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Position, Velocity, Attitude and Accelerometer-Bias Estimation from IMU and Bearing Measurements

This paper considers the problem of estimating the position, attitude and velocity of a rigid-body in a 3D space by fusing bearing measurements provided by a monocular camera with gyroscopic and accelerometer measurements provided by an Inertial Measurement Unit (IMU). The proposed deterministic observer is accompanied with an observability analysis, that points out the minimum number of image points (bearings) along with their configuration in the inertial frame, under which local exponential stability is guaranteed. The performance of the observer is demonstrated by performing experiments on a test-bed inertial-Visual sensor.

I. INTRODUCTION

The problem of full pose (position and attitude) estimation of a rigid body plays a major role for autonomous navigation of robotic vehicles. The orientation of a rigid body can be estimated from the output of low cost Inertial Measurement Unit (IMU) [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF], whereas translational velocity and position can not be estimated from accelerometer measurement via sole integration due to unbounded growth in the estimation error caused by the sensor noise and bias [START_REF] Woodman | An introduction to inertial navigation[END_REF].

In order to circumvent this problem, IMUs are usually complemented by other sensors such as Global Positioning System (GPS) which allow to bound the error [START_REF] Farrell | Aided Navigation: GPS with High Rate Sensors[END_REF]. However, in many applications of interest such as indoors and urban canyon environments the GPS signal may be unreliable or heavily degraded. For this reason, the usage of other type of sensors such as laser scanners (LIDAR), Ultra-Wide Band sensors (UWB), monocular cameras and stereo cameras have been considered. Early approaches for state estimation were based on extended Kalman filters (EKF) [START_REF] Anderson | Optimal Filtering[END_REF], unscented Kalman filters (UKF) [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF] and particle filters [START_REF] Samson | An Introduction to Sequential Monte Carlo Methods[END_REF]. The last fifteen years have witnessed an increased interest in deterministic non-linear observer design for mechanical systems with symmetry that can provide stronger stability results with large domain of attraction [START_REF] Aghannan | An intrinsic observer for a class of lagrangian systems[END_REF], [START_REF] Bonnabel | Non-linear symmetrypreserving observers on lie groups[END_REF], [START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF]. Based on the type of sensors considered for the particular application at hand, several research directions have been investigated.

For instance, in the particular case of landmarks measurements (which can be retrieved by using depth cameras, range measurements and bearings, stereo cameras) an invariant extended Kalman filter (IEKF) on the group of double homogeneous matrices SE 2 (3) has been proposed in [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF]. In the same context, an observer on the Lie group of rigid body S. de Marco, M-D. Hua are with I3S, Université de Nice, Sophia-Antipolis, France sdemarco(hua)@i3s.unice.fr.

T. Hamel motions SE(3) based on the Lagrange-d'Alembert principle has been derived in [START_REF] Izadi | Rigid body pose estimation based on the lagrange-d'alembert principle[END_REF]. In case of velocity and landmark measurements a non-linear observer on SE(3) has been presented in [START_REF] Vasconcelos | A landmark based nonlinear observer for attitude and position estimation with bias compensation[END_REF]. Recently, a non-linear observer that estimates the position, velocity, attitude and gyro bias by fusing multiple measurements such as full position in the inertial frame (GPS), range (UWB), bearings in the inertial frame (MOCAP) and altimeter along with IMU measurements has been considered in [START_REF] Berkane | Position, velocity, attitude and gyro-bias estimation from imu and position information[END_REF].

In case of bearing measurements in the body frame, the estimation problem is referred to as Perspective-n-Point problem (PnP). Classical methods for the solution of the PnP problem are based on algebraic approaches [START_REF] Grunert | Das pothenotische problem in erweiterter gestalt nebst über seine anwendungen in der geodäsie[END_REF], [START_REF] Dhome | The inverse perspective problem from a single view for polyhedra location[END_REF] and iterative algorithms based on gradient search [START_REF] Haralick | Pose estimation from corresponding point data[END_REF], [START_REF] Lu | Fast and globally convergent pose estimation from video images[END_REF]. The PnP problem has been subsequently studied in the context of observer design. In particular, in [START_REF] Huster | Relative position estimation for auvs by fusing bearing and inertial rate sensor measurements[END_REF] an UKF like filter is derived considering only one source point and IMU measurements. The convergence of this observer depends on the motion of the system, since an implicit triangulation is required. In [START_REF] Aguiar | Minimum-energy state estimation for systems with perspective outputs and state constraints[END_REF], the authors present a minimum-energy state estimator with constraints considering bearing-only measurements. A non-linear observer evolving on SE(3) from bearing, angular and linear velocity measurements is derived in [START_REF] Baldwin | A nonlinear observer for 6 dof pose estimation from inertial and bearing measurements[END_REF]. In a prior work [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF], a Riccati observer for the PnP problem based on angular and linear velocities measurements has been proposed.

In this paper, we propose a deterministic Riccati observer, based on the general framework presented in [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF], providing pose, linear velocity and accelerometer-bias estimation by fusing IMU and bearings measurements, without relying on linear velocity measurements. The present work is motivated by a large number of applications in which linear velocity measurements are not available, and a reliable estimate of the linear velocity and of the pose is needed for control purposes. This is the case of low cost small-scale vehicles that operates in GPS denied environment for which the cost of body velocity sensors such as sensors based on Doppler effect or ad-hoc inertial velocity sensor systems are usually prohibitive.

II. PRELIMINARY MATERIAL A. Notation

We denote by R n the n-dimensional Euclidean space and by |x| the Euclidean norm of the vector x ∈ R n . Let B n r := {x ∈ R n : |x| ≤ r} denotes the closed ball in R n with radius r. The null matrix and the identity matrix of dimension n × n are denoted respectively by 0 n and I n .

The null matrix of dimension m × n is denoted by 0 m×n .

The Special Orthogonal group of order three is denoted by

SO(3) := {R ∈ R 3×3 : det(R) = 1, R R = RR = I 3 }.
For any x, y ∈ R 3 , we denote by x × the skew symmetric matrix associated to the cross product i.e. x × y = x × y, where × is the vector cross product in R 3 . Let S n := {x ∈ R n+1 : |x| = 1} denotes the n-dimensional sphere embedded in R n+1 with radius equal to one. For any p ∈ S 2 , we denote by Π p := (I -pp ) the projection onto the tangent space of the unit sphere S 2 at point p.

B. Riccati Observer for a Special class of Systems

The observer proposed in this paper is based on the Riccati Observer framework developed in [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF]. In particular we consider the following class of nonlinear systems whose state

x := [x 1 , x 2 ], with x1 ∈ B n1
r and x 2 ∈ R n2 , and outputs y ∈ R m evolve according to

     ẋ = A(x 1 , t)x + u 1 u 2 + O(|x 1 | 2 ) + O(|x 1 ||u 1 |) y = C 1 (x 1 , x 2 , t)x 1 + C 2 (x 1 , x 2 , t)x 2 (1) 
where A(x 

A(x 1 , t) = A 11 (t) 0 n1×n2 A 21 (x 1 , t) A 22 (t) , (2) 
and

C := [C 1 , C 2 ] ∈ R m×(n1+n2
) is a continuous matrixvalued function uniformly bounded w.r.t. t and uniformly continuous w.r.t. x.

In the sequel x1 will represent the attitude error between the camera orientation and the estimated one. We recall here that for a Riccati observer design one has to use a minimal parametrization of SO(3), however there are many ways to minimally parameterize SO(3) (e.g. Euler angles, vector part of Rodriques unit quaternion, Cardan angles). Consequently, system (1) can be seen as a handy way to take into account all the possible parameterizations, with the related nonlinear errors and first-order approximations, without choosing a priori one of them.

Let x2 be an estimate of x 2 and consider the following observer

     u 1 = -K 1 (y -C 2 x2 ) ẋ2 = A 22 x2 + u 2 + K 2 (y -C 2 x2 ) Ṗ = AP + P A -P C Q(t)CP + V (t) (3) 
with P (0) a symmetric positive definite matrix, Q and V bounded continuous symmetric positive semidefinite matrixvalued functions, and

K := [K 1 , K 2 ] given by K = k(t)P C Q, with 0.5 ≤ k(t) ≤ k max < ∞.
Let us recall the definition of uniform observability of the following Linear Time Varying (LTV) system,

ẋ = Ā(t)x + B(t)u y = C(t)x (4) 
which is instrumental for the stability of the observer in (3).

Given a continuous n × n-dimensional matrix-valued function Ā(t), a continuous m × n-dimensional matrixvalued function C(t), and a continuous m × m-dimensional matrix-valued function Q(t) > 0 (a positive definite matrix for all t ∈ R + ), the Riccati observability Gramian associated with the triplet ( Ā, C, Q) is the non-negative definite matrixvalued function defined by

W Ā, C Q (t, t + δ) := 1 δ t+δ t Φ (s, t) C (s)Q(s) C(s)Φ(s, t)ds (5)
where Φ(t, t 0 ) is the transition matrix associated with Ā(t), i.e. d dt Φ(t, t 0 ) = Ā(t)Φ(t, t 0 ), Φ(t 0 , t 0 ) = I. If Ā(t) and C(t) are bounded and if there exists δ > 0 and > 0 such that W Ā, C In (t, t + δ) > I n for all t ≥ 0, then we say that the pair ( Ā, C) is uniformly observable.

Define x2 := x 2 -x2 , then, from Corollary 3.2 in [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF], (x 1 , x2 ) = (0, 0) is locally exponentially stable if Q(t) and V (t) are both larger than some positive matrix and the pair (A(0, t), C(0, x 2 , t)) is uniformly observable.

C. Measurements and System Equations

Let {I} denotes an inertial (fixed) frame of reference and {B} denotes a frame of reference attached to the camera. Let R ∈ SO(3) denote the orientation of the camera frame {B} w.r.t. the inertial frame {I}. Let ξ and v denote the position and the velocity of the camera frame {B} w.r.t. {I} expressed in {B}, respectively. Then, the camera second order kinematics equation are

     Ṙ = Rω × ξ = -ω × ξ + v v = -ω × v + a B + gR e g (6)
where a B denotes the specific acceleration expressed in the camera frame {B}, g denotes the gravitational acceleration and the unit vector e g denotes the gravitational acceleration direction expressed in the inertial frame.

The camera is equipped with a strap-down 6DOF IMU composed of a 3-axis gyroscope, which measures the angular velocity ω m ∈ R 3 , and a 3-axis accelerometer, which measures the specific acceleration a m B ∈ R 3 ; both measurements are expressed in the camera frame {B}. The rate gyros and accelerometer are usually modeled as

ω m = ω -b w -µ w a m B = a B -b a -µ a
where µ w , µ a denote stochastic additive noises and b w , b a denote constant or slowly time-varying biases.

In this paper we ignore the noise (µ w = µ a = 0) and for the sake of simplicity we assume that the gyro bias is zero (b w = 0) or already well calibrated by averaging the gyros measures when the IMU is at rest. The accelerometer calibration is more difficult because it cannot be performed off-line in a resting position and an incorrect calibration can yield drifts in the error (double integration). The following simplified sensor model is considered in this paper

ω m = ω a m B = a B -b a , ḃa = -ω × b a . ( 7 
)
We assume to have a collection of n source points whose coordinates Pi w.r.t. the inertial frame {I} expressed in the basis of {I} are known, and whose calibrated projective coordinates p p i onto the camera plane expressed w.r.t. the camera frame in the basis of {B} are also known, see Fig. 1. Denoting by P i the coordinates of the ith source point w.r.t. the body-frame {B} expressed in {B}, and by z i its third component, one verifies p p i = P i /z i . Rather than using the perspective outputs typically used in computer vision algorithms, we use direction output representation of the measurement p i := p p i /|p p i | corresponding to projection onto a virtual spherical image plane and differing from perspective outputs only in the scaling. The unitary vector p i characterizes the bearing (direction) of P i in the basis of {B}. Let ξ represent the position of the camera frame with respect to the inertial frame expressed in {I}, then one verifies

p i := p p i |p p i | = -R ξ -Pi |ξ -Pi | .

III. RICCATI OBSERVER DESIGN

A. Problem Formulation and observer design

The problem at hand is to provide an estimate of ξ, v, b a and R given the measurement of the specific acceleration a m B , the gyro measurement ω m , and given a set of source points whose positions in the inertial frame Pi and bearings p i are known.

To this purpose, we proceed by showing that the system considered can be written in the form [START_REF] Samson | An Introduction to Sequential Monte Carlo Methods[END_REF]. In order to do so, as already mentioned in the previous section, we have to define the attitude error between the camera orientation and the estimated one, and then consider a minimal parametrization of the three-dimensional Lie Group SO(3).

Let R be an estimate of R and consider the following pre-observer attitude kinematics

Ṙ = Rσ × , (8) 
where σ is an innovation term to be designed.

Denoting by R := R R the attitude error, one verifies that the error kinematics satisfy

Ṙ = R(ω -R σ) × ,
and by considering the gyros measurement model in [START_REF] Berkane | Position, velocity, attitude and gyro-bias estimation from imu and position information[END_REF] one has

Ṙ = R(ω m -R σ) × . (9) 
The attitude parametrization here chosen is the vector part λ ∈ B 3 1 of the Rodriguez unit quaternion Λ = ( λ0 , λ), where λ0 ∈ B 1 1 denotes the scalar part. The rotation matrix error R is related to Λ by the Rodriguez formula

R = I 3 + 2 λ× ( λ0 I 3 + λ× ).
Then, in view of ( 9) and using the fact that λ0 = 1 -| λ| 2 , one has

R = I 3 + 2 λ× + O(| λ| 2 ) 2 λ = ω -ω m × 2 λ + O(| λ||ω|) + O(| λ| 2 ) ( 10 
)
where ω := ω m -σ.

Concerning the dynamics of v one has

v = -ω × + gR R R e g + a B = -ω × + g R R e g + a B .
Substituting R with the first order approximation in ( 10)

yields v = -ω × v + g R e g + a B + g( R e g ) × 2 λ + O(| λ| 2 ),
and by taking into account the sensor model one obtains

v = -ω m × v + g R e g + a m B + b a + g( R e g ) × 2 λ + O(| λ| 2 ). (11 
) Note that the term g( R e g ) × 2 λ that appears in the equation above represents a coupling term between the angular and the linear dynamics. This term will appear in the lower diagonal part of the A(x 1 , t) matrix in (1), namely A 21 (x 1 , t), making the problem of computing the transition matrix associated with A(x 1 , t) very difficult. In order to simplify the subsequent analysis we consider the following change of variable ba := b a + g( R e g ) × 2 λ.

(

) 12 
Let ba denotes an estimate of ba , and denote by ba := baba the new bias estimation error. One verifies that in steady state ( λ, ba ) → (0, 0) implies ba = b a , and thus the new change of variable is a valid choice for the accelerometer bias estimation. We proceed, then, by computing the first order approximation of the time derivative of the new bias

ḃa = d dt b a + g(R e g ) × 2 λ + O(| λ| 2 ) = -ω × b a -ω × g( R e g ) × 2 λ + g( R e g )ω+ +O(| λ||ω|) + O(| λ| 2 ) + d dt O(| λ| 2 ), one verifies from (10) that d dt O(| λ| 2 ) = O(| λ||ω|)+O(| λ| 2 )
, bearing in mind the expression of ba in [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF] and by taking into account the sensor model one has

ḃa = -ω m × ba + g( R e g ) × ω + O(| λ||ω|) + O(| λ| 2 ). ( 13 
)
Concerning the output function for the ith source point one has

0 = -|ξ -Pi |Π pi p i = Π pi ξ -Π pi R Pi = Π pi ξ -Π pi R R Pi = Π pi ξ -Π pi (I + 2 λ× + O(| λ| 2 )) R Pi = Π pi ξ -Π pi R Pi -Π pi (R Pi ) × 2 λ + O(| λ| 2 )
and thus by setting y i := Π pi R Pi , one obtains 6), ( 10), [START_REF] Grunert | Das pothenotische problem in erweiterter gestalt nebst über seine anwendungen in der geodäsie[END_REF], ( 13) one obtains the system equation ( 1) with

y i = Π pi ξ -Π pi (R Pi ) × 2 λ + O(| λ| 2 ) ( 14 
)
for i = 1, . . . , n. Finally, setting x1 = 2 λ, x 2 = [ ξ , v , b a ] , y = [y 1 , . . . , y n ] from (
                           A 11 = -ω m × , A 21 = 0, u 1 = ω A 22 =    -ω m × I 3 0 3 0 3 -ω m × I 3 0 3 0 3 -ω m ×    , u 2 =    0 3×1 a m B + g R e g g( R e g ) × w    C 1 =     -Π p1 ( R P1 ) × . . . -Π pn ( R Pn ) ×     , C 2 =     Π p1 0 3 0 3 . . . . . . . . . Π pn 0 3 0 3     (15) 
Then, the observer is given by ( 3), ( 8) with σ = ω m -u 1 .

B. Observability Analysis

In this section we provide sufficient conditions that ensure good conditioning of the Continuous Riccati Equation (CRE) and the exponential stability of the origin of the observer error as well.

Proposition 1. Consider system (6) with measurement given by [START_REF] Berkane | Position, velocity, attitude and gyro-bias estimation from imu and position information[END_REF], and the observer given by (3) along with (8) and [START_REF] Izadi | Rigid body pose estimation based on the lagrange-d'alembert principle[END_REF]. Choose Q(t) and V (t) of (3) larger than some positive matrix. Assume that camera's position ξ, linear velocity v, angular velocity ω are bounded for all time. If the pair (A(0, t), C(0, x 2 , t)) is uniformly observable then, the origin of the observer error (x 1 , x2 ) = (0, 0) is locally exponentially stable.

Proof. The result is a direct application of Corollary 3.2 in [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF].

As shown in [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF], the uniform observability of pair (A(0, t), C(0, x 2 , t)) is required to ensure the local uniform exponential stability of the observer error. We show next the condition under which the uniform observability is violated.

Proposition 2. The pair (A(0, t), C(0, x 2 , t)) is not uniformly observable if the following conditions are fulfilled:

• The number of source points is less than or equal to two (n ≤ 2). • All source points are aligned independently of their number (n ≥ 3). • In case of three non-aligned source points (n = 3):

-Static Case: The camera lies on the circular cylinder generated by the circle passing through the three source points and whose axis is orthogonal to the plane containing the source points, known in literature as dangerous cylinder. -Moving Case: The camera moves along a straight line orthogonal to the plane containing the source points and passing through a source point. • In case of four and more non-aligned source points (n ≥ 4):

-Static Case: The source points are located on a horopter curve, which is uniquely determined by four points, and the camera frame {B} lies at the origin of this curve.

Proof. In view of ( 15) one verifies that the transition matrix associated with the state matrix A in ( 2) is of the form

Φ(s, t) =     R(s,t) 0 3 0 3 0 3 0 3 R(s,t) R(s,t) (s -t) R(s,t) (s-t) 2 2 0 3 0 3 R(s,t) R(s,t) (s -t) 0 3 0 3 0 3 R(s,t)     (16) where R(s,t) := R (s) R(t).
In view of (5) the pair (A, C) is not uniformly observable if there exists a non-zero constant vector ν ∈ R 12 such that

C(s)Φ(s, t)ν = 0, with s ∈ [t, t + δ] and t constant.
Substituting the expression of C(0, x 2 , s) in ( 15) and the one of Φ(s, t) in ( 16) on the equation above yields

Π p I i -Pi× I 3 I 3 (s -t) I 3 (s -t) 2 2 ν = 0 (17) 
for ∀i ∈ {1, . . . , n} and s ∈ [t, t + δ]; where p I i := -(ξ(t) -P )/|ξ(t) -P | denotes the bearing of the ith source point expressed in the inertial frame {I}, and ν = R(t)ν.

Let ν := [ν 1 , ν 2 , ν 3 , ν 4 ] , with ν1 , ν2 , ν3 , ν4 ∈ R 3 . Equality (17) characterizes body position trajectories along which the body pose is not uniformly observable. For the case of only one bearing measurement, namely n = 1, it is trivial to verify that there exists an infinity of solutions for ν such that ( 17) is satisfied. For instance ν1 = P1 /| P1 |, ν2,3,4 = 0 is a non null solution to [START_REF] Lu | Fast and globally convergent pose estimation from video images[END_REF].

Consider now n ≥ 2. By choosing a particular value of s equal to t (i.e. s = t) one deduces from [START_REF] Lu | Fast and globally convergent pose estimation from video images[END_REF] that

Π p I i -Pi× I 3 ν1 ν2 = 0 (18) 
for ∀i ∈ {1, . . . , n}, and subsequently (from ( 17) and ( 18))

(s -t)Π p I i ν3 + (s -t) 2 2 Π p I i ν4 = 0, ∀s ∈ [t, t + δ] This implies that Π p I i ν3 = 0 Π p I i ν4 = 0 (19) 
∀i ∈ {1, . . . , n}, which in turn implies ν3 = ν4 = 0. Then from [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF] the proof follows the same arguments as the proof in [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF] for the case of mobile velocity measurements.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results to demonstrate the performance of the proposed observer. The experiments were performed on a custom platform composed of a low-cost IMU myAHRS+ and an oCam camera (see Figure 2). The camera mounts a standard M12 lens with 3.6mm focal length and 65 • field of view. Images are acquired with a resolution of 640 × 480 pixels at 30 frames per second. Inertial data from the IMU are acquired at rates of 100Hz. The point detection is performed with the ArUco library [START_REF] Francisco | Speeded up detection of squared fiducial markers[END_REF] which is included in OpenCV. Only one fiducial marker (size: 21 cm, dictionary: DICT 4X4 50) has been used during the experiments (Fig. 2). An Optitrack motion capture system (MOCAP) is used together with the markers mounted on the camera and on the fiducial marker in order to provide full pose ground truth measurements. Note that the imperfect positioning of the markers and the initialization process required in Optitrack introduce systematic errors in the ground truth pose.

A discrete version of observer (3) has been implemented on C++ and runs on an HP laptop with Intel R Core TM i7-6700HQ and Nvidia R Quadro M2000M graphic card.

The observer proposed in this paper is compared with the solvePnP() algorithm in OpenCV and with the ground truth data. The time evolutions of the roll, pitch and yaw Euler angles are depicted respectively in Figures 6-7-8 . The proposed observer shows better performances in the attitude estimate with respect to ArUco algebraic method, the difference between the two algorithm is evident when the camera performs complex dynamic motions (sec 145-185). Indeed, during secs 145-185 the camera is moving fast in the third component (Figure 5) and yawing (Figure 8) at the same time; the ArUco algorithm during this time window is switching between two possible solutions for the pitch (Figure 7) and roll (Figure 6) Euler angles.

V. CONCLUSIONS

In this paper, a novel deterministic observer based on the Riccati framework [START_REF] Hamel | Riccati observers for the nonstationary pnp problem[END_REF] for the pose and linear velocity estimation of a rigid-body along with accelerometer bias correction has been proposed. The conditions under which the state of the system is not uniformly observable, and thus local exponential stability not guaranteed, have been characterized in terms of the number and position of the source points. Experimental results have been provided as complement to the theoretical approach.

In this work, only one parametrization among the many possible local parametrizations of the pose error has been studied. The considered is for applications in which the measurements are given in the body-fixed frame.

Future work will focus on different types of measurements that could be available (e.g. barometer, altimeter) along with different pose error parametrizations, and their effects on the accuracy of the observer.
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 1 Fig. 1. Intuitive representation of inertial coordinates Pi , planar projective coordinates p p i and spherical projective coordinates p i of the ith source point.
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 2 Fig. 2. Experimental platform.
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 3 Fig. 3. First component of the camera position ξ from MOCAP ground truth, Riccati Observer and ArUco OpenCV algorithm.
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 3  show the time behavior of the estimated position from the Riccati observer (red), ArUco OpenCV (yellow) and the ground truth data (blue). One notes that the position estimates obtained from the Riccati observer and
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 4 Fig. 4. Second component of the camera position ξ from MOCAP ground truth, Riccati Observer and ArUco OpenCV algorithm.
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 56 Fig. 5. Third component of the camera position ξ from MOCAP ground truth, Riccati Observer and ArUco OpenCV algorithm.

Fig. 7 .

 7 Fig. 7. Pitch Euler angle from MOCAP ground truth, Riccati Observer and ArUco OpenCV algorithm.
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 8 Fig. 8. Yaw Euler angle from MOCAP ground truth, Riccati Observer and ArUco OpenCV algorithm.
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