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Position, Velocity, Attitude and Accelerometer-Bias Estimation from
IMU and Bearing Measurements

S. de Marco, M-D. Hua, T. Hamel and C. Samson

Abstract— This paper considers the problem of estimating the
position, attitude and velocity of a rigid-body in a 3D space by
fusing bearing measurements provided by a monocular camera
with gyroscopic and accelerometer measurements provided by
an Inertial Measurement Unit (IMU). The proposed determinis-
tic observer is accompanied with an observability analysis, that
points out the minimum number of image points (bearings)
along with their configuration in the inertial frame, under which
local exponential stability is guaranteed. The performance of
the observer is demonstrated by performing experiments on a
test-bed inertial-Visual sensor.

I. INTRODUCTION

The problem of full pose (position and attitude) estimation
of a rigid body plays a major role for autonomous navigation
of robotic vehicles. The orientation of a rigid body can be
estimated from the output of low cost Inertial Measurement
Unit (IMU) [18], whereas translational velocity and position
can not be estimated from accelerometer measurement via
sole integration due to unbounded growth in the estimation
error caused by the sensor noise and bias [22].

In order to circumvent this problem, IMUs are usually
complemented by other sensors such as Global Positioning
System (GPS) which allow to bound the error [10]. However,
in many applications of interest such as indoors and urban
canyon environments the GPS signal may be unreliable
or heavily degraded. For this reason, the usage of other
type of sensors such as laser scanners (LIDAR), Ultra-
Wide Band sensors (UWB), monocular cameras and stereo
cameras have been considered. Early approaches for state
estimation were based on extended Kalman filters (EKF) [4],
unscented Kalman filters (UKF) [16] and particle filters [1].
The last fifteen years have witnessed an increased interest
in deterministic non-linear observer design for mechanical
systems with symmetry that can provide stronger stability
results with large domain of attraction [2], [8], [19]. Based on
the type of sensors considered for the particular application
at hand, several research directions have been investigated.

For instance, in the particular case of landmarks measure-
ments (which can be retrieved by using depth cameras, range
measurements and bearings, stereo cameras) an invariant
extended Kalman filter (IEKF) on the group of double
homogeneous matrices SE2(3) has been proposed in [6]. In
the same context, an observer on the Lie group of rigid body
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motions SE(3) based on the Lagrange-d’Alembert principle
has been derived in [15]. In case of velocity and landmark
measurements a non-linear observer on SE(3) has been
presented in [21]. Recently, a non-linear observer that esti-
mates the position, velocity, attitude and gyro bias by fusing
multiple measurements such as full position in the inertial
frame (GPS), range (UWB), bearings in the inertial frame
(MOCAP) and altimeter along with IMU measurements has
been considered in [7].

In case of bearing measurements in the body frame,
the estimation problem is referred to as Perspective-n-Point
problem (PnP). Classical methods for the solution of the
PnP problem are based on algebraic approaches [11], [9]
and iterative algorithms based on gradient search [13], [17].
The PnP problem has been subsequently studied in the
context of observer design. In particular, in [14] an UKF like
filter is derived considering only one source point and IMU
measurements. The convergence of this observer depends
on the motion of the system, since an implicit triangulation
is required. In [3], the authors present a minimum-energy
state estimator with constraints considering bearing-only
measurements. A non-linear observer evolving on SE(3)
from bearing, angular and linear velocity measurements is
derived in [5]. In a prior work [12], a Riccati observer
for the PnP problem based on angular and linear velocities
measurements has been proposed.

In this paper, we propose a deterministic Riccati observer,
based on the general framework presented in [12], providing
pose, linear velocity and accelerometer-bias estimation by
fusing IMU and bearings measurements, without relying on
linear velocity measurements. The present work is motivated
by a large number of applications in which linear velocity
measurements are not available, and a reliable estimate of
the linear velocity and of the pose is needed for control
purposes. This is the case of low cost small-scale vehicles
that operates in GPS denied environment for which the cost
of body velocity sensors such as sensors based on Doppler
effect or ad-hoc inertial velocity sensor systems are usually
prohibitive.

II. PRELIMINARY MATERIAL
A. Notation

We denote by Rn the n-dimensional Euclidean space and
by |x| the Euclidean norm of the vector x ∈ Rn. Let
Bnr := {x ∈ Rn : |x| ≤ r} denotes the closed ball in
Rn with radius r. The null matrix and the identity matrix
of dimension n× n are denoted respectively by 0n and In.
The null matrix of dimension m × n is denoted by 0m×n .



The Special Orthogonal group of order three is denoted by
SO(3) := {R ∈ R3×3 : det(R) = 1, R>R = RR> = I3}.
For any x, y ∈ R3, we denote by x× the skew symmetric
matrix associated to the cross product i.e. x×y = x × y,
where × is the vector cross product in R3. Let Sn := {x ∈
Rn+1 : |x| = 1} denotes the n-dimensional sphere embedded
in Rn+1 with radius equal to one. For any p ∈ S2, we denote
by Πp := (I−pp>) the projection onto the tangent space of
the unit sphere S2 at point p.

B. Riccati Observer for a Special class of Systems

The observer proposed in this paper is based on the Riccati
Observer framework developed in [12]. In particular we
consider the following class of nonlinear systems whose state
x := [x̃>1 , x

>
2 ], with x̃1 ∈ Bn1

r and x2 ∈ Rn2 , and outputs
y ∈ Rm evolve according toẋ = A(x̃1, t)x+

[
u1

u2

]
+O(|x̃1|2) +O(|x̃1||u1|)

y = C1(x̃1, x2, t)x̃1 + C2(x̃1, x2, t)x2

(1)

where A(x̃1, t) is a continuous matrix-valued function uni-
formly bounded w.r.t. t and uniformly continuous w.r.t. x̃1

of the form

A(x̃1, t) =

[
A11(t) 0n1×n2

A21(x̃1, t) A22(t)

]
, (2)

and C := [C1, C2] ∈ Rm×(n1+n2) is a continuous matrix-
valued function uniformly bounded w.r.t. t and uniformly
continuous w.r.t. x.

In the sequel x̃1 will represent the attitude error between
the camera orientation and the estimated one. We recall here
that for a Riccati observer design one has to use a minimal
parametrization of SO(3), however there are many ways to
minimally parameterize SO(3) (e.g. Euler angles, vector part
of Rodriques unit quaternion, Cardan angles). Consequently,
system (1) can be seen as a handy way to take into account
all the possible parameterizations, with the related nonlinear
errors and first-order approximations, without choosing a
priori one of them.

Let x̂2 be an estimate of x2 and consider the following
observer

u1 = −K1(y − C2x̂2)
˙̂x2 = A22x̂2 + u2 +K2(y − C2x̂2)

Ṗ = AP + PA> − PC>Q(t)CP + V (t)

(3)

with P (0) a symmetric positive definite matrix, Q and V
bounded continuous symmetric positive semidefinite matrix-
valued functions, and K := [K>1 ,K

>
2 ]> given by

K = k(t)PC>Q, with 0.5 ≤ k(t) ≤ kmax <∞.

Let us recall the definition of uniform observability of the
following Linear Time Varying (LTV) system,{

ẋ = Ā(t)x+ B̄(t)u

y = C̄(t)x
(4)

which is instrumental for the stability of the observer in (3).

Given a continuous n × n−dimensional matrix-valued
function Ā(t), a continuous m × n−dimensional matrix-
valued function C̄(t), and a continuous m×m−dimensional
matrix-valued function Q(t) > 0 (a positive definite matrix
for all t ∈ R+), the Riccati observability Gramian associated
with the triplet (Ā, C̄, Q) is the non-negative definite matrix-
valued function defined by

W Ā,C̄
Q (t, t+ δ) :=

1

δ

∫ t+δ

t

Φ>(s, t)C̄>(s)Q(s)C̄(s)Φ(s, t)ds

(5)
where Φ(t, t0) is the transition matrix associated with Ā(t),
i.e. d

dtΦ(t, t0) = Ā(t)Φ(t, t0), Φ(t0, t0) = I .
If Ā(t) and C̄(t) are bounded and if there exists δ > 0

and ε > 0 such that W Ā,C̄
In

(t, t+ δ) > εIn for all t ≥ 0, then
we say that the pair (Ā, C̄) is uniformly observable.

Define x̃2 := x2 − x̂2, then, from Corollary 3.2 in [12],
(x̃1, x̃2) = (0, 0) is locally exponentially stable if Q(t) and
V (t) are both larger than some positive matrix and the pair
(A(0, t), C(0, x2, t)) is uniformly observable.

C. Measurements and System Equations
Let {I} denotes an inertial (fixed) frame of reference and

{B} denotes a frame of reference attached to the camera.
Let R ∈ SO(3) denote the orientation of the camera frame
{B} w.r.t. the inertial frame {I}. Let ξ̄ and v̄ denote the
position and the velocity of the camera frame {B} w.r.t.
{I} expressed in {B}, respectively. Then, the camera second
order kinematics equation are

Ṙ = Rω×
˙̄ξ = −ω×ξ̄ + v̄

˙̄v = −ω×v̄ + aB + gR>eg

(6)

where aB denotes the specific acceleration expressed in the
camera frame {B}, g denotes the gravitational acceleration
and the unit vector eg denotes the gravitational acceleration
direction expressed in the inertial frame.

The camera is equipped with a strap-down 6DOF IMU
composed of a 3-axis gyroscope, which measures the angular
velocity ωm ∈ R3, and a 3-axis accelerometer, which mea-
sures the specific acceleration amB ∈ R3; both measurements
are expressed in the camera frame {B}. The rate gyros and
accelerometer are usually modeled as

ωm = ω − bw − µw
amB = aB − ba − µa

where µw, µa denote stochastic additive noises and bw, ba
denote constant or slowly time-varying biases.

In this paper we ignore the noise (µw = µa = 0) and
for the sake of simplicity we assume that the gyro bias is
zero (bw = 0) or already well calibrated by averaging the
gyros measures when the IMU is at rest. The accelerometer
calibration is more difficult because it cannot be performed
off-line in a resting position and an incorrect calibration can
yield drifts in the error (double integration). The following
simplified sensor model is considered in this paper

ωm = ω

amB = aB − ba, ḃa = −ω×ba.
(7)



We assume to have a collection of n source points whose
coordinates P̊i w.r.t. the inertial frame {I} expressed in the
basis of {I} are known, and whose calibrated projective
coordinates ppi onto the camera plane expressed w.r.t. the
camera frame in the basis of {B} are also known, see Fig.
1. Denoting by Pi the coordinates of the ith source point
w.r.t. the body-frame {B} expressed in {B}, and by zi its
third component, one verifies ppi = Pi/zi.

Fig. 1. Intuitive representation of inertial coordinates P̊i, planar projective
coordinates ppi and spherical projective coordinates pi of the ith source
point.

Rather than using the perspective outputs typically used in
computer vision algorithms, we use direction output repre-
sentation of the measurement pi := ppi /|p

p
i | corresponding to

projection onto a virtual spherical image plane and differing
from perspective outputs only in the scaling. The unitary
vector pi characterizes the bearing (direction) of Pi in the
basis of {B}. Let ξ represent the position of the camera frame
with respect to the inertial frame expressed in {I}, then one
verifies

pi :=
ppi
|ppi |

= −R> ξ − P̊i
|ξ − P̊i|

.

III. RICCATI OBSERVER DESIGN

A. Problem Formulation and observer design

The problem at hand is to provide an estimate of ξ̄, v̄,
ba and R given the measurement of the specific acceleration
amB , the gyro measurement ωm, and given a set of source
points whose positions in the inertial frame P̊i and bearings
pi are known.

To this purpose, we proceed by showing that the system
considered can be written in the form (1). In order to do so, as
already mentioned in the previous section, we have to define
the attitude error between the camera orientation and the
estimated one, and then consider a minimal parametrization
of the three-dimensional Lie Group SO(3).

Let R̂ be an estimate of R and consider the following
pre-observer attitude kinematics

˙̂
R = R̂σ×, (8)

where σ is an innovation term to be designed.

Denoting by R̃ := R̂>R the attitude error, one verifies
that the error kinematics satisfy

˙̃R = R̃(ω − R̃>σ)×,

and by considering the gyros measurement model in (7) one
has

˙̃R = R̃(ωm − R̃>σ)×. (9)

The attitude parametrization here chosen is the vector part
λ̃ ∈ B3

1 of the Rodriguez unit quaternion Λ̃ = (λ̃0, λ̃), where
λ̃0 ∈ B1

1 denotes the scalar part. The rotation matrix error R̃
is related to Λ̃ by the Rodriguez formula

R̃ = I3 + 2λ̃×(λ̃0I3 + λ̃×).

Then, in view of (9) and using the fact that λ̃0 = 1 − |λ̃|2,
one has{

R̃ = I3 + 2λ̃× +O(|λ̃|2)

2
˙̃
λ = ω̃ − ωm× 2λ̃+O(|λ̃||ω̃|) +O(|λ̃|2)

(10)

where ω̃ := ωm − σ.
Concerning the dynamics of v̄ one has

˙̄v = −ω× + gR>R̂R̂>eg + aB
= −ω× + gR̃>R̂>eg + aB .

Substituting R̃> with the first order approximation in (10)
yields

˙̄v = −ω×v̄ + gR̂>eg + aB + g(R̂>eg)×2λ̃+O(|λ̃|2),

and by taking into account the sensor model one obtains

˙̄v = −ωm× v̄ + gR̂>eg + amB + ba + g(R̂>eg)×2λ̃+O(|λ̃|2).
(11)

Note that the term g(R̂>eg)×2λ̃ that appears in the
equation above represents a coupling term between the
angular and the linear dynamics. This term will appear in
the lower diagonal part of the A(x̃1, t) matrix in (1), namely
A21(x̃1, t), making the problem of computing the transition
matrix associated with A(x̃1, t) very difficult. In order to
simplify the subsequent analysis we consider the following
change of variable

b̄a := ba + g(R̂>eg)×2λ̃. (12)

Let ˆ̄ba denotes an estimate of b̄a, and denote by ˜̄ba := b̄a−ˆ̄ba
the new bias estimation error. One verifies that in steady
state (λ̃, ˜̄ba) → (0, 0) implies b̄a = ba, and thus the new
change of variable is a valid choice for the accelerometer
bias estimation. We proceed, then, by computing the first
order approximation of the time derivative of the new bias

˙̄ba = d
dt

(
ba + g(R>eg)×2λ̃+O(|λ̃|2)

)
= −ω×ba − ω×g(R̂>eg)×2λ̃+ g(R̂>eg)ω̃+

+O(|λ̃||ω̃|) +O(|λ̃|2) + d
dtO(|λ̃|2),

one verifies from (10) that d
dtO(|λ̃|2) = O(|λ̃||ω̃|)+O(|λ̃|2),

bearing in mind the expression of b̄a in (12) and by taking
into account the sensor model one has

˙̄ba = −ωm× b̄a + g(R̂>eg)×ω̃ +O(|λ̃||ω̃|) +O(|λ̃|2). (13)



Concerning the output function for the ith source point
one has

0 = −|ξ − P̊i|Πpipi
= Πpi ξ̄ −ΠpiR

>P̊i
= Πpi ξ̄ −ΠpiR̃

>R̂>P̊i
= Πpi ξ̄ −Πpi(I + 2λ̃× +O(|λ̃|2))>R̂>P̊i
= Πpi ξ̄ −ΠpiR

>P̊i −Πpi(R
>P̊i)×2λ̃+O(|λ̃|2)

and thus by setting yi := ΠpiR
>P̊i, one obtains

yi = Πpi ξ̄ −Πpi(R
>P̊i)×2λ̃+O(|λ̃|2) (14)

for i = 1, . . . , n.
Finally, setting x̃1 = 2λ̃, x2 = [ξ̄>, v̄>, b̄>a ]>, y =

[y>1 , . . . , y
>
n ]> from (6), (10), (11), (13) one obtains the

system equation (1) with

A11 = −ωm× , A21 = 0, u1 = ω̃

A22 =

−ωm× I3 03

03 −ωm× I3

03 03 −ωm×

 , u2 =

 03×1

amB + gR̂>eg

g(R̂>eg)×w̃



C1 =


−Πp1(R̂>P̊1)×

...
−Πpn(R̂>P̊n)×

 , C2 =


Πp1 03 03

...
...

...
Πpn 03 03


(15)

Then, the observer is given by (3), (8) with σ = ωm − u1.

B. Observability Analysis

In this section we provide sufficient conditions that ensure
good conditioning of the Continuous Riccati Equation (CRE)
and the exponential stability of the origin of the observer
error as well.

Proposition 1. Consider system (6) with measurement given
by (7), and the observer given by (3) along with (8) and
(15). Choose Q(t) and V (t) of (3) larger than some positive
matrix. Assume that camera’s position ξ̄, linear velocity
v̄, angular velocity ω are bounded for all time. If the
pair (A(0, t), C(0, x2, t)) is uniformly observable then, the
origin of the observer error (x̃1, x̃2) = (0, 0) is locally
exponentially stable.

Proof. The result is a direct application of Corollary 3.2 in
[12].

As shown in [12], the uniform observability of pair
(A(0, t), C(0, x2, t)) is required to ensure the local uniform
exponential stability of the observer error. We show next the
condition under which the uniform observability is violated.

Proposition 2. The pair (A(0, t), C(0, x2, t)) is not uni-
formly observable if the following conditions are fulfilled:
• The number of source points is less than or equal to

two (n ≤ 2).
• All source points are aligned independently of their

number (n ≥ 3).
• In case of three non-aligned source points (n = 3):

– Static Case: The camera lies on the circular cylin-
der generated by the circle passing through the
three source points and whose axis is orthogonal
to the plane containing the source points, known in
literature as dangerous cylinder.

– Moving Case: The camera moves along a straight
line orthogonal to the plane containing the source
points and passing through a source point.

• In case of four and more non-aligned source points
(n ≥ 4):

– Static Case: The source points are located on a
horopter curve, which is uniquely determined by
four points, and the camera frame {B} lies at the
origin of this curve.

Proof. In view of (15) one verifies that the transition matrix
associated with the state matrix A in (2) is of the form

Φ(s, t) =


R̄(s,t) 03 03 03

03 R̄(s,t) R̄(s,t)(s− t) R̄(s,t)
(s−t)2

2
03 03 R̄(s,t) R̄(s,t)(s− t)
03 03 03 R̄(s,t)


(16)

where R̄(s,t) := R̄>(s)R̄(t).
In view of (5) the pair (A,C) is not uniformly observable

if there exists a non-zero constant vector ν ∈ R12 such that

C(s)Φ(s, t)ν = 0,

with s ∈ [t, t+ δ] and t constant.
Substituting the expression of C(0, x2, s) in (15) and the

one of Φ(s, t) in (16) on the equation above yields

ΠpIi

[
−P̊i× I3 I3(s− t) I3

(s− t)2

2

]
ν̄ = 0 (17)

for ∀i ∈ {1, . . . , n} and s ∈ [t, t+δ]; where pIi := −(ξ(t)−
P̊ )/|ξ(t) − P̊ | denotes the bearing of the ith source point
expressed in the inertial frame {I}, and ν̄ = R(t)ν.

Let ν̄ := [ν̄>1 , ν̄
>
2 , ν̄

>
3 , ν̄

>
4 ]>, with ν̄1, ν̄2, ν̄3, ν̄4 ∈ R3.

Equality (17) characterizes body position trajectories along
which the body pose is not uniformly observable. For the
case of only one bearing measurement, namely n = 1, it
is trivial to verify that there exists an infinity of solutions
for ν̄ such that (17) is satisfied. For instance ν̄1 = P̊1/|P̊1|,
ν̄2,3,4 = 0 is a non null solution to (17).

Consider now n ≥ 2. By choosing a particular value of s
equal to t (i.e. s = t) one deduces from (17) that

ΠpIi

[
−P̊i× I3

] [ν̄1

ν̄2

]
= 0 (18)

for ∀i ∈ {1, . . . , n}, and subsequently (from (17) and (18))

(s− t)ΠpIi
ν̄3 +

(s− t)2

2
ΠpIi

ν̄4 = 0, ∀s ∈ [t, t+ δ]

This implies that {
ΠpIi

ν̄3 = 0

ΠpIi
ν̄4 = 0

(19)

∀i ∈ {1, . . . , n}, which in turn implies ν̄3 = ν̄4 = 0. Then
from (18) the proof follows the same arguments as the proof
in [12] for the case of mobile velocity measurements.



IV. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate the performance of the proposed observer. The experi-
ments were performed on a custom platform composed of a
low-cost IMU myAHRS+ and an oCam camera (see Figure
2). The camera mounts a standard M12 lens with 3.6mm
focal length and 65◦ field of view. Images are acquired with
a resolution of 640 × 480 pixels at 30 frames per second.
Inertial data from the IMU are acquired at rates of 100Hz.
The point detection is performed with the ArUco library [20]
which is included in OpenCV. Only one fiducial marker (size:
21 cm, dictionary: DICT 4X4 50) has been used during the
experiments (Fig. 2).

Fig. 2. Experimental platform.

An Optitrack motion capture system (MOCAP) is used
together with the markers mounted on the camera and on
the fiducial marker in order to provide full pose ground truth
measurements. Note that the imperfect positioning of the
markers and the initialization process required in Optitrack
introduce systematic errors in the ground truth pose.

A discrete version of observer (3) has been implemented
on C++ and runs on an HP laptop with Intel R© CoreTMi7-
6700HQ and Nvidia R© Quadro M2000M graphic card.

The observer proposed in this paper is compared with the
solvePnP() algorithm in OpenCV and with the ground truth
data.
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Fig. 3. First component of the camera position ξ̄ from MOCAP ground
truth, Riccati Observer and ArUco OpenCV algorithm.

Figures 3-4-5 show the time behavior of the estimated
position from the Riccati observer (red), ArUco OpenCV
(yellow) and the ground truth data (blue). One notes that the
position estimates obtained from the Riccati observer and
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Fig. 4. Second component of the camera position ξ̄ from MOCAP ground
truth, Riccati Observer and ArUco OpenCV algorithm.
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Fig. 5. Third component of the camera position ξ̄ from MOCAP ground
truth, Riccati Observer and ArUco OpenCV algorithm.

ArUco library are very similar to each other and both are
near to the ground truth values except in the third component
(Figure 5) when the distance from the target is increased
(sec 85-140). The error between the estimated values and
the real ones is due to the low resolution of the camera
(pixels quantization) along with the ArUco points extraction
algorithm.
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Fig. 6. Roll Euler angle from MOCAP ground truth, Riccati Observer and
ArUco OpenCV algorithm.

The time evolutions of the roll, pitch and yaw Euler angles
are depicted respectively in Figures 6-7-8 . The proposed
observer shows better performances in the attitude estimate
with respect to ArUco algebraic method, the difference be-
tween the two algorithm is evident when the camera performs
complex dynamic motions (sec 145-185). Indeed, during secs
145-185 the camera is moving fast in the third component
(Figure 5) and yawing (Figure 8) at the same time; the ArUco
algorithm during this time window is switching between two
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Fig. 7. Pitch Euler angle from MOCAP ground truth, Riccati Observer
and ArUco OpenCV algorithm.
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Fig. 8. Yaw Euler angle from MOCAP ground truth, Riccati Observer and
ArUco OpenCV algorithm.

possible solutions for the pitch (Figure 7) and roll (Figure
6) Euler angles.

V. CONCLUSIONS

In this paper, a novel deterministic observer based on
the Riccati framework [12] for the pose and linear velocity
estimation of a rigid-body along with accelerometer bias
correction has been proposed. The conditions under which
the state of the system is not uniformly observable, and
thus local exponential stability not guaranteed, have been
characterized in terms of the number and position of the
source points. Experimental results have been provided as
complement to the theoretical approach.

In this work, only one parametrization among the many
possible local parametrizations of the pose error has been
studied. The parametrization considered is well suited for
applications in which the measurements are given in the
body-fixed frame.

Future work will focus on different types of measurements
that could be available (e.g. barometer, altimeter) along with
different pose error parametrizations, and their effects on the
accuracy of the observer.
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