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Relative pose estimation from bearing measurements of theeunknown source points

Minh-Duc Hua, Simone De Marco, Tarek Hamel and Randal W. 8ear

Abstract— This paper unveils a novel discovery that the As an alternative to directly calculating essential matrix
full relative pose of a monocular camera moving in a three golutions, some authors [2], [3], [7], [8], [11] propose
dimensional space can be estimated exploiting bearing ma&®-  gq\ing for the essential matrix using nonlinear optiriat
ments of only 3 unknown source points (together with velocity .
measurements) without any additional knowledge if the canma algorithms such a_s GaUSS'NEWt_On (GN_) and I__evenbe_rg-
translational motion is sufficiently exciting. The epipola con- ~ Marquardt (LM). Since the essential matrix has nine entries
straint commonly used in Computer Vision algebraic algorihms ~ but only five degrees of freedom, the optimization is per-
for the determination of the so-called essential matrix (all of  formed on the five dimensional essential matrix manifold.
them require at least 5 source points) is here exploited in 8  Thare gre a number of ways to define the essential matrix
design of the proposed Riccati observer for pose estimation . 4 . . .
One remarkable feature of this work is the determination of manifold. Some authors define the manifold using a rotation
an explicit persistence of excitation condition that guarantees and a translation unit vector, which are elementsS6f(3)
uniform observability and, subsequently, (local) exponetial and S? respectively [3], [8]. Others define the manifold
stability of the proposed observer. Convincing simulatiorresults  ysing two elements oO(3) [7], [11]. The computational
are provided to support the proposed approach. requirements of the resulting scheme are significantly less
than Nister’s five point algorithm. However, one weakness of
optimization-based solvers is that they only find one of the

Estimating camera motion from a video sequence hden possible essential matrices at a time. Finding all sniat
many applications in robotics including target tracking, v requires additional optimization runs with different ialt
sual odometry, and 3D scene reconstruction. One methodigtion points. The optimization method is also sensitive t
estimate motion from a video sequence is to calculate th@itial conditions, which can cause the optimizer to fail to
essential matrix between consecutive frames. The eskenfioduce a valid solution.
matrix relates the homogeneous image coordinates between
frames using the epipolar constraint. After the essential After the essential matrix between images is found, it
matrix has been determined, it can be decomposed infaust then be decomposed into a rotation and a normalized
a rotation and a normalized translation to determine thganslation. Given an essential matrix, there are fouriptess
relative motion of the camera between frames. In order t@tation-translation pairs [6]. The correct rotationAstation
be robust to noise and feature mismatches, the essenfiir is typically determined using the Cheirality checkttha
matrix is typically estimated by generating a large numbegnsures that matching features are in front of both cameras.
of hypotheses from five-point minimum subsets of matchinglowever, the Cheirality check is sensitive to noise in the
features, and selecting the best hypothesis using either Ramage and frequently returns the wrong decomposition.
dom Sample Consensus (RANSAC) [4] or Least Median of
Squares (LMedS) [10]. In this paper we propose a novel observer to estimate

State of the art methods calculate essential matrix hypoth@e 3D relative pose using the recently introduced Riccati
ses directly from each five-point minimum subset. One dgpbserver design framework [5]. We show that the proposed
the best known methods is Nister's algorithm [9]. Nisteobserver is locally exponentially stable if the motion oé th
showed that for five matching points, there are potentiallgamera is sufficiently exciting. The key contribution cetsi
ten essential matrices that satisfy the constraints, eack-c in using the relative pose of the camera as system state and
sponding to a real root of a tenth-order polynomial generatdhe epipolar constraints (involving the essential matok)
from the data. There are many open-source implementtree unknown source points. This approach is differemnfro
tions of Nister's five-point algorithm including OpenCV's existing works that estimate first the essential matrix fiedt

fi ndEssenti al Mat function [1]. However, constructing, decompose it to obtain the relative orientation and only the

solving, and extracting the essential matrix from this hent relative normalized translation.

order polynomial is complex and can be computationally ex-

pensive. Furthermore, since each minimum subset producest he remainder of the paper is organized as follows. The

up to ten hypotheses, it can be time consuming to score theRfoblem is formally stated in Section II. The Riccati obssrv
and its theoretical properties are reviewed in SectionTlle
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I. INTRODUCTION



Il. PROBLEM STATEMENT We also consider the situation where a collection of 3
unknown source points is always observed by the camera
so that their bearings can be directly obtained from the
® e _ : camera images. Lep™ (i = 1,2,3) (resp.p'™) denote
identity matrix and the null matrix oR™*" are denoted as e cajibrated projective coordinates of the 3 source point
L, and0y, respectively. The closed ball R" of radiusr is  gntg the camera plane expressed w.r.t. the framg (resp.
denoted ad3”. Let ()« denote the skew-symmetric matrix frame {B}) (see Fig. 1). Denotingoi- € R? (resp. P; € R?)
asgsomated VX'th the crgss produc2t, 8.V =uxv,Yu,v €  the 3D coordinates of théth source point w.r.t. the frame
R°. Letm, = I3 —uu , Yu € S*, denote the projection [ A} (resp. frame{3}) expressed if A} (resp. frame{B}),
operator onto the plane orthogonaldo and by z; (resp.z;) its third component, one verifies that
e We write f(x,y,t) = O(|z[*|y[*2) with k1 > 0 and  im _ p /2 im _ p /.

. k k . P; Pz/zz (resp'pz H/Zz)
ko > 0 if v |f(z,y, OI/(Je]™ |y]*?) < v < oo in the Instead of using the perspective outputs typically used in

neighbourhood ofz = 0,y = 0). If f depends only o ¢4y nter vision algorithms, we use bearing outputs

andt then we writef (z,t) = O(|z|¥) if Vt : |f(x,t)|/]xk < . . _

v < oo in the neighbourhood af = 0. P Pt P - Pt B @
5 |P ’ o™ B

that correspond to the projection onto a virtual unit spdadri

Consider a robotic vehicle equipped with a monoCUIairmage plane and differ from the perspective outputs only by

camera observing (n > 3) source points with unknown . : : T8 T e
. i . the scaling. Using the relatiodd = R' P,—¢{ = R' (P,—¢),
3D coordinates. Without loss of generality and to make thﬁw following epipolar constraint can be deduced

presentation clear we focus only on the most difficult case - _
of n = 3. D; Réxpz - 07 (Z = 13 27 3) (3)
Let us now introduce some notation. Lt} (resp.{8}) which, using the essential matrix definitidh := Rty with
denote the reference (resp. current or body) frame attached= ¢/|¢|, can be expressed &g Ep; = 0. Instead of esti-
to the camera at the reference (resp. current) view. Theating the essential matrik from the epipolar constraints
orientation of frame{B} w.r.t. frame{A} is represented by and then decomposing it into a rotatidhand a normalized
a rotation matrixR € SO(3). Let ¢ € R3 (resp.£ € R3) translationt like in traditional algebraic approaches, we will
denote the position of framfgZ} w.r.t. frame{ A} expressed estimate directly the pose (i.& and¢) by also exploiting
in the body frame{B} (resp. frame{.A}). One verifies that the dynamic equations (1). Note that in contrast with the ill
¢ = R¢. The dynamics of the camera podk, ) are given definition of the essential matrix when the translation sect

A. Mathematical notation
e {e1,e2,e3} denotes the canonical basis Bf and the

B. Problem formulation

by & vanished (i.e¢ = 0), the pose is always well defined.
R = Rdx (1) I1l. THEORETICAL BACKGROUND: BRIEF RECALL OF A
§=—QE+V RICCATI OBSERVER DESIGN FRAMEWORK

whereV € R3 andQ € R3 denote the camera’s linear and 1he observer proposed in this paper is based on the Riccati

angular velocities expressed in the body frafi. design framework recen_tly developed in [5]. The f(_)llov_ving
Assume that the vehicle is equipped with a linear velocitjonlinear system (a particular case of systems studied)n [5

sensor (e.g., a Doppler sensor) that measures the lindg/nvestigated:

velocity V together with an Inertial Measurement Unit (IMU) {X — ADX + U +O0(X[?) + 0(X||U])

(4)

that measures of the angular velocity

Y =C(X, )X +O(|X*)

with state X = [X|", X, |7, X; € B?, X» € R, output

Y € R™, A(t) € R®2" a continuous matrix-valued

function uniformly bounded w.r.t. in the form
A1) 0,

A = [Az,l(f) Az,z(t)] ©)
andC(X,t) € R™*2n a continuous matrix-valued function
uniformly continuous w.r.tX and uniformly bounded w.r.t.
t. Then, apply the input

U=-PC"D@)Y (6)

with P € R2?7n*2" a symmetric positive definite matrix
solution to the following continuous Riccati equation (QRE

4

. : T T
Fig. 1. Intuitive representation of 3D coordinatgs and P; (i = 1, 2, 3), P=AP+PA - PC D(t)CP + S(t) (7)
of planar projective coordinategi™ and p:‘im, and of spherical projective : 2nx2n : e L :
coordinates; andyp; of the 3 source points. with P(0) € R a symmetric positive deﬂmFe matrix,
D(t) € R™*™ bounded continuous symmetric positive



semi-definite, andS(t) € R2?"*2" bounded continuous Now let us develop first order approximations of the
symmetric positive definite. measurement equations (2)—(3). From the epipolar constrai
Then, from Theorem 3.1 and Corollary 3.2 in [5],=0 (3) one deduces
|§ locally exponentially stable when both_r_natncBﬁt_) and 0= p RR(E + &) sps
(t) are larger than some constant positive matrix and the . A, )
pair (A*(t), C*(t)), with A*(t) £ A(t), C*(t) £ C(0,1), is =p; BRI+ X)) (€ + &) xpi + O(A])
uniformly observable. = —p; R(E X pi)x A — B Bpix€ +p) RE i

O(IA[?) + O(IN||€
Definition 1 (uniform observability) The paifA(t), C(t)) +O(AR) +O(AlleD

is called uniformly observabléf there existd, u > 0 such =p; RExpi — [ﬁng(g X pi)x ]BTRpix} P]
that vVt Z 0 7 [ g
) -

L1 +O(IA2) + O(Al€])

= — >
W (t, t+0) §/t D' (s,8)C" (s)C(s)P(s,t)ds > pla, or equivalently
with ®(s, t) the transition matrix associated with, i.e. su Tz PR T A A
that L (s, ¢) = A(s)D(s, t) With O(¢,t) = I, pi B&xpi = [B] RE < pi)x B Bpix] |7 (14)

The matrix W (t,t 4+ 6) is the so-called observability +O(IA%) + O(AlIED

Gramian. From (13), the second equation of (11), and (14), one

obtains in first order approximations the system in compact

IV. POSE OBSERVER DESIGN FROM BEARING form (4) with

MEASUREMENTS OF THREE UNKNOWN SOURCE POINTS

T DE
A. Observer derivation by oR P1 Réxpr
) X:=1:, U:= , Y = p;Rgxpg
The proposed observer has the following form 3 0¢ ST B
. 3 RExp3
R = RO, — R -0 0
= 1 = fim ©) A() = { 0 -0 } (15)
§ =0 E+V — o¢ 3 x
R R T D/E o T 1
with initial conditions R(0) € SO(3),£(0) € R?, and with Cixp) - fflﬁ(éi X P1)x ffle?PlX
or,0¢ € R? the innovation terms to be designed thereafter. (X.1) = p%R(g X P2)x IZQT]?pQX
The following error variables are defined 3 R(§ X p3)x D3 Rpsx

The fact thatX = [X|, X, |7 with X; := X € B3,
Xy := ¢ € R3, together with the particular form of the
Then, the objective of observer design consists in stafgiz matrix A as (5), allows one to obtain the expression of the

R:=R'R, £:=¢—¢ (10)

(R, €) about(Is,0). innovation terms from the inpul/ calculated according to
From (1), (9) and (10) one verifies that the error systert6) and (7) where the matricd3 and.S, involved in the CRE
is given by (7), are chosen larger than some constant positive matrix.

R= —QOyR+ ROy +0orx R 1) B. Observability and stability analysis
g =0+ ¢ According to [5] the equilibriumX = 0 is locally

) _exponentially stable, provided that the péit*(¢), C*(t)),
For analysis purposes let us assume gh&tandV remain \un A*(t) = A(t) and C*(t) := C(0,t), is uniformly
bounded for all time, which is a completely reasonab'%bservable. By settingd = 0 in the expression of(X, ¢)

assumption for the considered applications. in (15), and using = R¢ andRP, = P, — & with i = 1,2, 3
The following step involves developing first order approx;ne obtains o T

imations of the error system (11) and of the measurement -,

T(E T
equations (2) and (3) in order to obtain the system in , |PL (€ x gpl)xg Q%(gpl)xg
the form (4). From the Rodrigues’ formula, the first order - 132T(£_>< sz)XR Z:QT(RPQ)XR
approximation ofR is given by [P3 (€ Bps)x I b3 (Rps)
R=T+ )\ +0()\? (12) mljﬂg xljl)XR AR
1 T (¢ 1 T
with \ € B3 equal to twice the vector part of the quaternion = \p’zupz\]? (5_ x IfQ)XR o |P2||P2|Ij2 g_xR (16)
associated with the attitude error matfx One then deduces —L P x P)yR —=—PJER
. . . . L|Ps||Ps| | P3| Ps|
from the first equation of (11), (12) and the identity ) - .
D, | £ . £ s
axby — bxax = (ax b)x, Va,beR? — Pl T B pppixR
o &1 T
that in first order approximations = —|P2||§3—2|7T;32R ﬁp—z‘ﬁsz
N o &1 T o
A= QA+ or+O0(N2) +O0(Nler)  (13) || Pal i R fypax R




The following theorem settles a persistence of excitatioandIl;(¢,¢ + §) defined in (17).

condition for the uniform observability of the matrix pair From now on, the shortened notatidh is used in the

(A*,C*) and, subsequently, the local exponential stabilitplace ofII;(¢,¢ + §) for convenience. Sincé&l; are sym-

of the error dynamics. metric and positive definite by assumption (c.f. Eq. (17)),
they can be decomposed & = QIAZ-QZ-, with A; =

Theorem 1 Assume that the bearings, po, ps of the 3 diag([Bi1, B2, Biz]) andp;; > B (V5 = 1,2,3) using (17),

observed source points are linearly independent. Assuate ttand some,; € SO(3). Thus,

the camera translational motion is sufficiently excitingtie

T T
sense that for all time there exist3 > 0 such thatvi = I = Blz = Q; (Ai = BI3)Qi = T'; T
1,2,3 with T'; = (A; — Blg)éQi,W = 1,2, 3. Thus, one obtains
L[ E()E T (s) 5,2 : )
e IRl —|Pilpix (TL; — Bls)my, =i (TL; — BIs)pix
Assgme also thag, 2 ar_1dV rema_in uniformly bounded for |P |27Tp1F Tim, |ﬁi|7rﬁ7;l—‘;rri]3i><
all time. Then, the pairfA*,C*) is uniformly observable. C|Bilpix T Tams,  —pixT Tapi 22)
By choosing the matrice® and S involved in the CRE7) Dix Bi Dix L Lipix
larger than some constant positive matrix, one ensures that |P |75, T g
o o . [|P |F T, szzx}
the equilibrium(R, &) = (I5,0) of the error system is locally —pix T}
exponentially stable. >0
Proof: To prove that the paifA*(t),C*(t)) is uni- Using (21) and (22) one deduces
formly observable, let us compute the observability Gramia 1 [t+o )
W (t,t+9) as defined by (8). First, in view of the expression 5/ M(s)ds > BN (23)
of A'in (15) one verifies that the transition matrix associated t
with the state matrixd* (i.e. A) is of the form with
a(s, )= | B ) 0 (18) Do IBPm Y [Pl
’ 03 R™(s) o | =123 i=1,2,3 _ o
N = . = > N;
with R(s) € SO(3) the solution to =D 1B Y me | A3
d L =1,2,3 i=1,2,3 (24)
ER(S >t) = R(s)Qs)x, R(s=1t) =13 N, = |PZ-O|27TZ;1. |Pz|plx} _ 7,
One deduces from (16) that . [-_O|Pi|pix fﬁi
Zi = ||Pilmp,  Di
T 1| p; 7 X
cTor= B Oy | B0 (19) . | -~
03 R 03 R In view of (20) and (23), the uniform observability
with condition (8) involving the observability Gramian matrix
7l W (t,t + d) is satisfied if the constant symmetric matiik
|j’7i|27rﬂi_7r |p |73, pz given by (24) is positive definite. Thus, one only needs to
M= iz%ﬁ PRRT ;3 " |P 27| prove that the equation’ Nv = 0, with v = [11, 0] T € RS,
'_ o EET implies thatv = 0 (i.e. vy, = o = 0) is the unique solution.
= 2 Pl = )
1| Pix |P1|2 D pz>< |P|2pz>< One has
i=1,2,3 i=1,2,3

Using (18), (19) and the fact thdt " (s) =
then deduces the observability Gramian

6 /t+6
Wi(t,t +

RT(t) 0(S Lo R(t) 0
:[ 03 RT?)(t)} <5 .M (S)d8> {03 R(Bt)]
with

t+6
i)

lez'lzm IL; (¢, t+0) s,

RT(s)R(t) one

£)C* T (5)C* (5)®(s, t)ds

> | Pilmp i (t, t+0)pix

_|i=1,2,3 i=1,2,3
= BBt t+0) s, = oLt t46)pix
i=1,2,3 i=1,2,3

(21)

3

3
0=v' Nv= Z v Ny = Z |ZOZ-V|2

=1 =1
Vi=1,2,3
= |Bi|mpn +pi x 1y =0, Vi=1,23
= i (—|}°’i|ﬁi x 1/1+V2) =0, Vi=1,23
=3B €R st. vy=FP+P xv, Vi=1,23
= BiPi — B; P + (Pi—Pj) x vy = 0,Yi#], i,j€{1,2,3}
= vl (B = By) x (B x Py)) =0

= v (|P|7Tp1p7 |Pj|ﬂﬁjﬁi) =0

= ZDiV:O,

Since the trlplet(|P1|7rp1p2 + |Ba|mp,pr, | Polmp,ps +
|P3|7rp,§p2, |P3|7rp3p1 + |P1|7rp1p3) is linearly independent
(as a consequence of linear independence of the triplet
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Fig. 5. (Simulation 1) Imaginary paft, of the unit quaternion associated
with the attitude errorR versus time £).

Fig. 3. (Simulation 1) Norm of the position err¢‘q*:| (m) versus time £).
(p1,p2,p3)), one deduces that = 0, which in turn implies and the second one evaluates the effects of measurement
thatp;, x v, =0, Vi = 1,2, 3. Using again the fact that the noise. For both simulations, the following initial estima-
triplet (p1, po, p3) is linearly independent, one deduces thation errors are considered(0) = [4,5,—5]", ¢z(0) =

vy = 0. The remainder of the proof then directly follows by[g,, g, ] (0) = [0.9119, —0.3079, —0.1673, —0.2135]"
application of Theorem 3.1 and Corollary 3.2 in [5]. ® (the unit quaternion associated witR(0), corresponding

to errors in roll, pitch and yaw Euler angles ¢f(deg),

V. SIMULATION RESULTS )
, 10(deg), 30(deg), respectively).
The performance of the proposed observer is demonstrated

through simulation results performed with Matlab SimulinkA. Simulation 1 — ideal measurements
In the simulated scenario, the camera’s posioexpressed  Simulation results for this noise-free case are illusttate
in frame {.A} follows a periodical trajectory varying in all 3 by Figures 2-5. Figures 2 and 4 show the fast convergence
components: of the estimated position and attitude (represented byrEule
£(t) = [15sin(nt/6), 15sin(nt/3), —5 + 2sin(rt/2)] angles) t_o the real values. In a different perspective,ﬂéigu
3 and 5 illustrate the observer performance by showing the
The camera’s attitude is generated so that it is also styongdonvergence to zero of the estimation errors in terms of the
varying as shown in Figure 4. The (unknown) 3D coordinategorm of the position errof§~| and the imaginary pai, of
expressed in fram@A} of the 3 observed source points arethe unit quaternion associated with the attitude effor
given by P, = [2, 4, 2.5]", P, = [-4.5, 1, 1.5]", P3 = . . _
(1, —1.5, 0.6]". B. Simulation 2 — noisy measurements
The matricesS and D! involved in the CRE (7) are  The same scenario as in Simulation 1 is simulated but
interpreted as covariance matrices of the additive noise erow with noise added in the measurements{dfi’ and
the system state and output respectively, and the obserggrthe source point bearings. More precisely, white Gaus-
is tuned in a similar way like Kalman-Bucy filters. Thesian noise with variance di(deg/s) ~ 0.035(rad/s) and
following parameters are choseR(0) = 0.115, D = 10013, 0.2(m/s) are introduced on the measurement$oandV,
S = diag(0.115, I3). respectively. We also try to simulate the image noise by first
Two simulations will be reported next, where the first onedding uncorrelated white Gaussian noise with variance of
corresponds to the case of ideal measurements (i.e. ngnoi8#1 to all components of the source point bearings and
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with the attitude errorR versus time £).

then re-normalizing them ont6? to obtain noisy bearing
measurements.

Simulation results reported in Figures 6—9 show that the
ultimate time evolution of the estimated variables follows[3]
very near to the corresponding real variables and the udima
estimation errors remain relatively small.

(2]

VI. CONCLUSIONS

[4]

The classical problem of pose estimation from bearin !
measurements is re-visited. However, unlike the classicg[F
problem ofessential matrixestimation that requires at least
5 source points, we have shown that 3 source points woulf!
be sufficient to estimate the camera full pose if the camergy,
translational motion is sufficiently exciting. To our knewl
edge, this discovery is a new result. By adopting the rece
Riccati observer design framework developed in [5], we hav
proposed a nonlinear Riccati observer with the support of
rigourous observability and stability analysis togethéthw [
convincing simulation results.

]
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