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Vector addition systems with states, or equivalently vector addition systems, or Petri nets are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem is reachability: whether from a given initial configuration there exists a sequence of valid execution steps that reaches a given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of computation.

In this paper, we survey results about the reachability problem focusing on the general problem. We also show how a recent paper about the reachability problem in fixed dimension combined with vector addition systems with states weakly computing Grzegorczyk hierarchy provides a logspace reduction of the general reachability problem to the bounded case. This result, not included in the original paper due to a lack of space shows that the reachability problem can obviously be decided by a deterministic brute-force exploration. We provide perspectives based on this observation.

Vector Addition Systems with States

Vector addition systems with states [START_REF] Hopcroft | On the Reachability Problem for 5-Dimensional Vector Addition Systems[END_REF], or equivalently vector addition systems [START_REF] Karp | Parallel Program Schemata[END_REF], or Petri nets are one of the most popular formal methods for the representation and the analysis of parallel processes [START_REF] Esparza | Decidability Issues for Petri Nets -a Survey[END_REF]. The central algorithmic problem is reachability: whether from a given initial configuration there exists a sequence of valid execution steps that reaches a given final configuration. Many computational problems reduce to this reachability problem in logic, complexity, realtime systems, protocols [START_REF] Hack | Decidability questions for Petri nets[END_REF][START_REF] Schmitz | The complexity of reachability in vector addition systems[END_REF]. A vector addition system with states (VASS for short) of dimension 𝑑 ∈ N is a tuple 𝑉 = (𝑄, 𝑞 ini , ì 𝑐 ini ,𝑇 ) where 𝑄 is a non-empty finite set of states, 𝑞 ini ∈ 𝑄 is the initial state, ì 𝑐 ini ∈ N 𝑑 is the initial vector, and 𝑇 is a finite set of transitions in 𝑄 × Z 𝑑 × 𝑄. A configuration is a pair (𝑞, ì 𝑥) ∈ 𝑄 × N 𝑑 denoted as 𝑞( ì 𝑥) in the sequel. Configuration 𝑞 ini (ì 𝑐 ini ) is called the initial configuration. The semantics is defined over configurations as follows. With a transition 𝑡 ∈ 𝑇 we associate the binary relation 𝜋 -→ 𝑞( ì 𝑦) if there exists a sequence 𝑐 0 , . . . , 𝑐 𝑘 of configurations such that

𝑝 ( ì 𝑥) = 𝑐 0 𝑡 1 -→ 𝑐 1 • • • 𝑡 𝑘 -→ 𝑐 𝑘 = 𝑞( ì 𝑦) .
A configuration 𝑐 is said to be reachable if 𝑞 ini (ì 𝑐 ini )

𝜋

-→ 𝑐 for some word 𝜋 ∈ 𝑇 * . The set of reachable configurations is called the reachability set. We focus in this paper on the reachability problem. This problem consists in deciding the membership of configurations in reachability sets.

Example 1.1. In 1979, Hopcroft and Pansiot [START_REF] Hopcroft | On the Reachability Problem for 5-Dimensional Vector Addition Systems[END_REF] introduced the VASS depicted bellow. This VASS has a loop on state 𝑝 and another loop on state 𝑞. Intuitively, iterating the loop on state 𝑝 transfers the content of the first counter to the second counter whereas iterating the loop on state 𝑞 transfers and multiplies by two the content of the second counter to the first counter. The third counter is incremented each time we come back to state 𝑝 from 𝑞. In [START_REF] Hopcroft | On the Reachability Problem for 5-Dimensional Vector Addition Systems[END_REF] the reachability set from the initial configuration 𝑝 (1, 0, 0) is proved equal to the following set:

{𝑝 (𝑥 1 , 𝑥 2 , 𝑥 3 ) | 𝑥 1 +𝑥 2 ≤ 2 𝑥 3 }∪{𝑞(𝑥 1 , 𝑥 2 , 𝑥 3 ) | 𝑥 1 +2𝑥 2 ≤ 2 𝑥 3 +1 } 𝑝 𝑞 (0, 0, 0) (-1, 1, 0) (0, 0, 1) (2, -1, 0)
2 Algorithms for the Reachability Problem

After an incomplete proof by Sacerdote and Tenney [START_REF] Sacerdote | The Decidability of the Reachability Problem for Vector Addition Systems (Preliminary Version)[END_REF], decidability of the problem was established by Mayr [START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF][START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF], whose proof was then simplified by Kosaraju [START_REF] Kosaraju | Decidability of Reachability in Vector Addition Systems (Preliminary Version)[END_REF]. Building on the further refinements made by Lambert in the 1990s [START_REF] Lambert | A Structure to Decide Reachability in Petri Nets[END_REF], there has been substantial progress over the past ten years ultimately proving that the reachability problem can be decided with a simple algorithm based on Presburger inductive invariants [START_REF] Leroux | The General Vector Addition System Reachability Problem by Presburger Inductive Invariants[END_REF][START_REF] Leroux | Vector addition system reachability problem: a short self-contained proof[END_REF][START_REF] Leroux | Vector Addition Systems Reachability Problem (A Simpler Solution)[END_REF].

A Since we can decide if a sequence (𝜙 𝑞 ) 𝑞 ∈𝑄 of Presburger formulas denotes an inductive invariant with classical algorithms deciding the Presburger arithmetic, the previous theorem shows that a brute-force non-deterministic exploration of the reachability set and sequences of Presburger formulas provides a simple algorithm for deciding the reachability problem. Whereas the proof in [START_REF] Leroux | The General Vector Addition System Reachability Problem by Presburger Inductive Invariants[END_REF] was based on a refinement of Lambert's algorithm, in [START_REF] Leroux | Vector addition system reachability problem: a short self-contained proof[END_REF] a direct proof based on a well quasi order over the executions is provided. This proof was then simplified a bit more in a paper [START_REF] Leroux | Vector Addition Systems Reachability Problem (A Simpler Solution)[END_REF] that received a best paper award at Alan Turing centenary conference in 2012. In those two last papers, the Presburer formulas denoting inductive invariants are obtained by proving that reachability sets are almost semilinear, a class of sets that extends the class of semilinear sets as follows.

A periodic set is a subset ì 𝑃 ⊆ N 𝑑 such that ì 0 ∈ ì 𝑃 and ì 𝑃 + ì 𝑃 ⊆ ì 𝑃. A periodic set ì 𝑃 is said to be finitely generated if there exist vectors ì 𝑝 1 , . . . , ì 𝑝 𝑘 ∈ ì 𝑃 such that ì 𝑃 = N ì 𝑝 1 + • • • + N ì 𝑝 𝑘 . A periodic set ì 𝑃 is said to be asymptotically definable if Q ≥0 ì 𝑃 is definable in fo(Q ≥0 , +).
Observe that finitely generated periodic sets are asymptotically definable.

Example 2.2. The periodic set

ì 𝑃 = {(𝑝 1 , 𝑝 2 ) ∈ N 2 | 𝑝 2 ≤ 𝑝 1 ≤ 2 𝑝 2 -1} is depicted on the right. This set is inspired from the previous example 1.1. Observe that Q ≥0 ì 𝑃 is the set { ì 0} ∪ {(𝑥 1 , 𝑥 2 ) ∈ Q 2 >0 | 𝑥 2 ≤ 𝑥 1 } which is definable in fo(Q ≥0 , +).
Let us recall that a set ì 𝑋 ⊆ N 𝑑 is definable in the Presburger arithmetic if, and only if, it is semilinear, i.e. a finite union of linear sets ì 𝑏 + ì 𝑃 where ì 𝑏 ∈ N 𝑑 and ì 𝑃 ⊆ N 𝑑 is a finitely generated periodic set [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF]. The class of almost semilinear sets [START_REF] Leroux | Vector addition system reachability problem: a short self-contained proof[END_REF] is obtained from the definition of semilinear sets by weakening the finiteness condition on the considered periodic sets. More formally, an almost semilinear set is a finite union of sets of the form ì 𝑏 + ì 𝑃 where ì 𝑏 ∈ Z 𝑑 and ì 𝑃 ⊆ Z 𝑑 is an asymptotically definable periodic set.

As expected, a set 𝐶 of configurations is said to be almost semilinear if it can be written as 𝑞 ∈𝑄 {𝑞} × ì 𝑋 𝑞 where ì 𝑋 𝑞 is almost semilinear for every state 𝑞 ∈ 𝑄. Based on the following geometrical property, in [START_REF] Leroux | Vector addition system reachability problem: a short self-contained proof[END_REF][START_REF] Leroux | Vector Addition Systems Reachability Problem (A Simpler Solution)[END_REF] it is proved that Presburger inductive invariants can be obtained by overapproximating almost semilinear sets by semilinear sets. [START_REF] Leroux | Vector addition system reachability problem: a short self-contained proof[END_REF][START_REF] Leroux | Vector Addition Systems Reachability Problem (A Simpler Solution)[END_REF]). Intersection of reachability sets with Presburger sets are almost semilinear.

Theorem 2.3 ([

Presburger Reachability Sets

When the reachability set is definable in the Presburger arithmetic, the VASS is said to be Presburger. The existence of sequences of Presburger formulas denoting inductive invariants witnessing the non reachability of a final configuration is trivial in that case since then the reachability set itself is a Presburger inductive invariant. In particular any sequence of Presburger formulas denoting this set is a witness of non reachability for any configuration outside of the reachability set. The problem of deciding if a VASS is Presburger was studied thirty years ago independently by Dirk Hauschildt during his PhD [START_REF] Hauschildt | Semilinearity of the Reachability Set is Decidable for Petri Nets[END_REF] and Jean-Luc Lambert. Unfortunately, these two works were never published. Moreover, from these works, it is difficult to deduce a simple algorithm for computing Presburger formulas denoting the reachability set of Presburger VASSes. In [START_REF] Leroux | Presburger Vector Addition Systems[END_REF] a simple algorithm for computing such a formula based on acceleration techniques is given. Intuitively, acceleration techniques consist in computing the reachability set of a system by computing symbolically the effect of iterating cycles of the system. More formally, a path of a VASS 𝑉 is a word 𝜋 ∈ 𝑇 * of the form (𝑞 0 , ì 𝑎 1 , 𝑞 1 ) . . . (𝑞 𝑘-1 , ì 𝑎 𝑘 , 𝑞 𝑘 ) where 𝑞 0 , . . . , 𝑞 𝑘 are states in 𝑄 and ì 𝑎 1 , . . . , ì 𝑎 𝑘 are vectors in Z 𝑑 . When 𝑞 0 = 𝑞 𝑘 , the path 𝜋 is called a cycle and it is denoted as 𝜃 in the sequel. A linear path scheme [START_REF] Leroux | On Flatness for 2-Dimensional Vector Addition Systems with States[END_REF] is a language 𝐿 ⊆ 𝑇 * of paths given by a regular expression of the form 𝜋 0 𝜃 * 1 𝜋 1 . . . 𝜃 * 𝑘 𝜋 𝑘 where 𝜋 0 𝜃 1 𝜋 1 . . . 𝜃 𝑘 𝜋 𝑘 is a path for some cycles 𝜃 1 , . . . , 𝜃 𝑘 .

A semilinear path scheme is a finite union of linear path schemes.

A set 𝐶 included in the reachability set of a VASS 𝑉 is called flat if there exists a semilinear path scheme 𝐿 such that such that for any configuration 𝑐 ∈ 𝐶 there exists 𝜋 ∈ 𝐿 such that:

𝑞 ini (ì 𝑐 ini ) 𝜋 -→ 𝑐
A VASS is said to be flat if its reachability set is flat.

In [START_REF] Finkel | How to Compose Presburger-Accelerations: Applications to Broadcast Protocols[END_REF] heuristics and algorithms for finding (good) semilinear path schemes are provided, and in [START_REF] Leroux | Flat counter automata almost everywhere![END_REF] many subclasses of VASSes with Presburger reachability sets are shown to be flat. In [START_REF] Leroux | Presburger Vector Addition Systems[END_REF], this observation is extended as follows. It follows that the classes of flat VASSes and Presburger VASSes coincide. In particular, the tool FAST [START_REF] Bardin | FASTer Acceleration of Counter Automata in Practice[END_REF][START_REF] Bardin | FAST: Fast Acceleration of Symbolikc Transition Systems[END_REF][START_REF] Bardin | FAST Extended Release[END_REF] implemented for analyzing Minsky machines, a class of systems strictly extending VASSes with undecidable reachability problem, is complete and always terminate on the computation of the reachability set of Presburger VASSes.

Reversible Reachability Problem

A variant of the VASS reachability problem recently found out many applications in population protocols [START_REF] Esparza | Verification of population protocols[END_REF], trace logics [START_REF] Leroux | A Relational Trace Logic for Vector Addition Systems with Application to Context-Freeness[END_REF], universality problems related to structural liveness problems [START_REF] Jancar | Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States[END_REF], and in solving the home state problem [START_REF] Best | Existence of home states in Petri nets is decidable[END_REF], a long standing open problem. The variant, called the reversible reachability problem, consists in deciding if two configurations are mutually reachable one from the other.

An instance of the reversible reachability problem can naturally be reduced to two instances of the reachability problem. However, the reversible reachability problem is simplier than the general reachability problem. In fact, in [START_REF] Leroux | Vector Addition System Reversible Reachability Problem[END_REF] the reversible reachability problem is shown to be exponentialspace complete by proving that if two configurations are mutually reachable, then the two configurations belong to a cycle of the (infinite) reachability graph with a length at most doubly-exponential with respect to the size in binary of the two configurations. In [START_REF] Leroux | Distance Between Mutually Reachable Petri Net Configurations[END_REF] this result is refined by focusing on the minimal length of such a cycle, called the distance, with respect to the Euclidean distance between those two configurations. In that paper, it is proved that the distance is linearly bounded by the Euclidean distance upto a doubly-exponential constant that only depends on the VASS. This last result find out a recent application in the computational analysis of an efficient algorithm deciding the VASS coverability problem [START_REF] Finkel | Minimal Coverability Tree Construction Made Complete and Efficient[END_REF].

Complexity of the Reachability Problem

Concerning the complexity of the reachability problem, over the past half century, it has remained unsettled. Lipton's landmark result that the reachability problem requires exponential space [START_REF] Cardoza | Exponential Space Complete Problems for Petri Nets and Commutative Semigroups: Preliminary Report[END_REF] has remained the state of the art on lower bounds for over 40 years until it was recently improved to a tower complexity lower-bound in a paper [START_REF] Czerwiński | The Reachability Problem for Petri Nets is not Elementary[END_REF] that received a best paper award at the STOC conference in 2019. This result was obtained by introducing the model of counter programs that manipulates two kinds of counters: unbounded counters with increment and decrement operations, and counters bounded by a fix parameter 𝑘 that can be incremented, decremented, but also tested to zero and to the maximal value 𝑘. This model is equivalent to the VASSes since the counters that are tested can be hardcoded in the VASS control states.

In that paper, a counter program implementing the following equality is exhibited:

𝑛 𝑘-1 𝑖=1 𝑖 + 1 𝑖 = 𝑛𝑘
Intuitively, the counter program first non-deterministically initializes two unbounded counters 𝑥, 𝑦 to the same positive integer 𝑛 and then iterates loops that implement weak multiplications of 𝑥 by the rational numbers 𝑖+1 𝑖 where 𝑖 is a bounded counter that ranges over all the values in {1, . . . , 𝑘 -1} (see for instance the cycle on state 𝑞 in example 1.1 that implements a weak multiplication by 2). By a weak way, we mean that the computed value can be less than or equal to the expected one, but there exists at least one execution that produces the expected maximal value. Thanks to the previous equality, we get a way to check that all the multiplications produce the maximal values. In fact, the counter program implementing the equality finally checks the multiplications with a last loop where counters 𝑥 and 𝑦 are respectively decreased simultaneously by 𝑘 and 1. If all the multiplications produced the maximal values, then just before this last loop, 𝑥 and 𝑦 are respectively equal to 𝑛𝑘 and 𝑛. It follows that the last loop succeeds in reaching the zero value on 𝑦. Otherwise, the value of 𝑥 is to small. This trick is the central idea to implement strong multiplication by a rational number. With some additional techniques explained in [START_REF] Czerwiński | The Reachability Problem for Petri Nets is not Elementary[END_REF], a tower complexity lowerbound for the reachability problem is obtained.

In 2015, a first complexity upperbound of the reachability problem was provided [START_REF] Leroux | Demystifying Reachability in Vector Addition Systems[END_REF] more than thirty years after the presentation of the algorithm introduced by Mayr [START_REF] Kosaraju | Decidability of Reachability in Vector Addition Systems (Preliminary Version)[END_REF][START_REF] Lambert | A Structure to Decide Reachability in Petri Nets[END_REF][START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF][START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF]. The upperbound given in that paper is cubic Ackermannian. This complexity is obtained by analyzing the computation complexity of the Mayr algorithm. By refining this algorithm and by introducing a new ranking function proving the termination of this refinement, an Ackermannian complexity upperbound was obtained in [START_REF] Leroux | Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension[END_REF]. This paper also showed that the reachability problem in fixed dimension is primitive recursive by bounding the length of executions thanks to the Grzegorczyk hierarchy.

More formally, the Grzegorczyk hierarchy [START_REF] Grzegorczyk | Some classes of recursive functions[END_REF][START_REF] Löb | Hierarchies of number-theoretic functions[END_REF] is defined thanks to a family (𝐹 𝑑 ) 𝑑 ∈N of functions 𝐹 𝑑 : N → N such that every primitive recursive function is asymptotically bounded by some function 𝐹 𝑑 . This family is defined by 𝐹 0 (𝑛) def = 𝑛+1 and inductively by 𝐹 𝑑+1 (𝑛) The previous result provides a bound on the minimal length of a word 𝜋 ∈ 𝑇 * to reach a final configuration. In the next section, we show that this bound is sufficient to reduce in logspace the reachability problem to the bounded case. We did not include that result in [START_REF] Leroux | Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension[END_REF] due to a lack of space.

def = 𝐹 𝑛+1 𝑑 (𝑛) for every 𝑛, 𝑑 ∈ N. Observe that 𝐹 1 (𝑛) = 2𝑛 + 1, 𝐹 2 (𝑛) = 2 𝑛+1 (𝑛 + 1) -1,

Bounded Reachability Problem

When the reachability set of a VASS is finite, the VASS is said to be bounded. The boundedness problem that consists in deciding if a VASS encoded in binary is bounded is known to be exponential space complete since 1978 [START_REF] Cardoza | Exponential Space Complete Problems for Petri Nets and Commutative Semigroups: Preliminary Report[END_REF][START_REF] Rackoff | The Covering and Boundedness Problems for Vector Addition Systems[END_REF]. The reachability problem for bounded VASSes can be decided by a deterministic brute-force exploration in an obvious way. The computational complexity of such an algorithm is known to be Ackermannian [START_REF] Mcaloon | Petri Nets and Large Finite Sets[END_REF]. Moreover, due to the family of VASSes introduced in [START_REF] Mayr | The Complexity of the Finite Containment Problem for Petri Nets[END_REF] this bound is optimal. More precisely, in 1981, Mayr and Meyer have exhibited that for each 𝑑 ∈ N we can compute in logspace a VASS of dimension 𝑑 + 1 that weakly computes the function 𝐹 𝑑 .

Based on this family of VASSes and theorem 5.1, let us observe that the reachability problem for VASSes is logspace reducible to the bounded case. In fact, given an instance of the VASS reachability problem, i.e a VASS 𝑉 of dimension 𝑑 and a final configuration 𝑐 out , we can compute in logspace a bounded VASS 𝑉 ′ of dimension 2𝑑 + 5 and a final configuration 𝑐 ′ out such that 𝑐 out is reachable for 𝑉 if, and only if, 𝑐 ′ out is reachable in 𝑉 ′ . Intuitively, VASS 𝑉 ′ first weakly computes value 𝐹 𝑑 (𝑐𝑛) as a budget thanks to the VASS introduced by Mayr and Meyer that weakly computes 𝐹 𝑑 , and then 𝑉 ′ simulates 𝑉 by decrementing that budget on each simulation step.

It follows that the reachability problem for general VASSes can be solved with a simple deterministic brute-force algorithm. Moreover, it follows that reachability problem for bounded VASSes is a central problem. In fact, the reachability problem for bounded VASSes is equivalent to the reachability problem for general VASSes.

Conclusion

We shown in this paper that the reachability problem for bounded VASSes is a central problem since the general reachability problem is logspace inter-reducible to the bounded case. The reachability problem for bounded VASSes is thus a reachability-complete problem.

This reachability problem for bounded VASSes can obviously be decided with a deterministic brute-force exploration algorithm. For the time being, this algorithm is the best known algorithm. In fact, the algorithm introduced by Mayr [START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF][START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF], and simplified by Kosaraju [START_REF] Kosaraju | Decidability of Reachability in Vector Addition Systems (Preliminary Version)[END_REF] and Lambert [START_REF] Lambert | A Structure to Decide Reachability in Petri Nets[END_REF], as well as the new algorithm introduced in [START_REF] Leroux | Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension[END_REF] fails in improving a brute-force exploration of the reachability set when the VASS is bounded. Intuitively, those algorithms tries to find out cycles that can pump counters to arbitrarily large values. When the reachability set is finite, there is no cycle of that kind. In order to overcome that problem, the notion of iteration schemes were recently introduced in [START_REF] Leroux | Polynomial Vector Addition Systems With States[END_REF]. Iteration schemes provide a way to characterize counters that can be pumped to a large, but not arbitrary large value. Finding out a way to use iteration schemes in a reachability algorithm is an open problem.

Finding a better algorithm should be a great breakthrough for understanding the complexity of the reachability problem. The non-deterministic brute-force algorithm based on Presburger inductive invariants seems to be a good candidate. However, the minimal size of formulas denting Presburger inductive invariants is just knwon to be bounded by an Ackermannian function.

Naturally, if the reachability problem is Ackermanniancomplete, any attempt to improve the complexity upperbound of the reachability problem will fail. However those attempt should provide us with insights on how to improve the tower complexity lowerbound. Notice that in that case, the recent algorithm introduced in [START_REF] Leroux | Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension[END_REF] is optimal, and there is no better algorithm (in the worst case) for solving the reachability problem of bounded VASSes than a brute-force exploration of the reachability set.

  𝑡 = (𝑝, ì 𝑦 -ì 𝑥, 𝑞), where soustraction is performed componentwise. Given a finite word 𝜋 = 𝑡 1 . . . 𝑡 𝑘 ∈ 𝑇 * of transitions, we also define the binary relation 𝜋 -→ over the configurations defined by 𝑝 ( ì 𝑥)

Theorem 3 . 1 (

 31 [START_REF] Leroux | Presburger Vector Addition Systems[END_REF]). Presburger sets included in VASSes reachability sets are flat.

  set 𝐶 of configurations is called an inductive invariant for a VASS if it contains the initial configuration and if 𝑐 𝑐 ′ for some 𝑐 ∈ 𝐶 and 𝑡 ∈ 𝑇 implies 𝑐 ′ ∈ 𝐶. A set 𝐶 of configurations in 𝑄 × N 𝑑 is said to be Presburger if there exists a sequence (𝜙 𝑞 ) 𝑞 ∈𝑄 of formulas 𝜙 𝑞 in the Presburger arithmetic fo(N, +) denoting sets ì 𝑋 𝑞 ⊆ N 𝑑 such that 𝐶 =

	𝑡 -→
	𝑞 ∈𝑄 {𝑞} × ì 𝑋 𝑞 .
	Theorem 2.1 ([20]). A configuration 𝑐 out is not in the reach-
	ability set of a VASS 𝑉 if, and only if, there exists a Presburger
	inductive invariant for 𝑉 that does not contain 𝑐 out .

  and 𝐹 3 (𝑛) grows as a tower of 𝑛 exponentials. It follows that 𝐹 3 is a non elementary function since it eventually exceeds any fixed iteration of the exponential function. An Ackermannian function, denoted as 𝐹 𝜔 is defined thanks to the diagonal extraction 𝐹 𝜔 (𝑛) 𝐹 𝑛+1 (𝑛) for every 𝑛 ∈ N. This function is non primitive recursive.Theorem 5.1 ([29]). There exists a constant 𝑐 such that for every VASS 𝑉 = (𝑄, 𝑞 ini , ì 𝑐 ini ,𝑇 ) of dimension 𝑑, and for every reachable configuration 𝑞 out (ì 𝑐 out ) there exists a word 𝜋 ∈ 𝑇 * such that 𝑞 ini (ì 𝑐 ini ) 𝑞 out (ì 𝑐 out ) with |𝜋 | ≤ 𝐹 𝑑+4 (𝑐𝑛) where 𝑛 is the minimal natual number such that:• |𝑄 | ≤ 𝑛, • ì 𝑐 ini , ì 𝑐 out ∈ {0, . . . ,𝑛} 𝑑 , and • ì 𝑎 ∈ {-𝑛, . . . , 𝑛} 𝑑 for every (𝑝, ì 𝑎, 𝑞) ∈ 𝑇 .

def = 𝜋 -→
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