 for instance), the two resonators must be placed in the
phononic state |01). There should be zero horizontal com-
ponent in the polarization of the output photon after the red
pulse, which is not possible since the true phononic occupancy
of OM; is always larger than 0. In contrast, teleporting an
equatorial state |a| = |B| is easier because the photon we

expect has equal horizontal and vertical polarization com-
ponents, which is naturally achieved in our balanced Mach-
Zehnder configuration. This subtle effect is larger as the mean
initial phonon occupancy of the disks grows, and the states
that are easier to read out shift away from the equator as we
introduce an imbalance in the initial occupancy of the two
disks [see Fig. 4(b)].

5. Importance for |®) to be in a single-photon state

One could imagine using a strongly attenuated coherent
source instead of a single-photon source for the Bell measure-
ment, but this would strongly impact the implementation of
the protocol. In fact, such attenuated coherent state (with mean
photon occupancy < 1) overlaps mostly with the vacuum
state, hence produces most of the time no useful coincidence.
Additionally a coincidence event in our measurement does not
mean necessarily that one photon from the source and one
photon from the Mach-Zehnder interferometer were success-
fully projected in the antisymmetric Bell state | ™) before the
beam splitter. Coincidence events also take place when a wave
packet containing several photons exits the interferometer and
impinges on the Bell measurement beam splitter, postselecting
undesirable multiexcitation events. This can be appreciated
writing |®(C)) = /1 — C|0) + ~/C(a|H) + B|V)) and look-
ing at the fidelities and probabilities of success with respect
to C in Fig. 5. As expected, F is degraded at low C, but p_
increases because events where more than one phonon was
created were selected during (i). This stresses the advantage
of using an ideal single-photon source as input of the protocol.
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