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Riccati observer design for homography decomposition

Ninad Manerikar, Minh-Duc Hua, Simone De Marco and Tarek Hamel

Abstract— This paper presents a novel approach for tack-
ling the classical problem of homography decomposition. The
novelty of this paper lies in the design of a deterministic
Riccati observer for addressing the homography decomposition
problem instead of solving it on a frame-by-frame basis like
traditional algebraic approaches. By exploiting the temporal
correlation of image sequences and the natural low-pass re-
sponse of the observer, we believe that the resulting estimates
are robust and less prone to measurement noise. Moreover,
an extensive observability analysis that points out a sufficient
uniform observability condition under which local exponential
stability is granted has been carried out. The large domain of
convergence and good performance of the proposed observer
have been demonstrated through simulation results.

I. INTRODUCTION

When a robotic vehicle equipped with a monocular camera
navigates in an environment composed of (near) planar
surfaces such as man-made structures or a ground terrain
distantly viewed by an unmanned aerial vehicle, then the
planar nature of the environment can be exploited in vi-
sion processing algorithms as well as vision-based control
algorithms. Two different images of the same planar surface
are typically related by the so-called homography mapping
that essentially encodes the camera’s pose (i.e. position and
orientation), the distance between the camera and the scene
and its normal vector in one single matrix [3]. Homographies
have been extensively used in robot control as a vision
primitive, and one of the most successful visual servo control
paradigms is the 2 1

2 D approach proposed by Malis et al.
[5] that relies on the extraction of the camera displacement
(i.e. orientation and translation up to a scale factor) and the
scene’s normal vector from homography (assuming that the
camera’s intrinsic parameters are known). This process of ex-
traction is termed as Euclidean homography decomposition,
also called Euclidean reconstruction from homography.

Classical approaches for homography decomposition such
as Faugeras SVD-based [1], Zhang SVD-based [9] algo-
rithms use the singular value decomposition to obtain nu-
merical solutions. Malis and Vargas [6] lately solved the
homography decomposition problem with an analytical ap-
proach, making it more suitable for real-time robot control
applications. In that work, not only analytical expressions of
the decomposition elements are provided, valuable insights
regarding the robustness of vision-based control laws are also
analyzed. In summary, to our knowledge all existing homog-
raphy decomposition methods belong to algebraic category
that only focuses on solving the homography decomposition
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problem on a frame-by-frame basis, but not on filtering mea-
surement noise. The precision of the decomposition elements
(particularly of the estimated normal vector) is thus highly
prone to noise, especially when the camera’s translation
is small [6]. The problem even becomes degenerate when
the latter vanishes. Robotic vehicle applications, however,
provide temporal sequences of images together with inertial
measurements (from an embedded Inertial Measurement
Unit). Therefore, it seems natural to exploit the temporal cor-
relation rather than try to solve homography decomposition
for each pair of image frames.

In this paper, a novel direction for solving the homog-
raphy decomposition by exploiting the system dynamics is
explored. The proposed solution is developed in the form of
a nonlinear observer derived from the deterministic Riccati
observer design framework recently proposed in [2]. We
believe that the resulting estimated quantities would be less
noisy since the noise can be filtered through a natural low-
pass response of the observer. Moreover, the challenging
theoretical issue related to the uniform observability, under
which local exponential stability is granted, has been care-
fully addressed, and simulation results demonstrate a good
performance and a large attraction domain of the proposed
observer.

II. THEORETICAL BACKGROUND

A. Notation

• {e1, e2, e3} denotes the canonical basis of R3 and the
identity matrix of Rn×n is denoted as In.
• (·)× denotes the skew-symmetric matrix associated with
the cross product, i.e. u×v = u× v,∀u, v ∈ R3.
• πu , I3 − uu>, ∀u ∈ S2, is the projection operator onto
the plane orthogonal to u.

B. Brief overview of the Riccati observer design framework

The observer proposed in this paper is based on the Riccati
design framework recently developed in [2]. The following
nonlinear system (which is a particular case of the class of
systems considered in [2]) is investigated:{

Ẋ = A(t)X + U +O(|X|2) +O(|X||U |)
Y = C(X, t)X +O(|X|2)

(1)

with state X = [X>1 , X
>
2 ]>, X1 ∈ Bn1

r (the closed ball
in Rn1 of radius r), X2 ∈ Rn2 , output Y ∈ Rm, A(t) a
continuous matrix-valued function uniformly bounded with
respect to (w.r.t.) t in the form

A(t) =

[
A1,1(t) 0n1×n2

A2,1(t) A2,2(t)

]
(2)



and C(X, t) ∈ Rm×(n1+n2) a continuous matrix-valued
function uniformly continuous w.r.t. X and uniformly
bounded w.r.t. t. Then, apply the input

U = −PC>DY (3)

with P ∈ R(n1+n2)×(n1+n2) a symmetric positive definite
matrix solution to the following continuous Riccati equation
(CRE):

Ṗ = AP + PA> − PC>D(t)CP + S(t) (4)

with P (0) ∈ R(n1+n2)×(n1+n2) a symmetric positive definite
matrix, D(t) ∈ Rm×m bounded continuous symmetric pos-
itive semi-definite, and S(t) ∈ R(n1+n2)×(n1+n2) bounded
continuous symmetric positive definite.

Then, from Theorem 3.1 and Corollary 3.2 in [2], X = 0 is
locally exponentially stable (LES) when both matrices D(t)
and S(t) are larger than some constant positive matrix and
the pair (A?(t), C?(t)), with A?(t) , A(t), C?(t) , C(0, t),
is uniformly observable.

C. Recalls of uniform observability

Definition 1 (uniform observability) The pair (A(t), C(t))
is called uniformly observable if there exist δ, µ > 0 such
that ∀t ≥ 0

W (t, t+δ) ,
1

δ

∫ t+δ

t

Φ>(t, τ)C>(τ)C(τ)Φ(t, τ)dτ ≥ µIn
(5)

with Φ(t, τ) the transition matrix associated with A(t), i.e.
such that d

dtΦ(t, τ) = A(t)Φ(t, τ) with Φ(t, t) = In.

W (t, t + δ) is called the observability Gramian. The
following lemma [8] establishes a sufficient condition of
uniform observability.

Lemma 1 (see [8]) If there exists a matrix-valued function
M(·) of dimension (p×n) (p ≥ 1) composed of row vectors
of N0 = C, Nk = Nk−1A+ Ṅk−1, k = 1, · · · such that for
some positive numbers δ̄, µ̄ and ∀t ≥ 0

1

δ̄

∫ t+δ̄

t

det
(
M>(τ)M(τ)

)
dτ ≥ µ̄ (6)

then W (t, t+ δ) satisfies condition (5).

III. PROBLEM STATEMENT

A. Homography decomposition problem

Consider a moving camera observing a textured planar
scene. Let {A} (resp. {B}) denote the reference (resp.
current) right-hand frame attached to the camera at the
reference (resp. current) view. Let ξ ∈ R3 denote the position
of frame {B} w.r.t. frame {A} expressed in frame {A}. The
orientation of frame {B} w.r.t. frame {A} is represented by
a rotation matrix R ∈ SO(3). The pose of the camera (R, ξ)
determines a rigid body transformation from {B} to {A}.

The so-called Euclidean homography that maps Euclidean
coordinates of the scene’s points from {B} to {A} is given
by (see Fig. 1)

H = R+
1

d
ξη> (7)

Fig. 1. Euclidean homography relating the camera’s pose, the distance to
the plane and the plane’s normal vector by H = R+ 1

d
ξη>.

where d and η are, respectively, the normal distance from
the origin of frame {B} to the observed scene and the
normal vector pointing towards the scene expressed in {B}.
Assume that the camera is well calibrated, then the Euclidean
homography can be directly computed from the so-called
projective homography or image homography estimated from
image point correspondences (see [6] for details).

The well-known problem of Euclidean homography de-
composition consists in decomposing the matrix H into the
elements R, ξ

d and η. Note that expression (7) of H can be
rewritten as

H = R(I3 + ξ̄η>) (8)

with
ξ̄ :=

R>ξ

d
(9)

Since ξ
d can be computed as Rξ̄, decomposing H into

(R, ξd , η) is equivalent to decomposing it into (R, ξ̄, η).
In this paper, we propose to explore a novel direction of

solving this homography decomposition problem dynami-
cally by exploiting the differential equations guiding these
variables (i.e. R, ξ̄, η). The underlying idea is to design an
observer allowing for an exponential convergence rate of the
state estimates (R̂, ˆ̄ξ, η̂) to the real state variables (R, ξ̄, η).

B. System equations and measurements for observer design

The rigid body kinematics of (R, ξ) are given by{
Ṙ = RΩ×

ξ̇ = RV
(10)

with V ∈ R3 and Ω ∈ R3 denoting the linear and angular
velocities expressed in {B}.

Since the scene is stationary the normal vector η̊ ∈ S2

expressed in the reference frame {A} is constant. Since η =
R>η̊ one thus deduces

η̇ = −Ω×η (11)

Using (9) and (10), one verifies that

˙̄ξ = −Ω×ξ̄ +
V

d
− ḋ

d
ξ̄

= (−Ω× + φ⊥I3)ξ̄ + φ

(12)



where φ := V
d and φ⊥ := − ḋd = V >η

d are the so-called
translational optical flow and optical flow divergence, re-
spectively. Both the translational optical flow and the optical
flow divergence are assumed to be measured (see our prior
work on how these quantities can be estimated [7]). Assume
also that the angular velocity Ω is also measured using an
embedded 3-axes gyrometers.

In this paper we focus on developing a nonlinear observer
allowing for dynamically decomposing the homography ma-
trix H into (R, ξ̄, η) by exploiting the system dynamics (10)–
(12), i.e. 

η̇ = −Ω×η

Ṙ = RΩ×
˙̄ξ = (−Ω× + φ⊥I3)ξ̄ + φ

(13)

and using the homography measurement equation (8) to-
gether with the measurements of (Ω, φ, φ⊥).

IV. OBSERVER DESIGN

A. Observer derivation

Inspired by [4], we avoid using minimal parametriza-
tion techniques such as spherical coordinate system to
parametrize the normal unit vector η – an element of S2.
Instead, an auxiliary rotation matrix Q ∈ SO(3) is intro-
duced such that

η = Q>e3

The underlying idea is to over-parameterize an element of
S2 (dimension 2) by an element of SO(3) (dimension 3).
The advantage of such type of parameterization is that it
reduces the complexities of the error system in first order
approximations that arise due to minimal parameterization
techniques for elements on S2 (see [4] for more thorough
discussions).

In view of the dynamics (11) of η, one deduces a possi-
bility of the dynamics of Q as

Q̇ = QΩ× (14)

In view of (13) and (14), the following general form of
observer is proposed

˙̂
Q = Q̂Ω× − σQ×Q̂
˙̂
R = R̂Ω× − R̂σR×
˙̄̂
ξ = (−Ω× + φ⊥I3) ˆ̄ξ + φ− σξ̄

(15)

with initial conditions Q̂(0), R̂(0) ∈ SO(3), ˆ̄ξ(0) ∈ R3

and with innovation terms σQ, σR, σξ̄ ∈ R3 to be designed
thereafter. The estimated normal vector is then given by

η̂ := Q̂>e3

The following error variables are defined:

Q̃ := QQ̂>, R̃ := R̂>R, ˜̄ξ := ξ̄ − ˆ̄ξ (16)

Then the objective of observer design consists in stabilizing
(Q̃e3, R̃, ξ̃) about (e3, I3, 0).

From (10), (15) and (16), one verifies that the error system
is given by 

˙̃Q = Q̃σQ×
˙̃R = R̃Ω× − Ω×R̃+ σR×R̃

˙̄̃
ξ = (−Ω× + φ⊥I3) ˜̄ξ + σξ̄

(17)

For analysis purposes let us assume that ξ̄, Ω and φ⊥ re-
main bounded for all time, which is a completely reasonable
assumption.

The following step involves developing first order approx-
imations of the error system (17) and of the measurement
equation (8). From the Rodrigues’ formula, one deduces the
following first order approximations of Q̃ and R̃

Q̃ = I + λQ̃× +O(|λQ̃|
2)

R̃ = I + λR̃× +O(|λR̃|
2)

(18)

with λQ̃, λR̃ ∈ S2. One then deduces from the first two
equations of (17) and (18) that in first order approximations

λ̇Q̃ = σQ +O(|λQ̃||σQ|) (19)

and

λ̇R̃×=λR̃×Ω×−Ω×λR̃×+σR×+O(|λR̃|
2)+O(|λR̃||σR|)

= (λR̃ × Ω)× + σR× +O(|λR̃|
2) +O(|λR̃||σR|)

which yields

λ̇R̃ = −Ω×λR̃ + σR +O(|λR̃|
2) +O(|λR̃||σR|) (20)

As for the measurement equation (8), this homography
expression can be developed in first order approximations as

R>H − I3 = ξ̄η> = ξ̄(Q>e3)>

⇒ R̃>R̂>H − I3 = (˜̄ξ + ˆ̄ξ)(Q̂>Q̃>e3)>

⇒ (I3−λR̃×)R̂>H−I3
= (˜̄ξ + ˆ̄ξ)(Q̂>(I3 − λQ̃×)e3)> +O(|λQ̃|2) +O(|λR̃|2)

⇒(R̂>H−I3)−λR̃×(R̂>H)

= ˆ̄ξ(Q̂>e3)> + ˜̄ξ(Q̂>e3)> + ˆ̄ξ(Q̂>e3×λQ̃)>

+O(|λQ̃|2) +O(|λR̃|2)

⇒ (R̂>H−I3)− ˆ̄ξ(Q̂>e3)>

= λR̃×(R̂>H)+ ˜̄ξ(Q̂>e3)>−λQ̃,2
ˆ̄ξ(Q̂>e1)>+λQ̃,1

ˆ̄ξ(Q̂>e2)>

+O(|λQ̃|2) +O(|λR̃|2)

Note that the last equality only involves the first two com-
ponents of λQ̃ (i.e. λQ̃,1 and λQ̃,2) and can be equivalently
written as

Y :=

(R̂>H − I3)(Q̂>e3)− ˆ̄ξ

(R̂>H − I3)(Q̂>e2)

(R̂>H − I3)(Q̂>e1)



=


−
(
(R̂>H)(Q̂>e3)

)
×λR̃ + ˜̄ξ

−
(
(R̂>H)(Q̂>e2)

)
×λR̃ + λQ̃,1

ˆ̄ξ

−
(
(R̂>H)(Q̂>e1)

)
×λR̃ − λQ̃,2

ˆ̄ξ

+O(|λQ̃|
2)+O(|λR̃|

2)

(21)



From (19), (20), the third equation of (17), and (21), one
obtains in first order approximations the system in compact
form (1) with output Y defined in (21) and

X :=


λQ̃,1
λQ̃,2
λR̃
˜̄ξ

 , U :=


σQ,1
σQ,2
σR
σξ̄



A(t) :=


0 0 01×3 01×3

0 0 01×3 01×3

03×1 03×1 −Ω× 03×3

03×1 03×1 03×3 −Ω× + φ⊥I3


C(X, t) :=

03×1 03×1 −
(
(R̂>H)(Q̂>e3)

)
× I3

ˆ̄ξ 03×1 −
(
(R̂>H)(Q̂>e2)

)
× 03×3

03×1 − ˆ̄ξ −
(
(R̂>H)(Q̂>e1)

)
× 03×3



(22)

The fact that X = [X>1 , X
>
2 ]> with X1 :=

[λQ̃,1, λQ̃,2, λ
>
R̃

]> ∈ B5
2 (the closed ball in R5 of radius equal

to 2), X2 := ˜̄ξ ∈ R3, together with the particular form of
the matrix A as (2), allows one to obtain the expression of
the innovation terms from the input U calculated according
to (3) and (4) where the matrices D and S (involved in (4))
are chosen larger than some constant positive matrix.

B. Observability and stability analysis

According to [2] the equilibrium X = 0 is locally
exponentially stable, provided that the pair (A?(t), C?(t))
with A?(t) = A(t) and C?(t) := C(0, t) is uniformly
observable. By setting X = 0 and looking at (22) one obtains

C? =

03×1 03×1 −
(
(I3 + ξ̄η>)(Q?>e3)

)
× I3

ξ̄ 03×1 −
(
(I3 + ξ̄η>)(Q?>e2)

)
× 03×3

03×1 −ξ̄ −
(
(I3 + ξ̄η>)(Q?>e1)

)
× 03×3


=

03×1 03×1 −
(
η + ξ̄

)
× I3

ξ̄ 03×1 −
(
Q?>e2

)
× 03×3

03×1 −ξ̄ −
(
Q?>e1

)
× 03×3


with Q? ∈ SO(3) satisfying Q?>e3 = η and Q̇? = Q?Ω×.

For later use, let q?i ∈ S2, i = 1, 2, 3, denote the i-th row
of Q? (i.e. q?i = Q?>ei).

Theorem 1 Assume that there exists a positive number ν
such that ∀t > 0

1

δ

∫ t+δ

t

|ξ̄(τ)× η(τ)|dτ ≥ ν (23)

Assume also that Ω, φ, ξ̄ remain uniformly bounded. Then,
the pair (A∗, C∗) is uniformly observable. Assume that
the matrices D and S involved in (4) are chosen larger
than some constant positive matrix. Then, the equilibrium
(Q̃e3, R̃, ξ̃) = (e3, I3, 0) of the error system is locally
exponentially stable.

Proof: According to Lemma 1 by choosing M = C?,
then the pair (A∗, C∗) is uniformly observable if ∃δ, µ > 0
such that

1

δ

∫ t+δ

t

det
(
C?>(τ)C?(τ)

)
dτ ≥ µ, ∀t > 0 (24)

We show thereafter that condition (23) is sufficient to guar-
antee (24). One verifies that

C?>C?=


|ξ̄|2 0 −ξ̄>q?2× 01×3

0 |ξ̄|2 ξ̄>q?1× 01×3

q?2×ξ̄ −q?1×ξ̄ −
(
η+ξ̄

)2
×−q

?2
1×−q?22×

(
η + ξ̄

)
×

03×1 03×1 −
(
η+ξ̄

)
× I3


which can be rewritten as

C?>C? = |ξ̄|2
[

I2
1
|ξ̄|2B

1
|ξ̄|2B

> 1
|ξ̄|2G

]
where the expressions of B ∈ R2×6 and G ∈ R6×6 can be
easily deduced. Thus, one deduces

det
(
C?>C?

)
= |ξ̄|4det

(
G− 1

|ξ̄|2
B>B

)
= |ξ̄|4det

[
−
(
η+ξ̄

)2
×−q

?
1×π ξ̄

|ξ̄|
q?1×−q?2×π ξ̄

|ξ̄|
q?2×

(
η + ξ̄

)
×

−
(
η + ξ̄

)
× I3

]
= |ξ̄|4det

(
− q?1×π ξ̄

|ξ̄|
q?1× − q?2×π ξ̄

|ξ̄|
q?2×

)
= |ξ̄|4det

(
Q?>

(
− e1×πQ?ξ̄

|ξ̄|
e1× − e2×πQ?ξ̄

|ξ̄|
e2×

)
Q?
)

= |ξ̄|4det
(
− e1×πη?

ξ̄
e1× − e2×πη?

ξ̄
e2×

)
= |ξ̄|4det

(
e3e
>
3 + η?ξ̄η

?>
ξ̄ + (η?ξ̄ × e3)(η?ξ̄ × e3)>

)
= |ξ̄|4|η?ξ̄ × e3|4

= |ξ̄ × η|4

with η?
ξ̄

:= Q?ξ̄
|ξ̄| . From the Cauchy-Schwarz integral inequal-

ity, one deduces (using (23))∫ t+δ

t

|ξ̄(τ)× η(τ)|4dτ ≥ 1

δ

(∫ t+δ

t

|ξ̄(τ)× η(τ)|2dτ
)2

≥ 1

δ3

(∫ t+δ

t

|ξ̄(τ)× η(τ)|dτ
)4

≥ δν4

One finally deduces (24) with µ = ν4. The remainder of the
proof then directly follows by application of Theorem 3.1
and Corollary 3.2 in [2].

V. SIMULATION RESULTS

In this section the robustness and performance of the pro-
posed observer is demonstrated through simulation results by
considering two scenarios in particular. For the simulations,
we consider that a monocular camera is attached to an aerial
drone performing some specific trajectories and observing
a planar target. In the first scenario, the drone realizes an
aggressive periodical trajectory and noise is introduced to
the measurements used in the proposed observer, namely H ,
φ , φ⊥ and Ω. While in the second scenario, we consider the
case where the camera trajectory passes through the reference
position (i.e. the camera translation vanishes) again with the
introduction of noise in the measurements.

With Matlab Simulink, we try to simulate the image noise
by introducing white Gaussian noise of the level of about
10 percent of the real values on each individual component
of the homography matrix H . We also introduce white
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Gaussian noise of variance of 1(deg/s), 0.1 and 0.1 on
the measurements of Ω, φ and φ⊥, respectively. In both
simulated scenarios, the matrices S and D−1 involved in the
CRE (4) are interpreted as covariance matrices of the additive
noise on the system state and output respectively, and the
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Fig. 4. Scenario 1 – Estimation error of the normal vector estimate
represented by 1− η̂T η

observer is tuned in a similar way like Kalman-Bucy filters.
Thus, the following parameters are chosen: P (0) = 50I9,
D = 100I9, S = diag(0.01752I2; 0.01752I3; 0.12I3).

The following initial estimation errors are
considered for both scenarios: ˜̄ξ(0) = [10,−5, 5]>,
quatR̃(0) = [0.0436, 0.2586, 0.965, 0]> (corresponding
to errors in roll, pitch and yaw Euler angles of
178.7(deg), −4.8(deg), −150(deg), respectively),
quatQ̂(0) = [0.9239, 0.3827, 0, 0]> (corresponding to
an angle error of 45(deg) between η(0) and η̂(0)), where
the scene is chosen such that η̊ = e3 and d̊ = 3(m).

Scenario 1: For this particular case the drone is commanded
to perform a complex periodical trajectory in the inertial
frame given by
ξ=[10cos(t/

√
10)−4, 10sin(t/

√
10)−4, 2sin(0.3πt/2)+2]>

The time evolutions of the estimated and real attitudes
(represented by Euler angles), the attitude error estimate
(represented by trace(I − R̃)) as well as the scaled position
error estimate and the estimation error of the normal vector
to the planar scene (represented by 1 − η̂>η) are shown in
Figs 2–4, respectively. From these figures, it can be clearly
seen that all the estimated variables converge to the real ones
after a short transition period of a few miliseconds despite the
large initial estimation errors. The above results also show
that the proposed observer is robust to noisy measurements
as the latter marginally affects the overall performance of the
proposed observer.

Scenario 2: In this case the drone performs a rectilinear
sinusoidal trajectory that passes through the reference posi-
tion (i.e. the camera translation vanishes) with added noise
on the measurements of H , φ, φ⊥, and Ω as in the previous
simulation. The reference trajectory in the inertial frame is
given by ξ = [5sin(πt/3), 0, 0]>(m). It is worth noting that
in such a degenerate case (i.e. when the camera translation
vanishes) all traditional algebraic approaches fail to obtain a
correct estimate of the normal vector (there exists in fact an
infinity of solutions) whereas our approach still works since
the uniform observability condition (23) is always satisfied.



This is also because of the fact that the state estimates are
propagated over time. From Figs. 5–7 it can be clearly seen
that for this degenerate case and even with the addition of
noise to the system measurements, the proposed observer is
robust enough to provide a convincing performance in terms
of convergence rate, smooth transient phase, and filtering of
measurement noise.
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Fig. 5. Scenario 2 – Estimated and real attitudes represented by roll, pitch
and yaw Euler angles (deg) versus time (s) (LEFT) and zooms (RIGHT)

VI. CONCLUSIONS

In this paper a novel approach for solving the classical
problem of homography decomposition has been proposed
by designing a nonlinear Riccati observer. To our knowledge
this is the first study to address the homography decom-
position problem by exploiting the system dynamics. By
exploiting the temporal correlation of image sequences and
the natural low-pass response of the observer, the resulting
estimates are robust and less prone to measurement noise.
Exhaustive observability and stability analysis has been car-
ried out in order to support the proposed observer. At the end
convincing simulation results have been presented to show
the performance of the observer.
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