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Abstract
Vector addition systems with states, or equivalently vector

addition systems, or Petri nets are a long established model

of concurrency with extensive applications in modelling

and analysis of hardware, software and database systems,

as well as chemical, biological and business processes. The

central algorithmic problem is reachability: whether from a

given initial configuration there exists a sequence of valid

execution steps that reaches a given final configuration. The

complexity of the problem has remained unsettled since the

1960s, and it is one of the most prominent open questions in

the theory of computation.

In this paper, we survey results about the reachability prob-

lem focusing on the general problem. We also show how a re-

cent paper about the reachability problem in fixed dimension

combined with vector addition systems with states weakly

computing Grzegorczyk hierarchy provides a logspace reduc-

tion of the general reachability problem to the bounded case.

This result, not included in the original paper due to a lack

of space shows that the reachability problem can obviously

be decided by a deterministic brute-force exploration. We

provide perspectives based on this observation.
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1 Vector Addition Systems with States
Vector addition systems with states [15], or equivalently vec-

tor addition systems [17], or Petri nets are one of the most

popular formal methods for the representation and the analy-

sis of parallel processes [8]. The central algorithmic problem

is reachability: whether from a given initial configuration

there exists a sequence of valid execution steps that reaches

a given final configuration. Many computational problems

reduce to this reachability problem in logic, complexity, real-

time systems, protocols [13, 39].

A vector addition system with states (VASS for short) of

dimension 𝑑 ∈ N is a tuple 𝑉 = (𝑄,𝑞ini, ®𝑐ini,𝑇 ) where 𝑄 is

a non-empty finite set of states, 𝑞ini ∈ 𝑄 is the initial state,
®𝑐ini ∈ N𝑑 is the initial vector, and𝑇 is a finite set of transitions
in 𝑄 × Z𝑑 ×𝑄 . A configuration is a pair (𝑞, ®𝑥) ∈ 𝑄 × N𝑑 de-

noted as 𝑞( ®𝑥) in the sequel. Configuration 𝑞ini (®𝑐ini) is called
the initial configuration. The semantics is defined over config-
urations as follows. With a transition 𝑡 ∈ 𝑇 we associate the

binary relation

𝑡−→ over the configurations by 𝑝 ( ®𝑥) 𝑡−→ 𝑞( ®𝑦) if
𝑡 = (𝑝, ®𝑦− ®𝑥, 𝑞), where soustraction is performed component-

wise. Given a finite word 𝜋 = 𝑡1 . . . 𝑡𝑘 ∈ 𝑇 ∗
of transitions, we

also define the binary relation

𝜋−→ over the configurations

defined by 𝑝 ( ®𝑥) 𝜋−→ 𝑞( ®𝑦) if there exists a sequence 𝑐0, . . . , 𝑐𝑘
of configurations such that

𝑝 ( ®𝑥) = 𝑐0
𝑡1−→ 𝑐1 · · ·

𝑡𝑘−→ 𝑐𝑘 = 𝑞( ®𝑦) .

A configuration 𝑐 is said to be reachable if 𝑞ini (®𝑐ini)
𝜋−→ 𝑐

for some word 𝜋 ∈ 𝑇 ∗
. The set of reachable configurations

is called the reachability set. We focus in this paper on the

reachability problem. This problem consists in deciding the

membership of configurations in reachability sets.

Example 1.1. In 1979, Hopcroft and Pansiot [15] introduced

the VASS depicted bellow. This VASS has a loop on state 𝑝

and another loop on state 𝑞. Intuitively, iterating the loop on

state 𝑝 transfers the content of the first counter to the second

counter whereas iterating the loop on state 𝑞 transfers and

multiplies by two the content of the second counter to the

first counter. The third counter is incremented each time

we come back to state 𝑝 from 𝑞. In [15] the reachability set

from the initial configuration 𝑝 (1, 0, 0) is proved equal to the
following set:

{𝑝 (𝑥1, 𝑥2, 𝑥3) | 𝑥1+𝑥2 ≤ 2
𝑥3 }∪{𝑞(𝑥1, 𝑥2, 𝑥3) | 𝑥1+2𝑥2 ≤ 2

𝑥3+1}
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𝑝 𝑞

(0, 0, 0)

(−1, 1, 0)
(0, 0, 1)

(2,−1, 0)

2 Algorithms for the Reachability Problem
After an incomplete proof by Sacerdote and Tenney [38],

decidability of the problem was established by Mayr [33, 34],

whose proof was then simplified by Kosaraju [18]. Building

on the further refinementsmade by Lambert in the 1990s [19],

there has been substantial progress over the past ten years

ultimately proving that the reachability problem can be de-

cided with a simple algorithm based on Presburger inductive

invariants [20–22].

A set 𝐶 of configurations is called an inductive invariant
for a VASS if it contains the initial configuration and if 𝑐

𝑡−→
𝑐 ′ for some 𝑐 ∈ 𝐶 and 𝑡 ∈ 𝑇 implies 𝑐 ′ ∈ 𝐶 . A set 𝐶 of

configurations in 𝑄 × N𝑑 is said to be Presburger if there
exists a sequence (𝜙𝑞)𝑞∈𝑄 of formulas 𝜙𝑞 in the Presburger
arithmetic fo(N, +) denoting sets ®𝑋𝑞 ⊆ N𝑑 such that 𝐶 =⋃

𝑞∈𝑄 {𝑞} × ®𝑋𝑞 .

Theorem 2.1 ([20]). A configuration 𝑐out is not in the reach-
ability set of a VASS 𝑉 if, and only if, there exists a Presburger
inductive invariant for 𝑉 that does not contain 𝑐out .

Since we can decide if a sequence (𝜙𝑞)𝑞∈𝑄 of Presburger

formulas denotes an inductive invariant with classical al-

gorithms deciding the Presburger arithmetic, the previous

theorem shows that a brute-force non-deterministic explo-

ration of the reachability set and sequences of Presburger

formulas provides a simple algorithm for deciding the reach-

ability problem. Whereas the proof in [20] was based on a

refinement of Lambert’s algorithm, in [21] a direct proof

based on a well quasi order over the executions is provided.

This proof was then simplified a bit more in a paper [22]

that received a best paper award at Alan Turing centenary

conference in 2012. In those two last papers, the Presburer

formulas denoting inductive invariants are obtained by prov-

ing that reachability sets are almost semilinear, a class of sets
that extends the class of semilinear sets as follows.

A periodic set is a subset ®𝑃 ⊆ N𝑑 such that ®0 ∈ ®𝑃 and ®𝑃 +
®𝑃 ⊆ ®𝑃 . A periodic set ®𝑃 is said to be finitely generated if there

exist vectors ®𝑝1, . . . , ®𝑝𝑘 ∈ ®𝑃 such that ®𝑃 = N®𝑝1 + · · · +N®𝑝𝑘 . A
periodic set ®𝑃 is said to be asymptotically definable if Q≥0 ®𝑃
is definable in fo(Q≥0, +). Observe that finitely generated

periodic sets are asymptotically definable.

Example 2.2. The periodic set ®𝑃 = {(𝑝1, 𝑝2) ∈ N2 | 𝑝2 ≤
𝑝1 ≤ 2

𝑝2 − 1} is depicted on the right. This set is inspired

from the previous example 1.1. Observe that Q≥0 ®𝑃 is the

set {®0} ∪ {(𝑥1, 𝑥2) ∈ Q2

>0 | 𝑥2 ≤ 𝑥1} which is definable in

fo(Q≥0, +).

Let us recall that a set ®𝑋 ⊆ N𝑑 is definable in the Pres-

burger arithmetic if, and only if, it is semilinear, i.e. a finite
union of linear sets ®𝑏 + ®𝑃 where

®𝑏 ∈ N𝑑 and ®𝑃 ⊆ N𝑑 is a

finitely generated periodic set [11]. The class of almost semi-
linear sets [21] is obtained from the definition of semilinear

sets by weakening the finiteness condition on the consid-

ered periodic sets. More formally, an almost semilinear set
is a finite union of sets of the form

®𝑏 + ®𝑃 where
®𝑏 ∈ Z𝑑 and

®𝑃 ⊆ Z𝑑 is an asymptotically definable periodic set.

As expected, a set 𝐶 of configurations is said to be almost
semilinear if it can be written as

⋃
𝑞∈𝑄 {𝑞} × ®𝑋𝑞 where ®𝑋𝑞

is almost semilinear for every state 𝑞 ∈ 𝑄 . Based on the

following geometrical property, in [21, 22] it is proved that

Presburger inductive invariants can be obtained by over-

approximating almost semilinear sets by semilinear sets.

Theorem 2.3 ([21, 22]). Intersection of reachability sets with
Presburger sets are almost semilinear.

3 Presburger Reachability Sets
When the reachability set is definable in the Presburger arith-

metic, the VASS is said to be Presburger. The existence of

sequences of Presburger formulas denoting inductive invari-

ants witnessing the non reachability of a final configuration

is trivial in that case since then the reachability set itself is a

Presburger inductive invariant. In particular any sequence

of Presburger formulas denoting this set is a witness of non

reachability for any configuration outside of the reachability

set. The problem of deciding if a VASS is Presburger was

studied thirty years ago independently by Dirk Hauschildt

during his PhD[14] and Jean-Luc Lambert. Unfortunately,

these two works were never published. Moreover, from these

works, it is difficult to deduce a simple algorithm for com-

puting Presburger formulas denoting the reachability set of

Presburger VASSes. In [23] a simple algorithm for computing

such a formula based on acceleration techniques is given.

Intuitively, acceleration techniques consist in computing the

reachability set of a system by computing symbolically the

effect of iterating cycles of the system.

More formally, a path of a VASS𝑉 is a word 𝜋 ∈ 𝑇 ∗
of the

form (𝑞0, ®𝑎1, 𝑞1) . . . (𝑞𝑘−1, ®𝑎𝑘 , 𝑞𝑘 ) where 𝑞0, . . . , 𝑞𝑘 are states

in 𝑄 and ®𝑎1, . . . , ®𝑎𝑘 are vectors in Z𝑑 . When 𝑞0 = 𝑞𝑘 , the

path 𝜋 is called a cycle and it is denoted as \ in the sequel.

A linear path scheme [30] is a language 𝐿 ⊆ 𝑇 ∗
of paths

given by a regular expression of the form 𝜋0\
∗
1
𝜋1 . . . \

∗
𝑘
𝜋𝑘
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where 𝜋0\1𝜋1 . . . \𝑘𝜋𝑘 is a path for some cycles \1, . . . , \𝑘 .

A semilinear path scheme is a finite union of linear path

schemes.

A set 𝐶 included in the reachability set of a VASS 𝑉 is

called flat if there exists a semilinear path scheme 𝐿 such

that such that for any configuration 𝑐 ∈ 𝐶 there exists 𝜋 ∈ 𝐿

such that:

𝑞ini (®𝑐ini)
𝜋−→ 𝑐

A VASS is said to be flat if its reachability set is flat.

In [10] heuristics and algorithms for finding (good) semi-

linear path schemes are provided, and in [31] many sub-

classes of VASSeswith Presburger reachability sets are shown

to be flat. In [23], this observation is extended as follows.

Theorem3.1 ([23]). Presburger sets included in VASSes reach-
ability sets are flat.

It follows that the classes of flat VASSes and Presburger

VASSes coincide. In particular, the tool FAST [1–3] imple-

mented for analyzing Minsky machines, a class of systems

strictly extending VASSeswith undecidable reachability prob-

lem, is complete and always terminate on the computation

of the reachability set of Presburger VASSes.

4 Reversible Reachability Problem
A variant of the VASS reachability problem recently found

out many applications in population protocols [7], trace log-

ics [27], universality problems related to structural liveness

problems [16], and in solving the home state problem [4], a

long standing open problem. The variant, called the reversible
reachability problem, consists in deciding if two configura-

tions are mutually reachable one from the other.

An instance of the reversible reachability problem can nat-

urally be reduced to two instances of the reachability prob-

lem. However, the reversible reachability problem is simplier

than the general reachability problem. In fact, in [24] the

reversible reachability problem is shown to be exponential-

space complete by proving that if two configurations are

mutually reachable, then the two configurations belong to

a cycle of the (infinite) reachability graph with a length at

most doubly-exponential with respect to the size in binary

of the two configurations. In [26] this result is refined by

focusing on the minimal length of such a cycle, called the

distance, with respect to the Euclidean distance between

those two configurations. In that paper, it is proved that the

distance is linearly bounded by the Euclidean distance up-

to a doubly-exponential constant that only depends on the

VASS. This last result find out a recent application in the

computational analysis of an efficient algorithm deciding the

VASS coverability problem [9].

5 Complexity of the Reachability Problem
Concerning the complexity of the reachability problem, over

the past half century, it has remained unsettled. Lipton’s

landmark result that the reachability problem requires expo-

nential space [5] has remained the state of the art on lower

bounds for over 40 years until it was recently improved to a

tower complexity lower-bound in a paper [6] that received a

best paper award at the STOC conference in 2019. This result

was obtained by introducing the model of counter programs
that manipulates two kinds of counters: unbounded coun-

ters with increment and decrement operations, and counters

bounded by a fix parameter 𝑘 that can be incremented, decre-

mented, but also tested to zero and to the maximal value 𝑘 .

This model is equivalent to the VASSes since the counters

that are tested can be hardcoded in the VASS control states.

In that paper, a counter program implementing the fol-

lowing equality is exhibited:

𝑛

𝑘−1∏
𝑖=1

𝑖 + 1

𝑖
= 𝑛𝑘

Intuitively, the counter program first non-deterministically

initializes two unbounded counters 𝑥,𝑦 to the same posi-

tive integer 𝑛 and then iterates loops that implement weak

multiplications of 𝑥 by the rational numbers
𝑖+1
𝑖

where 𝑖

is a bounded counter that ranges over all the values in

{1, . . . , 𝑘 − 1} (see for instance the cycle on state 𝑞 in ex-

ample 1.1 that implements a weak multiplication by 2). By

a weak way, we mean that the computed value can be less

than or equal to the expected one, but there exists at least

one execution that produces the expected maximal value.

Thanks to the previous equality, we get away to check that all

the multiplications produce the maximal values. In fact, the

counter program implementing the equality finally checks

the multiplications with a last loop where counters 𝑥 and 𝑦

are respectively decreased simultaneously by 𝑘 and 1. If all

the multiplications produced the maximal values, then just

before this last loop, 𝑥 and 𝑦 are respectively equal to 𝑛𝑘 and

𝑛. It follows that the last loop succeeds in reaching the zero

value on 𝑦. Otherwise, the value of 𝑥 is to small. This trick

is the central idea to implement strong multiplication by a

rational number. With some additional techniques explained

in [6], a tower complexity lowerbound for the reachability

problem is obtained.

In 2015, a first complexity upperbound of the reachability

problem was provided [28] more than thirty years after the

presentation of the algorithm introduced by Mayr [18, 19,

33, 34]. The upperbound given in that paper is cubic Ack-

ermannian. This complexity is obtained by analyzing the

computation complexity of the Mayr algorithm. By refining

this algorithm and by introducing a new ranking function

proving the termination of this refinement, an Ackermannian

complexity upperboundwas obtained in [29]. This paper also

showed that the reachability problem in fixed dimension is

primitive recursive by bounding the length of executions

thanks to the Grzegorczyk hierarchy.
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More formally, the Grzegorczyk hierarchy [12, 32] is de-

fined thanks to a family (𝐹𝑑 )𝑑∈N of functions 𝐹𝑑 : N → N
such that every primitive recursive function is asymptoti-

cally bounded by some function 𝐹𝑑 . This family is defined by

𝐹0 (𝑛)
def

= 𝑛+1 and inductively by 𝐹𝑑+1 (𝑛)
def

= 𝐹𝑛+1
𝑑

(𝑛) for every
𝑛,𝑑 ∈ N. Observe that 𝐹1 (𝑛) = 2𝑛+1, 𝐹2 (𝑛) = 2

𝑛+1 (𝑛+1) −1,

and 𝐹3 (𝑛) grows as a tower of 𝑛 exponentials. It follows that

𝐹3 is a non elementary function since it eventually exceeds

any fixed iteration of the exponential function. An Acker-
mannian function, denoted as 𝐹𝜔 is defined thanks to the

diagonal extraction 𝐹𝜔 (𝑛)
def

= 𝐹𝑛+1 (𝑛) for every 𝑛 ∈ N. This
function is non primitive recursive.

Theorem 5.1 ([29]). There exists a constant 𝑐 such that for
every VASS 𝑉 = (𝑄,𝑞ini, ®𝑐ini,𝑇 ) of dimension 𝑑 , and for every
reachable configuration 𝑞out (®𝑐out) there exists a word 𝜋 ∈ 𝑇 ∗

such that 𝑞ini (®𝑐ini)
𝜋−→ 𝑞out (®𝑐out) with |𝜋 | ≤ 𝐹𝑑+4 (𝑐𝑛) where 𝑛

is the minimal natual number such that:
• |𝑄 | ≤ 𝑛,
• ®𝑐ini, ®𝑐out ∈ {0, . . . , 𝑛}𝑑 , and
• ®𝑎 ∈ {−𝑛, . . . , 𝑛}𝑑 for every (𝑝, ®𝑎, 𝑞) ∈ 𝑇 .

The previous result provides a bound on the minimal

length of a word 𝜋 ∈ 𝑇 ∗
to reach a final configuration. In the

next section, we show that this bound is sufficient to reduce

in logspace the reachability problem to the bounded case.

We did not include that result in [29] due to a lack of space.

6 Bounded Reachability Problem
When the reachability set of a VASS is finite, the VASS is

said to be bounded. The boundedness problem that consists

in deciding if a VASS encoded in binary is bounded is known

to be exponential space complete since 1978 [5, 37]. The

reachability problem for bounded VASSes can be decided

by a deterministic brute-force exploration in an obvious

way. The computational complexity of such an algorithm is

known to be Ackermannian [36]. Moreover, due to the family

of VASSes introduced in [35] this bound is optimal. More

precisely, in 1981, Mayr and Meyer have exhibited that for

each 𝑑 ∈ Nwe can compute in logspace a VASS of dimension

𝑑 + 1 that weakly computes the function 𝐹𝑑 .

Based on this family of VASSes and theorem 5.1, let us

observe that the reachability problem for VASSes is logspace

reducible to the bounded case. In fact, given an instance of

the VASS reachability problem, i.e a VASS 𝑉 of dimension 𝑑

and a final configuration 𝑐out , we can compute in logspace a

bounded VASS 𝑉 ′
of dimension 2𝑑 + 5 and a final configura-

tion 𝑐 ′out such that 𝑐out is reachable for𝑉 if, and only if, 𝑐 ′out is
reachable in 𝑉 ′

. Intuitively, VASS 𝑉 ′
first weakly computes

value 𝐹𝑑 (𝑐𝑛) as a budget thanks to the VASS introduced by

Mayr and Meyer that weakly computes 𝐹𝑑 , and then 𝑉 ′
sim-

ulates 𝑉 by decrementing that budget on each simulation

step.

It follows that the reachability problem for general VASSes

can be solved with a simple deterministic brute-force algo-

rithm. Moreover, it follows that reachability problem for

bounded VASSes is a central problem. In fact, the reachability

problem for bounded VASSes is equivalent to the reachability

problem for general VASSes.

7 Conclusion
We shown in this paper that the reachability problem for

bounded VASSes is a central problem since the general reach-

ability problem is logspace inter-reducible to the bounded

case. The reachability problem for bounded VASSes is thus a

reachability-complete problem.

This reachability problem for bounded VASSes can ob-

viously be decided with a deterministic brute-force explo-

ration algorithm. For the time being, this algorithm is the

best known algorithm. In fact, the algorithm introduced by

Mayr [33, 34], and simplified by Kosaraju [18] and Lam-

bert [19], as well as the new algorithm introduced in [29] fails

in improving a brute-force exploration of the reachability

set when the VASS is bounded. Intuitively, those algorithms

tries to find out cycles that can pump counters to arbitrarily

large values. When the reachability set is finite, there is no

cycle of that kind. In order to overcome that problem, the

notion of iteration schemes were recently introduced in [25].

Iteration schemes provide a way to characterize counters

that can be pumped to a large, but not arbitrary large value.

Finding out a way to use iteration schemes in a reachability

algorithm is an open problem.

Finding a better algorithm should be a great breakthrough

for understanding the complexity of the reachability prob-

lem. The non-deterministic brute-force algorithm based on

Presburger inductive invariants seems to be a good candidate.

However, the minimal size of formulas denting Presburger

inductive invariants is just knwon to be bounded by an Ack-

ermannian function.

Naturally, if the reachability problem is Ackermannian-

complete, any attempt to improve the complexity upper-

bound of the reachability problem will fail. However those

attempt should provide us with insights on how to improve

the tower complexity lowerbound. Notice that in that case,

the recent algorithm introduced in [29] is optimal, and there

is no better algorithm (in the worst case) for solving the

reachability problem of bounded VASSes than a brute-force

exploration of the reachability set.
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