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Relative pose estimation from bearing measurements of three unknown source points

Minh-Duc Hua, Simone De Marco, Tarek Hamel and Randal W. Beard

Abstract— This paper unveils a novel discovery that the
full relative pose of a monocular camera moving in a three
dimensional space can be estimated exploiting bearing measure-
ments of only 3 unknown source points (together with velocity
measurements) without any additional knowledge if the camera
translational motion is sufficiently exciting. The epipolar con-
straint commonly used in Computer Vision algebraic algorithms
for the determination of the so-called essential matrix (all of
them require at least 5 source points) is here exploited in the
design of the proposed Riccati observer for pose estimation.
One remarkable feature of this work is the determination of
an explicit persistence of excitation condition that guarantees
uniform observability and, subsequently, (local) exponential
stability of the proposed observer. Convincing simulationresults
are provided to support the proposed approach.

I. I NTRODUCTION

Estimating camera motion from a video sequence has
many applications in robotics including target tracking, vi-
sual odometry, and 3D scene reconstruction. One method to
estimate motion from a video sequence is to calculate the
essential matrix between consecutive frames. The essential
matrix relates the homogeneous image coordinates between
frames using the epipolar constraint. After the essential
matrix has been determined, it can be decomposed into
a rotation and a normalized translation to determine the
relative motion of the camera between frames. In order to
be robust to noise and feature mismatches, the essential
matrix is typically estimated by generating a large number
of hypotheses from five-point minimum subsets of matching
features, and selecting the best hypothesis using either Ran-
dom Sample Consensus (RANSAC) [4] or Least Median of
Squares (LMedS) [10].

State of the art methods calculate essential matrix hypothe-
ses directly from each five-point minimum subset. One of
the best known methods is Nister’s algorithm [9]. Nister
showed that for five matching points, there are potentially
ten essential matrices that satisfy the constraints, each corre-
sponding to a real root of a tenth-order polynomial generated
from the data. There are many open-source implementa-
tions of Nister’s five-point algorithm including OpenCV’s
findEssentialMat function [1]. However, constructing,
solving, and extracting the essential matrix from this tenth-
order polynomial is complex and can be computationally ex-
pensive. Furthermore, since each minimum subset produces
up to ten hypotheses, it can be time consuming to score them.
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As an alternative to directly calculating essential matrix
solutions, some authors [2], [3], [7], [8], [11] propose
solving for the essential matrix using nonlinear optimization
algorithms such as Gauss-Newton (GN) and Levenberg-
Marquardt (LM). Since the essential matrix has nine entries
but only five degrees of freedom, the optimization is per-
formed on the five dimensional essential matrix manifold.
There are a number of ways to define the essential matrix
manifold. Some authors define the manifold using a rotation
and a translation unit vector, which are elements ofSO(3)
and S2 respectively [3], [8]. Others define the manifold
using two elements ofSO(3) [7], [11]. The computational
requirements of the resulting scheme are significantly less
than Nister’s five point algorithm. However, one weakness of
optimization-based solvers is that they only find one of the
ten possible essential matrices at a time. Finding all solutions
requires additional optimization runs with different initial-
ization points. The optimization method is also sensitive to
initial conditions, which can cause the optimizer to fail to
produce a valid solution.

After the essential matrix between images is found, it
must then be decomposed into a rotation and a normalized
translation. Given an essential matrix, there are four possible
rotation-translation pairs [6]. The correct rotation-translation
pair is typically determined using the Cheirality check that
ensures that matching features are in front of both cameras.
However, the Cheirality check is sensitive to noise in the
image and frequently returns the wrong decomposition.

In this paper we propose a novel observer to estimate
the 3D relative pose using the recently introduced Riccati
observer design framework [5]. We show that the proposed
observer is locally exponentially stable if the motion of the
camera is sufficiently exciting. The key contribution consists
in using the relative pose of the camera as system state and
the epipolar constraints (involving the essential matrix)of
three unknown source points. This approach is different from
existing works that estimate first the essential matrix and then
decompose it to obtain the relative orientation and only the
relative normalized translation.

The remainder of the paper is organized as follows. The
problem is formally stated in Section II. The Riccati observer
and its theoretical properties are reviewed in Section III.The
application of the observer to relative pose estimation andthe
associated stability analysis are provided in Section IV. Sim-
ulation results are presented in Section V and the conclusions
are in Section VI.



II. PROBLEM STATEMENT

A. Mathematical notation

• {e1, e2, e3} denotes the canonical basis ofR3 and the
identity matrix and the null matrix ofRn×n are denoted as
In and0n, respectively. The closed ball inRn of radiusr is
denoted asBnr . Let (·)× denote the skew-symmetric matrix
associated with the cross product, i.e.u×v = u× v, ∀u, v ∈
R

3. Let πu , I3 − uu⊤, ∀u ∈ S2, denote the projection
operator onto the plane orthogonal tou.
• We write f(x, y, t) = O(|x|k1 |y|k2) with k1 ≥ 0 and
k2 ≥ 0 if ∀t : |f(x, y, t)|/(|x|k1 |y|k2) ≤ γ < ∞ in the
neighbourhood of(x = 0, y = 0). If f depends only onx
andt then we writef(x, t) = O(|x|k) if ∀t : |f(x, t)|/|x|k ≤
γ < ∞ in the neighbourhood ofx = 0.

B. Problem formulation

Consider a robotic vehicle equipped with a monocular
camera observingn (n ≥ 3) source points with unknown
3D coordinates. Without loss of generality and to make the
presentation clear we focus only on the most difficult case
of n = 3.

Let us now introduce some notation. Let{A} (resp.{B})
denote the reference (resp. current or body) frame attached
to the camera at the reference (resp. current) view. The
orientation of frame{B} w.r.t. frame{A} is represented by
a rotation matrixR ∈ SO(3). Let ξ ∈ R

3 (resp. ξ̄ ∈ R
3)

denote the position of frame{B} w.r.t. frame{A} expressed
in the body frame{B} (resp. frame{A}). One verifies that
ξ̄ = Rξ. The dynamics of the camera pose(R, ξ) are given
by

{

Ṙ = RΩ×

ξ̇ = −Ω×ξ + V
(1)

whereV ∈ R
3 andΩ ∈ R

3 denote the camera’s linear and
angular velocities expressed in the body frame{B}.

Assume that the vehicle is equipped with a linear velocity
sensor (e.g., a Doppler sensor) that measures the linear
velocityV together with an Inertial Measurement Unit (IMU)
that measures of the angular velocityΩ.

Fig. 1. Intuitive representation of 3D coordinates̊Pi andPi (i = 1, 2, 3),
of planar projective coordinates̊pim

i
and pim

i
, and of spherical projective

coordinates̊pi andpi of the 3 source points.

We also consider the situation where a collection of 3
unknown source points is always observed by the camera
so that their bearings can be directly obtained from the
camera images. Let̊pimi (i = 1, 2, 3) (resp. pimi ) denote
the calibrated projective coordinates of the 3 source points
onto the camera plane expressed w.r.t. the frame{A} (resp.
frame{B}) (see Fig. 1). Denoting̊Pi ∈ R

3 (resp.Pi ∈ R
3)

the 3D coordinates of thei-th source point w.r.t. the frame
{A} (resp. frame{B}) expressed in{A} (resp. frame{B}),
and by z̊i (resp. zi) its third component, one verifies that
p̊imi = P̊i/z̊i (resp.pimi = Pi/zi).

Instead of using the perspective outputs typically used in
computer vision algorithms, we use bearing outputs

p̊i :=
p̊imi
|p̊imi |

=
P̊i

|P̊i|
∈ S2, pi :=

pimi
|pimi |

=
Pi
|Pi|

∈ S2 (2)

that correspond to the projection onto a virtual unit spherical
image plane and differ from the perspective outputs only by
the scaling. Using the relationsPi = R⊤P̊i−ξ = R⊤(P̊i−ξ̄),
the following epipolar constraint can be deduced

p̊⊤i Rξ×pi = 0, (i = 1, 2, 3) (3)

which, using the essential matrix definitionE := Rt× with
t := ξ/|ξ|, can be expressed as̊p⊤i Epi = 0. Instead of esti-
mating the essential matrixE from the epipolar constraints
and then decomposing it into a rotationR and a normalized
translationt like in traditional algebraic approaches, we will
estimate directly the pose (i.e.R and ξ) by also exploiting
the dynamic equations (1). Note that in contrast with the ill-
definition of the essential matrix when the translation vector
ξ vanished (i.e.ξ = 0), the pose is always well defined.

III. T HEORETICAL BACKGROUND: BRIEF RECALL OF A

RICCATI OBSERVER DESIGN FRAMEWORK

The observer proposed in this paper is based on the Riccati
design framework recently developed in [5]. The following
nonlinear system (a particular case of systems studied in [5])
is investigated:

{

Ẋ = A(t)X + U +O(|X |2) +O(|X ||U |)

Y = C(X, t)X +O(|X |2)
(4)

with stateX = [X⊤
1 , X⊤

2 ]⊤, X1 ∈ Bnr , X2 ∈ R
n, output

Y ∈ R
m, A(t) ∈ R

2n×2n a continuous matrix-valued
function uniformly bounded w.r.t.t in the form

A(t) =

[

A1,1(t) 0n
A2,1(t) A2,2(t)

]

(5)

andC(X, t) ∈ R
m×2n a continuous matrix-valued function

uniformly continuous w.r.t.X and uniformly bounded w.r.t.
t. Then, apply the input

U = −PC⊤D(t)Y (6)

with P ∈ R
2n×2n a symmetric positive definite matrix

solution to the following continuous Riccati equation (CRE):

Ṗ = AP + PA⊤ − PC⊤D(t)CP + S(t) (7)

with P (0) ∈ R
2n×2n a symmetric positive definite matrix,

D(t) ∈ R
m×m bounded continuous symmetric positive



semi-definite, andS(t) ∈ R
2n×2n bounded continuous

symmetric positive definite.
Then, from Theorem 3.1 and Corollary 3.2 in [5],X = 0

is locally exponentially stable when both matricesD(t) and
S(t) are larger than some constant positive matrix and the
pair (A⋆(t), C⋆(t)), with A⋆(t) , A(t), C⋆(t) , C(0, t), is
uniformly observable.

Definition 1 (uniform observability) The pair(A(t), C(t))
is called uniformly observableif there existδ, µ > 0 such
that ∀t ≥ 0

W (t, t+δ) ,
1

δ

∫ t+δ

t

Φ⊤(s, t)C⊤(s)C(s)Φ(s, t)ds ≥ µI2n

(8)
with Φ(s, t) the transition matrix associated withA, i.e. such
that d

ds
Φ(s, t) = A(s)Φ(s, t) with Φ(t, t) = I2n.

The matrix W (t, t + δ) is the so-called observability
Gramian.

IV. POSE OBSERVER DESIGN FROM BEARING

MEASUREMENTS OF THREE UNKNOWN SOURCE POINTS

A. Observer derivation

The proposed observer has the following form
{

˙̂
R = R̂Ω× − R̂σR×

˙̂
ξ = −Ω×ξ̂ + V − σξ

(9)

with initial conditionsR̂(0) ∈ SO(3), ξ̂(0) ∈ R
3, and with

σR, σξ ∈ R
3 the innovation terms to be designed thereafter.

The following error variables are defined

R̃ := R̂⊤R, ξ̃ := ξ − ξ̂ (10)

Then, the objective of observer design consists in stabilizing
(R̃, ξ̃) about(I3, 0).

From (1), (9) and (10) one verifies that the error system
is given by

{

˙̃R = −Ω×R̃+ R̃Ω× + σR×R̃
˙̃
ξ = −Ω×ξ̃ + σξ

(11)

For analysis purposes let us assume thatξ, Ω andV remain
bounded for all time, which is a completely reasonable
assumption for the considered applications.

The following step involves developing first order approx-
imations of the error system (11) and of the measurement
equations (2) and (3) in order to obtain the system in
the form (4). From the Rodrigues’ formula, the first order
approximation ofR̃ is given by

R̃ = I + λ× +O(|λ|2) (12)

with λ ∈ B3
2 equal to twice the vector part of the quaternion

associated with the attitude error matrixR̃. One then deduces
from the first equation of (11), (12) and the identity

a×b× − b×a× = (a× b)×, ∀a, b ∈ R
3

that in first order approximations

λ̇ = −Ω×λ+ σR +O(|λ|2) +O(|λ||σR|) (13)

Now let us develop first order approximations of the
measurement equations (2)–(3). From the epipolar constraint
(3) one deduces

0 = p̊⊤i R̂R̃(ξ̃ + ξ̂)×pi

= p̊⊤i R̂(I + λ×)(ξ̃ + ξ̂)×pi +O(|λ|2)

= −p̊⊤i R̂(ξ̂ × pi)×λ− p̊⊤i R̂pi×ξ̃ + p̊⊤i R̂ξ̂×pi

+O(|λ|2) +O(|λ||ξ̃|)

= p̊⊤i R̂ξ̂×pi −
[

p̊⊤i R̂(ξ̂ × pi)× p̊⊤i R̂pi×
]

[

λ

ξ̃

]

+O(|λ|2) +O(|λ||ξ̃|)

or equivalently

p⊤i R̂ξ̂×pi =
[

p̊⊤i R̂(ξ̂ × pi)× p̊⊤i R̂pi×
]

[

λ

ξ̃

]

+O(|λ|2) +O(|λ||ξ̃|)

(14)

From (13), the second equation of (11), and (14), one
obtains in first order approximations the system in compact
form (4) with






















































X :=

[

λ

ξ̃

]

, U :=

[

σR
σξ

]

, Y :=





p̊⊤1 R̂ξ̂×p1
p̊⊤2 R̂ξ̂×p2
p̊⊤3 R̂ξ̂×p3





A(t) :=

[

−Ω× 03
03 −Ω×

]

C(X, t) =





p̊⊤1 R̂(ξ̂ × p1)× p̊⊤1 R̂p1×
p̊⊤2 R̂(ξ̂ × p2)× p̊⊤2 R̂p2×
p̊⊤3 R̂(ξ̂ × p3)× p̊⊤3 R̂p3×





(15)

The fact thatX = [X⊤
1 , X⊤

2 ]⊤ with X1 := λ ∈ B3
2,

X2 := ξ̃ ∈ R
3, together with the particular form of the

matrix A as (5), allows one to obtain the expression of the
innovation terms from the inputU calculated according to
(6) and (7) where the matricesD andS, involved in the CRE
(7), are chosen larger than some constant positive matrix.

B. Observability and stability analysis

According to [5] the equilibriumX = 0 is locally
exponentially stable, provided that the pair(A⋆(t), C⋆(t)),
with A⋆(t) = A(t) and C⋆(t) := C(0, t), is uniformly
observable. By settingX = 0 in the expression ofC(X, t)
in (15), and usinḡξ = Rξ andRPi = P̊i− ξ̄ with i = 1, 2, 3,
one obtains

C⋆ =





p̊⊤1 (ξ̄ ×Rp1)×R p̊⊤1 (Rp1)×R
p̊⊤2 (ξ̄ ×Rp2)×R p̊⊤2 (Rp2)×R
p̊⊤3 (ξ̄ ×Rp3)×R p̊⊤3 (Rp3)×R





=









1
|P̊1||P1|

P̊⊤
1 (ξ̄ × P̊1)×R − 1

|P̊1||P1|
P̊⊤
1 ξ̄×R

1
|P̊2||P2|

P̊⊤
2 (ξ̄ × P̊2)×R − 1

|P̊2||P2|
P̊⊤
2 ξ̄×R

1
|P̊3||P3|

P̊⊤
3 (ξ̄ × P̊3)×R − 1

|P̊3||P3|
P̊⊤
3 ξ̄×R









=











−|P̊1|
ξ̄⊤

|P1|
πp̊1R

ξ̄⊤

|P1|
p̊1×R

−|P̊2|
ξ̄⊤

|P2|
πp̊2R

ξ̄⊤

|P2|
p̊2×R

−|P̊3|
ξ̄⊤

|P3|
πp̊3R

ξ̄⊤

|P3|
p̊3×R











(16)



The following theorem settles a persistence of excitation
condition for the uniform observability of the matrix pair
(A⋆, C⋆) and, subsequently, the local exponential stability
of the error dynamics.

Theorem 1 Assume that the bearings̊p1, p̊2, p̊3 of the 3
observed source points are linearly independent. Assume that
the camera translational motion is sufficiently exciting inthe
sense that for all time there existδ, β > 0 such that∀i =
1, 2, 3

Πi(t, t+ δ) :=
1

δ

∫ t+δ

t

ξ̄(s)ξ̄ ⊤(s)

|P̊i − ξ̄(s)|2
ds ≥ βI3 (17)

Assume also thatξ, Ω andV remain uniformly bounded for
all time. Then, the pair(A⋆, C⋆) is uniformly observable.
By choosing the matricesD andS involved in the CRE(7)
larger than some constant positive matrix, one ensures that
the equilibrium(R̃, ξ̃) = (I3, 0) of the error system is locally
exponentially stable.

Proof: To prove that the pair(A⋆(t), C⋆(t)) is uni-
formly observable, let us compute the observability Gramian
W (t, t+δ) as defined by (8). First, in view of the expression
of A in (15) one verifies that the transition matrix associated
with the state matrixA⋆ (i.e. A) is of the form

Φ(s, t) =

[

R̄⊤(s) 03
03 R̄⊤(s)

]

(18)

with R̄(s) ∈ SO(3) the solution to

d

ds
R̄(s ≥ t) = R̄(s)Ω(s)×, R̄(s = t) = I3

One deduces from (16) that

C⋆⊤C⋆ =

[

R⊤ 03
03 R⊤

]

M

[

R 03
03 R

]

(19)

with

M :=











∑

i=1,2,3

|P̊i|
2πp̊i

ξ̄ξ̄⊤

|Pi|2
πp̊i

∑

i=1,2,3

|P̊i|πp̊i
ξ̄ξ̄⊤

|Pi|2
p̊i×

−
∑

i=1,2,3

|P̊i|p̊i×
ξ̄ξ̄⊤

|Pi|2
πp̊i −

∑

i=1,2,3

p̊i×
ξ̄ξ̄⊤

|Pi|2
p̊i×











Using (18), (19) and the fact that̄R⊤(s) = R⊤(s)R(t) one
then deduces the observability Gramian

W (t, t+ δ) =
1

δ

∫ t+δ

t

Φ⊤(s, t)C⋆⊤(s)C⋆(s)Φ(s, t)ds

=

[

R⊤(t) 03
03 R⊤(t)

]

(

1

δ

∫ t+δ

t

M(s)ds

)

[

R(t) 03
03 R(t)

] (20)

with

1

δ

∫ t+δ

t

M(s)ds

=









∑

i=1,2,3

|P̊i|
2πp̊iΠi(t, t+δ)πp̊i

∑

i=1,2,3

|P̊i|πp̊iΠi(t, t+δ)p̊i×

−
∑

i=1,2,3

|P̊i|p̊i×Πi(t, t+δ)πp̊i −
∑

i=1,2,3

p̊i×Πi(t, t+δ)p̊i×









(21)

andΠi(t, t+ δ) defined in (17).
From now on, the shortened notationΠi is used in the

place ofΠi(t, t + δ) for convenience. SinceΠi are sym-
metric and positive definite by assumption (c.f. Eq. (17)),
they can be decomposed asΠi = Q⊤

i ∆iQi, with ∆i =
diag([βi,1, βi,2, βi,3]) andβi,j ≥ β (∀j = 1, 2, 3) using (17),
and someQi ∈ SO(3). Thus,

Πi − βI3 = Q⊤
i (∆i − βI3)Qi = Γ⊤

i Γi

with Γi = (∆i − βI3)
1

2Qi, ∀i = 1, 2, 3. Thus, one obtains
[

|P̊i|
2πp̊i(Πi − βI3)πp̊i |P̊i|πp̊i(Πi − βI3)p̊i×

−|P̊i|p̊i×(Πi − βI3)πp̊i −p̊i×(Πi − βI3)p̊i×

]

=

[

|P̊i|
2πp̊iΓ

⊤
i Γiπp̊i |P̊i|πp̊iΓ

⊤
i Γip̊i×

−|P̊i|p̊i×Γ
⊤
i Γiπp̊i −p̊i×Γ

⊤
i Γip̊i×

]

=

[

|P̊i|πp̊iΓ
⊤
i

−p̊i×Γ
⊤
i

]

[

|P̊i|Γiπp̊i Γip̊i×
]

≥ 0

(22)

Using (21) and (22) one deduces

1

δ

∫ t+δ

t

M(s)ds ≥ βN̊ (23)

with

N̊ :=









∑

i=1,2,3

|P̊i|
2πp̊i

∑

i=1,2,3

|P̊i|p̊i×

−
∑

i=1,2,3

|P̊i|p̊i×
∑

i=1,2,3

πp̊i









=
∑

i=1,2,3

N̊i

N̊i :=

[

|P̊i|
2πp̊i |P̊i|p̊i×

−|P̊i|p̊i× πp̊i

]

= Z̊⊤
i Z̊i

Z̊i :=
[

|P̊i|πp̊i p̊i×
]

(24)

In view of (20) and (23), the uniform observability
condition (8) involving the observability Gramian matrix
W (t, t + δ) is satisfied if the constant symmetric matrix̊N
given by (24) is positive definite. Thus, one only needs to
prove that the equationν⊤N̊ν = 0, with ν = [ν1, ν2]

⊤ ∈ R
6,

implies thatν = 0 (i.e. ν1 = ν2 = 0) is the unique solution.
One has

0 = ν⊤N̊ν =

3
∑

i=1

ν⊤N̊iν =

3
∑

i=1

|Z̊iν|
2

⇒ Z̊iν = 0, ∀i = 1, 2, 3

⇒ |P̊i|πp̊iν1 + p̊i × ν2 = 0, ∀i = 1, 2, 3

⇒ p̊i ×
(

−|P̊i|p̊i × ν1 + ν2

)

= 0, ∀i = 1, 2, 3

⇒ ∃βi ∈ R s.t. ν2 = βiP̊i + P̊i × ν1, ∀i = 1, 2, 3

⇒ βiP̊i − βjP̊j + (P̊i−P̊j)× ν1 = 0, ∀i 6=j, i, j∈{1, 2, 3}

⇒ ν⊤1

(

(P̊i − P̊j)× (P̊i × P̊j)
)

= 0

⇒ ν⊤1

(

|P̊i|πp̊i p̊j + |P̊j |πp̊j p̊i

)

= 0

Since the triplet (|P̊1|πp̊1 p̊2 + |P̊2|πp̊2 p̊1, |P̊2|πp̊2 p̊3 +
|P̊3|πp̊3 p̊2, |P̊3|πp̊3 p̊1 + |P̊1|πp̊1 p̊3) is linearly independent
(as a consequence of linear independence of the triplet
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Fig. 2. (Simulation 1) Real and estimated positions (expressed in frame
{B}) ξ, ξ̂ (m) versus time(s).
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Fig. 3. (Simulation 1) Norm of the position error|ξ̃| (m) versus time (s).

(p̊1, p̊2, p̊3)), one deduces thatν1 = 0, which in turn implies
that p̊i × ν2 = 0, ∀i = 1, 2, 3. Using again the fact that the
triplet (p̊1, p̊2, p̊3) is linearly independent, one deduces that
ν2 = 0. The remainder of the proof then directly follows by
application of Theorem 3.1 and Corollary 3.2 in [5].

V. SIMULATION RESULTS

The performance of the proposed observer is demonstrated
through simulation results performed with Matlab Simulink.
In the simulated scenario, the camera’s positionξ̄ expressed
in frame{A} follows a periodical trajectory varying in all 3
components:

ξ̄(t) = [15sin(πt/6), 15sin(πt/3), −5 + 2sin(πt/2)]⊤

The camera’s attitude is generated so that it is also strongly
varying as shown in Figure 4. The (unknown) 3D coordinates
expressed in frame{A} of the 3 observed source points are
given by P̊1 = [2, 4, 2.5]⊤, P̊2 = [−4.5, 1, 1.5]⊤, P̊3 =
[−1, −1.5, 0.6]⊤.

The matricesS and D−1 involved in the CRE (7) are
interpreted as covariance matrices of the additive noise on
the system state and output respectively, and the observer
is tuned in a similar way like Kalman-Bucy filters. The
following parameters are chosen:P (0) = 0.1I6, D = 100I3,
S = diag(0.1I3, I3).

Two simulations will be reported next, where the first one
corresponds to the case of ideal measurements (i.e. no noise)

0 2 4 6 8 10 12 14 16 18 20
-100

0

100

200

0 2 4 6 8 10 12 14 16 18 20
-100

0

100

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

Real
Estimate

t(s)

φ
,
φ̂

(◦
)

θ
,
θ̂
(◦

)
ψ
,
ψ̂

(◦
)

Fig. 4. (Simulation 1) Real and estimated attitudes represented by roll,
pitch and yaw Euler angles (deg) versus time (s).
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Fig. 5. (Simulation 1) Imaginary part̃qv of the unit quaternion associated
with the attitude errorR̃ versus time (s).

and the second one evaluates the effects of measurement
noise. For both simulations, the following initial estima-
tion errors are considered:̃ξ(0) = [4, 5,−5]⊤, qR̃(0) =
[q̃0, q̃

⊤
v ]

⊤(0) = [0.9119, −0.3079, −0.1673, −0.2135]⊤

(the unit quaternion associated with̃R(0), corresponding
to errors in roll, pitch and yaw Euler angles of40(deg),
10(deg), 30(deg), respectively).

A. Simulation 1 – ideal measurements

Simulation results for this noise-free case are illustrated
by Figures 2–5. Figures 2 and 4 show the fast convergence
of the estimated position and attitude (represented by Euler
angles) to the real values. In a different perspective, Figures
3 and 5 illustrate the observer performance by showing the
convergence to zero of the estimation errors in terms of the
norm of the position error|ξ̃| and the imaginary part̃qv of
the unit quaternion associated with the attitude errorR̃.

B. Simulation 2 – noisy measurements

The same scenario as in Simulation 1 is simulated but
now with noise added in the measurements ofΩ, V and
of the source point bearings. More precisely, white Gaus-
sian noise with variance of2(deg/s) ≈ 0.035(rad/s) and
0.2(m/s) are introduced on the measurements ofΩ andV ,
respectively. We also try to simulate the image noise by first
adding uncorrelated white Gaussian noise with variance of
0.01 to all components of the source point bearings and
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Fig. 6. (Simulation 2) Real and estimated positions (expressed in frame
{B}) ξ, ξ̂ (m) versus time(s).
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Fig. 7. (Simulation 2) Norm of position error|ξ̃| (m) versus time (s).

then re-normalizing them ontoS2 to obtain noisy bearing
measurements.

Simulation results reported in Figures 6–9 show that the
ultimate time evolution of the estimated variables follows
very near to the corresponding real variables and the ultimate
estimation errors remain relatively small.

VI. CONCLUSIONS

The classical problem of pose estimation from bearing
measurements is re-visited. However, unlike the classical
problem ofessential matrixestimation that requires at least
5 source points, we have shown that 3 source points would
be sufficient to estimate the camera full pose if the camera
translational motion is sufficiently exciting. To our knowl-
edge, this discovery is a new result. By adopting the recent
Riccati observer design framework developed in [5], we have
proposed a nonlinear Riccati observer with the support of
rigourous observability and stability analysis together with
convincing simulation results.
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