
HAL Id: hal-03052463
https://hal.science/hal-03052463

Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Use of the cross-spectral density matrix for enhanced
passive ultrasound imaging of cavitation

Maxime Polichetti, François Varray, Bruno Gilles, Jean-Christophe Béra,
Barbara Nicolas

To cite this version:
Maxime Polichetti, François Varray, Bruno Gilles, Jean-Christophe Béra, Barbara Nicolas.
Use of the cross-spectral density matrix for enhanced passive ultrasound imaging of cavita-
tion. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2020, pp.1 - 1.
�10.1109/tuffc.2020.3032345�. �hal-03052463�

https://hal.science/hal-03052463
https://hal.archives-ouvertes.fr


0885-3010 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2020.3032345, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

1

Use of the cross-spectral density matrix for
enhanced passive ultrasound imaging of cavitation

Maxime Polichetti, François Varray, Member, IEEE, Bruno Gilles, Jean-Christophe Béra, and
Barbara Nicolas, Member, IEEE,

Abstract—Passive ultrasound imaging is of great interest for
cavitation monitoring. Spatio-temporal monitoring of cavitation
bubbles in therapeutic applications is possible using an ultra-
sound imaging probe to passively receive the acoustic signals from
the bubbles. Fourier-domain beamformers have been proposed to
process the signals received into maps of the spatial localization
of cavitation activity, with reduced computing times with respect
to the time-domain approach, and to take advantage of frequency
selectivity for cavitation regime characterization. The approaches
proposed have been mainly nonadaptive, and these have suffered
from low resolution and contrast, due to the many reconstruction
artifacts. Inspired by the array-processing literature, and in the
context of passive ultrasound imaging of cavitation, we propose
here a robust estimation of the second-order statistics of data
through spatial covariance matrices in the Fourier domain, or
cross-spectral density matrices. The benefits of such formalism
are illustrated using advanced reconstruction algorithms, such as
the robust Capon beamformer, the Pisarenko class beamformer,
and the multiple signal classification approach. Through both
simulations and experiments in a water tank, we demonstrate
that enhanced localization of cavitation activity (i.e., improved
resolution and contrast with respect to nonadaptive approaches)
is compatible with the rapid and frequency-selective approaches
of the Fourier domain. Robust estimation of the cross-spectral
density matrix and the derived adaptive beamformers pave the
way to the development of powerful passive ultrasound imaging
tools.

Index Terms—Array processing, adaptive beamforming, pas-
sive ultrasound imaging, cavitation imaging

I. INTRODUCTION

THerapeutic ultrasound is partly based on a complex phys-
ical phenomenon known as acoustic cavitation [1], [2].

Cavitation is known to significantly contribute in major clini-
cal applications of high-intensity focused ultrasound (HIFU),
favoring healing in ablathermy treatment of cancer [3], [4]
or mechanical lysis in lithotripsy [5]. Furthermore, several
prospective modalities of therapy including sonoporation and
blood brain barrier opening [6], [7], sonothrombolysis [8], [9],
or mechanical ablation of tissue using histotripsy [10] are
based on cavitation generated by either long-pulse or short-
pulse HIFU (the technique being named histotripsy in this
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11-LABX-0063) of Université de Lyon, within the program ”Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR).

last case). Cavitation corresponds to the formation, oscillation,
and implosion of gas bubbles in a liquid that is subjected
to pressure variations induced by HIFU. As functions of
the excitation conditions, different effects are induced [2]:
the oscillations of the bubbles can cause tissue heating and
moderate mechanical effects (i.e., stable cavitation), or the
implosions of the bubbles can induce destructive mechanical
damage (i.e., inertial cavitation). The dynamics of these bub-
bles are complex, nonlinear, and hard to predict, especially
due to the large number of tissue characteristics involved, such
that cavitation effects might appear outside of the geometric
focus of the instrument during the therapy [11]. Thus, the
spatio-temporal monitoring of cavitation bubbles is essential
to control the actual treated area [2].

To localize cavitation, an ultrasound imaging probe com-
posed of piezoelectric elements is used that passively receives
acoustic signals from cavitation bubbles. These signals are
processed via array-processing algorithms, which are also
called beamformers, and which provide spatial mapping of
the cavitation activity. The first method for passive cavitation
imaging was proposed in [12], which was inspired by the
seismic imaging method known as ’time exposure acoustics’
[13], [14]. At each point of the image, it focuses, combines,
and integrates the signals received over time (thus here this
is referred to as TD-DAS, for ’delay-and-sum in the time-
domain’). In this way, the acoustic power emitted by the
medium is mapped. However, TD-DAS has three major limi-
tations that have been frequently reported in the literature for
many applications: (1) it has very low resolution, and will
not always localize a small spot of cavitation precisely; (2) it
does not directly differentiate stable cavitation from inertial
cavitation; and (3) the focusing of the signals in the time
domain is very time consuming in terms of the calculations.
As a result, several variants of TD-DAS have been proposed.

On the one hand, to improve spatial localization of cavita-
tion, adaptive methods have been proposed [15]–[17], which
were inspired by active ultrasound imaging [18]–[20]. In the
time domain, robust Capon beamforming (TD-RCap) [21],
[22] has been adapted for passive cavitation imaging [15], [23],
[24]. Based on pixel-wise optimization for combination of the
delayed signals, this provides better resolution and better side-
lobe suppression than the conventional approach, while being
robust to model errors. However, this approach still operates in
the time domain, where its optimizations makes it more time
consuming than standard TD-DAS.

On the other hand, variants of TD-DAS have been proposed
in the Fourier domain (FD) [25], [26]. The focusing of
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signals is a simple phase shift, which significantly reduces
the calculation time [27]. In addition, this facilitates frequency
analysis, to distinguish between different types of cavitation.
Indeed, oscillation of the stable cavitation bubbles generates
narrow-band harmonic acoustic signals, while implosion of
inertial cavitation bubbles creates broadband noise [28]. These
approaches do not require the challenging design of prepro-
cessing frequency filter [29], [30]. However, very few studies
have been conducted to develop an adaptive beamformer in
the FD for cavitation imaging.

Acoustic imaging in the FD has been widely investigated
in the array-processing literature [31], [32]. Theoretical devel-
opements are often illustrated with the well-known problem
of the direction-of-arrival (DOA) estimation [22], [33], [34],
and have been widely applied in aeroacoustics [35]. Such
studies usually represent data as a cross-spectral density matrix
(CSM), which is the spatial covariance matrix of the received
data at the probe expressed in the FD [31], [32], [35]. When
appropriately estimated, the CSM allows access to the second-
order statistics of the data, to design optimal beamformers
in terms of power (e.g., minimum variance robust adaptive
beamforming for improved localization performance even in
presence of error models [36]), and also to use further analysis
to extract source information, such as in eigenvalue decom-
position of the CSM (e.g., the so-called ”high-resolution”
beamformers like the multiple signal classification (Music)
beamformer [34]).

The goal of this paper is not to establish a definitive ranking
of beamforming methods, but rather to (1) demonstrate the
compatibility of adaptive beamformers and the FD; and (2)
provide useful concepts of array processing and their advan-
tages within the passive cavitation imaging field. To do so, the
paper introduces a robust estimation of the CSM in the context
of passive ultrasound imaging of cavitation, and in this way,
proposes adaptive beamformers in the FD. Four beamformers
are illustrated through the CSM formalism. First, we illustrate
how the beamformer design can be derived from the CSM
by implementation of the nonadaptive FD-DAS approach as a
reference, as this is close to the first FD nonadaptive approach
used in [25], [26], [37], and then RCap in the FD (FD-RCap),
which has already been implemented in the time domain [15].
Then, the eigenvalue decomposition (EVD) of the CSM and
its benefits are illustrated through the Pisarenko beamformer
(FD-Pisa) [38]. Finally, taking advantage of the EVD, it is
also possible to introduce another cavitation mapping approach
that is not based on power estimation: the multiple signal
classification beamformer (FD-Music) [34].

All of these methods have been commonly applied in many
engineering fields, such as nondestructive testing, seismology,
and underwater acoustics, and they are introduced in the
context of passive ultrasound imaging. They are first illus-
trated in simulations. Then, under experimental conditions, we
demonstrate their potential for spatio-temporal monitoring of
cavitation for real cavitation bubbles.

II. MODEL AND ESTIMATION OF THE CROSS-SPECTRAL
DENSITY MATRIX

This section first introduces the signal models in both
the time and frequency domains. Then the CSM and its
characteristics are defined. Finally, the robust estimation of
the CSM is proposed.

A. Signal model
An acoustic source localized in ~r0 emits a real signal s(t).

This is passively received by a uniform linear array of N
sensors, where n is the sensor index (n = 1, ..., N ). Assuming
the source transmits spherical waves and the sound speed c is
uniform in the propagation medium, the time of flight from
the source to each element of the probe is

τn(~r0) =
||~rn − ~r0||

c
. (1)

Assuming there is no attenuation of the wave, the data matrix
that contains the received signals is given by [15], [26]:

y(t) = [s(t− τ1(~r0)) , ... , s(t− τN (~r0))]
T + b(t), (2)

where .T is the transposition operator, and b(t) is the measure-
ment noise. This b(t) should be white Gaussian noise, with
zero-mean, and also spatially white. The data matrix y(t) is of
size N ×Nt, where Nt is the number of time samples (which
corresponds to an acquisition duration of Trec). In the FD, for
a given frequency f , the received data are represented by an
N -length column vector as [26], [33]:

Y(f) = S(f) a(~r0, f) + B(f), (3)

where S(f) is the Fourier transform of the source signal s(t),
B(f) is the vector of the Fourier transforms of the noise
contributions for each sensor, and a(~r0, f) is the propagation
vector, such that:

a(~r0, f) = [e−i2πfτ1(~r0) , ... , e−i2πfτN (~r0)]T . (4)

Acoustic imaging aims to build maps on the basis of
received signals (3), on which the peak values correspond
to the positions of the sources. To do this, spatial filters,
called beamformers, have been designed to detect the spatial
signature a(~r0, f) of the array of an acoustic source placed at
~r0. More precisely, beamforming aims to detect the relative
phase shifts between channels due to the delays τn(~r0).

B. Cross-spectral density matrix analysis
Beamforming design is often based on the spatial covariance

matrix of the data received, for three main reasons [31], [32],
[39]. First, this matrix directly expresses the phase shifts
from one element to another of the signals received, and
thus the spatial signature of the acoustic source. Secondly, if
estimated in the correct way, this gives access to the second-
order statistics of the received data, which allows the optimal
beamforming design (in terms of power or variance). Thirdly,
the eigenstructure of the data can be used to extract the source
information. In the first subsection II-B1, the CSM is defined.
Then, subsections II-B2 and II-B3 introduce the notations
and concepts derived from the CSM, which are required to
understand the four beamformers considered.
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1) Definition: Signals are considered broadband, zero-
mean, stationary, and ergodic, to deal with their second-order
statistics. In the FD, the spatial covariance matrix is usually
referred to as the CSM. The CSM is of size N ×N , and it is
defined as:

M(f) = E

〈
lim

Tint→+∞

1

Tint
Y(f) Y∗(f)

〉
, (5)

where E 〈.〉 is the expected value, Tint is the integration time
for the Fourier analysis, and .∗ is the transpose conjugate op-
erator. The diagonal coefficients are the power auto-spectrum
densities of the channels. The other coefficients are the power
cross-spectrum densities, which reveal the relative phase-shifts
between the channels.

2) Use of the cross-spectral density matrix for power esti-
mation: Passive ultrasound imaging of cavitation was essen-
tially developed through reconstruction of power maps [25],
[26]. Generally speaking, the FD beamformers are spatial fil-
ters that consist of applying N complex coefficients, contained
in the so-called steering vector h(~r, f), to the observations
Y(f), to compensate for the phase shifts induced by the
propagation vector a(~r0, f) on the signals received, and then
coherently sum them. The mean power spectral density for the
random signal h∗(~r, f)Y(f) received at the probe and steered
at ~r is expressed as:

P (~r, f) = E

〈
lim

Tint→+∞

1

Tint
|h∗(~r, f) Y(f)|2

〉
. (6)

This expression is looked upon as a power estimate, as
commonly used for passive cavitation imaging, although with
a statistical point of view, it can be rewritten using the CSM
from Equation (5):

P (~r, f) = h∗(~r, f) M(f) h(~r, f). (7)

The advantage of this formalism compared to the methods
used in [25], [26] is that power estimate at a given position ~r
is expressed in terms of the second-order statistics of the data,
which gives access to optimal beamforming in terms of power
or variance.

To distinguish the source from the noise contributions, and
thus to design the optimal steering vector, using Equations (3)
and (5), Equation (7) can be developed as:

P (~r, f) = |h∗(~r, f) a(~r0, f)|2 Ps(f)
+ h∗(~r, f) Mb(f) h(~r, f),

(8)

where Ps(f) is the power spectral density of the source,
and Mb(f) is the CSM of the noise. Here, the quantity
G~r(~r0, f) = |h∗(~r, f) a(~r0, f)|2 is the receive spatial gain
of the beamforming method. The benefits of this formalism
are illustrated later for FD-DAS (III-A) and FD-RCap (III-B).

3) Eigenvalue decomposition of the cross-spectral density
matrix: The CSM gives access to very interesting represen-

tations of the received data through the EVD of the matrix
M(f), which is defined as [31], [35]:

M(f) = U(f) V(f) U∗(f)

=

u1 . . . uN


v1 . . . 0

. . .
0 . . . vN


oo u∗1 oo

...
oo u∗N oo


=

N∑
n=1

vn.unu∗n,

(9)
where V(f) and U(f) are the matrices that contain the eigen-
values (EVs) vn and the column eigenvectors un, respectively.
The EVs are sorted in decreasing order (v1 > ... > vN ). In a
noiseless case, J sources are said to be spatially decorrelated if
they are orthogonal in the sensor space, i.e., the (normalized)
propagation vector of the source j corresponds to a CSM
eigenvector: uj = a(~rj , f)/

√
N . In this case, each EV vj

is N times the power spectral density Ps,j(f) of the source
j, as a signal received on the array is recorded N times:
vj = NPs,j(f).

In the presence of spatially decorrelated background noise,
e.g., Mb(f) = σ2

b I, where σ2
b (f) is its power spectral density

and I is the identity matrix, the decomposition is modified.
The EVD cannot perfectly separate the sources j from the
noise for finite-size observations (e.g., number of sensors N
is finite). This is uniformly distributed over all EVs. The
CSM is decomposed as the sum of a signal space Es that
is composed of the first J eigenvectors, and a noise space Eb
that is composed of the remaining eigenvectors, such that:

M(f) = Es + Eb

=

︷ ︸︸ ︷
J∑
n=1

(NPs,n(f) + σ2
b ) unu∗n +

︷ ︸︸ ︷
N∑

n=J+1

σ2
b unu∗n .

(10)
Each source j is decomposed on one of the subspaces unu∗n
that forms the signal space Es, and is orthogonal to the other
subspaces, and notably those of the noise space Eb. The
EVD gives access to new beamformers for passive ultrasound
imaging, as illustrated in III-C and III-D.

C. Cross-spectral density matrix estimation

The quality of the cavitation maps greatly depends on how
the matrix M(f) is estimated, and the way that it is further
processed. Assuming the received signals are ergodic and
stationary, a natural way to estimate M(f) is to consider
K successive acquisitions yk(t) (usually called snapshots) of
duration Tsnap:

M̂(f) =
1

K

K∑
k=1

1

Tsnap
Yk(f)Y∗k(f) (11)

where Yk(f) is the Fourier transform of the kth snapshots
yk(t). Beamformer performances increase with K [22]. How-
ever, Tsnap has to be high enough to ensure good spectral
resolution. To artificially increase the number of realizations
K without extensively reducing Tsnap, a single acquisition
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TABLE I: Summary of the beamformer characteristics.

of length Trec is divided into partially overlapping snapshots
yk(t). The overlap pov is expressed as a percentage of Tsnap.
The parameters to estimate the CSM are then linked by the
following relationship:

K =
Trec

(1− pov)Tsnap
. (12)

III. BEAMFORMING METHODS

A wide variety of beamformers has been proposed in the
array-processing literature [31], [32], [35]. To illustrate the
advantages of the proposed formalism, four beamformers that
use the second-order statistics of the received data through
the CSM are introduced within the framework of passive
ultrasound imaging. First, we extend two already existing
beamformers for passive cavitation imaging into the proposed
formalism: FD-DAS is an extension of [25], but includes the
robust estimate of CSM; and FD-RCap corresponds to the
beamformer of [15], but transposed into the FD. In this way,
we present nonadaptive and adaptive ways, respectively, to
use the CSM for optimal steering-vector design. Then, the
proposed formalism is used to introduce new beamformers
for passive cavitation imaging. In particular, the benefits of
exploitation of the eigenstructure of the received data are
illustrated for two advanced beamformers. The FD-Pisa is
an intermediate approach between FD-DAS and FD-RCap
in terms of map quality and complexity. Unlike the other
three beamformers, FD-Music is not a power-estimate-based
method, although it is well known in the field of array
processing for its high-resolution performance. A summary
of the beamformer characteristics is given in Table I. Note
that although the spectral signature of cavitation is broad, the
following analyses consider single-frequency imaging, as is
often the case in the literature [26], [27]. The perspectives
for composite multifrequency imaging are further discussed
in section VI-4.

A. The nonadaptive beamformer: FD-DAS

The formulation of FD-DAS can be described as a mini-
mization of a cost function, as for DOA estimation in [40].
The design of the steering vector h(~r, f) is here independent
of the signals received. First, its coefficients have to minimize
the contribution of the noise, and in the basic case it is spatially
uncorrelated, such that Mb(f) = σ2

b I. Secondly, for each pixel
in ~r, the coefficients in h(~r, f) must preserve the signal that

would have been emitted with the spatial signature a(~r, f),
with a unit gain G~r(~r, f) = 1. From Equation (8), the problem
can be written as:

min
h(~r,f)

h∗(~r, f)h(~r, f)

subject to h∗(~r, f)a(~r, f) = 1.
(13)

The analytical solution is obtained by the Lagrange multipliers
method:

hFD−DAS(~r, f) =
a(~r, f)
N

. (14)

By introducing Equation (14) into the power spectral density
estimation of Equation (7), and replacing M(f) by its estimate
M̂(f), this gives:

P̂FD−DAS(~r, f) =
a∗(~r, f) M̂(f) a(~r, f)

N2
. (15)

This expression provides access to a nonadaptive power-
estimate-based beamformer with a robust estimation of the
CSM using snapshot averaging. Note that when K = 1
(i.e., without block averaging for the CSM estimation; see
Equation (11)), this corresponds to [25], [26]. The nonadaptive
approach is very simple and quick, but it is well-known for
its poor resolution and for numerous artifacts [25], [26].

B. The Capon adaptive beamformers: FD-Cap, FD-RCap

Capon adaptive beamforming [40], [41] aims to optimize
the design of the steering vector for each pixel using the
information contained in the received data, via the matrix
M(f). In this way, acoustic sources are better resolved and
artifact rejection is improved, with respect to the nonadaptive
approach.

With a unit gain constraint for the signal that would have
been emitted from ~r (i.e., the same constraint as for FD-
DAS), FD-Cap proposes to find the optimal steering vector
that minimizes the power of all types of noise (i.e., without
assumptions as to the structure of its CSM Mb(f); unlike FD-
DAS). Although it is not possible to estimate this directly, in
practice Mb(f) is proportional to M(f) [36]. The problem of
minimization of FD-Cap is then written as:

min
h(~r,f)

h∗(~r, f)M(f)h(~r, f)

subject to h∗(~r, f)a(~r, f) = 1.
(16)

This problem has an analytical solution, which can be solved
using the Lagrange multipliers method:

hFD−Cap(~r, f) =
M−1(f) a(~r, f)

a∗(~r, f) M−1(f) a(~r, f)
. (17)

Introduction of Equation (17) into Equation (7), and replac-
ing M(f) by its estimate M̂(f), gives:

P̂FD−Cap(~r, f) =
1

a∗(~r, f) M̂
−1

(f) a(~r, f)
. (18)

The Capon approach is not used in practice, because it
is very unstable in the presence of model errors [15]. Many
approaches for telecommunications or acoustic imaging have
been developed to make this method more robust [18], [36].
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The FD-RCap [21], [22], [33] considers that if there are
modeling errors (i.e., sound speed, probe calibration), then the
true propagation vector a0(~r, f) is included in a small region
around the a(~r, f) vector, which is defined by a parameter ε.
The FD-RCap looks for the optimal estimation â0(~r, f) of
a0(~r, f) from the received data. The optimization problem
arises as

min
â0(~r,f)

â∗0(~r, f) M−1(f) â0(~r, f)

subject to ||â0(~r, f)− a(~r, f)||2 ≤ ε.
(19)

The top term here tries to maximize the power estimation
in the sense of Capon (Equation (18)) and the bottom term
defines the uncertainty region around a(~r, f). This problem
has an analytical solution that can also be obtained by the
Lagrange multipliers method:

â0(~r, f) = a(~r, f)− (I + λ(ε) M̂(f))−1 a(~r, f), (20)

where I is the identity matrix, and λ(ε) is the Lagrange
multiplier that is optimally computed for each pixel using a
Newton-Raphson numerical method that is controlled by the ε
parameter. Introducing Equation (20) into the Capon solution
of Equation (18), and simplifying [22], this gives

P̂FD−RCap(~r, f) =
||â0(~r, f)||2/N

â∗0(~r, f) M̂
−1

(f) â0(~r, f)
. (21)

The ε parameter depends on the received data and regulates
the compromise between the robustness and the image quality.
A too low value of ε defines a too small region of uncertainty,
whereby FD-RCap tends towards FD-Cap, and thus loses
robustness: at the slightest model error, the source signal is
interpreted as noise and is rejected. A too high value of ε
defines a too large region of uncertainty: the power of the
source is overestimated, and the interference is amplified.
The choice of this parameter is generally empirical, with the
condition ε < ||a(~r, f)||2, and it is not a big issue as it can
be found by a little trial and error [15], [21]. It should be
noted that the inversion of M̂(f) implies the matrix is well
conditioned, with a sufficient condition of K > N [22], [40].

C. The Pisarenko class beamformer: FD-Pisa

An alternative to the pixel-wise optimal design of the
steering vector is to artificially change the relative levels
between the sources prior to steering. This is possible by
taking advantage of the eigenstructure of M(f) and applying
nonlinear operations to its EVs. This approach is known as
Pisarenko class beamforming [38], [42], [43], or FD-Pisa.
Namely, to sharpen the peaks that reflect the source positions
(with respect to FD-DAS), the pth root is applied to the EVs
of M(f):

M1/p(f) =
N∑
n=1

v1/pn .unu∗n. (22)

In this way, the gap between the source levels is compressed:
the sidelobes generated by strong sources will interfere less
with the lower source level when beamforming. The steering

vector is the same as for FD-DAS, with a previous normal-
ization such that no bias is introduced when using nonlinear
operations on it,

hFD−Pisa(~r, f) =
a(~r, f)√

N
. (23)

After steering the compressed CSM M1/p(f), the p power is
used on the resulting value to restablish the original dimension
of an acoustic power:

P̂FD−Pisa(~r, f) =
1

N

(
a∗(~r, f)√

N
M̂

1/p
(f)

a(~r, f)√
N

)p
(24)

where the 1/N term scales the N factor within the EVD
(see Equation (10) and [38]). The parameter p has to be
empirically chosen: p = 1 corresponds to FD-DAS, and p > 1
is interesting to sharpen the peak values. The performances in
terms of localization usually increase with p when uncorrelated
sources are considered [38], [43], [44].

D. The multiple signal classification beamformer: FD-Music
The FD-Music [34], [45] is not power-estimation based,

but it is well known as a high resolution beamformer. FD-
Music localizes the sources using the contributions of the
background noise, rather than the source signal directly. More
precisely, FD-Music exploits the orthogonality between the
signal subspace and the noise subspace obtained by EVD
decomposition of M(f), as described in Equation (10).

For each pixel ~r of the map, FD-Music projects the steering
vector hFD−Music(~r, f) = a(~rj , f) to the noise subspace:
this is the sum of the scalar products of hFD−Music(~r, f) with
each vector of Eb. The steering vector is chosen proportional
to that of the FD-DAS in Equation (14), without the 1/N
factor, as the FD-Music does not seek to quantify the power.
Two cases are then possible:
• The pixel in ~r coincides with the position ~rj of the source
j. Then the pointing vector hFD−Music(~r, f) = a(~rj , f)
is a eigenvector of the signal space Es. By construction
of the EVD, it is therefore necessarily orthogonal to each
eigenvector of the noise space Eb, and therefore the sum
of these scalar products is also zero:

N∑
n=J+1

a∗(~rj , f).un = 0. (25)

• The pixel in ~r 6= ~rj does not coincide with any of the
J sources. So the steering vector hFD−Music(~r, f) =
a(~r, f) is not an eigenvector of Es. There is, therefore,
at least one eigenvector of the noise space for which its
projection is not zero. So by necessity, one of the scalar
products a∗(~r, f).un (∀ n ∈ J J + 1 ; N K) is not
zero. Thus the sum of the scalar products is not zero:

N∑
n=J+1

a∗(~r, f).un 6= 0, if ~r 6= ~rj . (26)

Taking advantage of the properties defined by Equations
(25) and (26), the FD-Music map is defined by:

P̂FD−Music(~r, f) =
1∑N

n=Ks+1 |a∗(~r, f).un|
2
, (27)
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where Ks is an estimation of the signal space size, as the
number of sources J is unknown in practice. The choice of
size Ks for Es is often guided by analysis of the decrease
in EVs [46], [47]. The maxima of P̂FD−Music(~r, f) are
reached when its denominator tends toward zero (equivalent
to Equation (25)), and therefore indicates the source position.
Indeed, in practice, on a source pixel, the denominator does
not cancel itself out strictly, but tends toward 0, giving peak
values on the map. For the sake of uniformity in localization
map notation, it can be noted P̂FD−Music(~r, f), although it
has to be kept in mind that it is not a power map.

IV. MATERIALS

To illustrate the relevance of this exploitation of the ro-
bust estimation of the CSM and the resulting FD adaptive
beamformers within the passive cavitation imaging framework,
single and multiple source configurations were carried out
on simulations, and an experimental set-up was developed to
create cavitation bubbles in a water tank. We first describe this
set-up, and then the simulations using similar parameters. The
performance metrics are also detailed.

A. Experimental set-up

1) High-intensity focused ultrasound settings: The exper-
imental set-up is represented in Fig. 1. Cavitation bubble
clouds were created using a 1-MHz single spherical transducer
focused at 8 cm, with an active diameter of 10 cm, and
a circular 4.5-cm diameter aperture in the center (Imasonic,
France). This was immersed in a tank of filtered water
(72 cm×25 cm×25 cm). The theoretical focal volume at
−3 dB is ellipsoidal in shape, 8.3-mm long for the x-axis, and
1.1-mm in diameter. The HIFU transducer is connected to a
power amplifier (GN1000; PRÂNA, France). This can transmit
bursts centered at 1 MHz, with each lasting 20 ms, and pulsed
at a rate of 4 Hz. The amplitude delivered is adjustable,
although it remains constant during each shot. The amplitudes
can range from 10 mV to 150 mV, which generates peak
negative pressures at the focus of the transducer of 0.72 MPa
to 10.8 MPa. Here, we focus on the data at 7.2 MPa.

2) Passive ultrasound imaging: For passive ultrasound
imaging, a linear ultrasound imaging probe (L7-4; Verasonics,
USA) was used. It is composed of N = 128 elements with
uniform spacing of 298 µm, for a total width of 38 mm.
Its center frequency is 5 MHz and its bandwidth at -6 dB
is 3.5 - 7.5 MHz. It is connected to an ultrasound scanner
(Vantage 256; Verasonics, USA). The probe makes continuous
passive acquisitions with a duration of 24 ms at a sampling
frequency of fs = 20.8 MHz. Although the therapy signal
oscillates at a fundamental frequency of fHIFU = 1 MHz,
outside the bandwidth of the imaging probe the images are
generally reconstructed by exploiting higher frequencies than
for cavitation, which are within the bandwidth of the imaging
probe, to ensure better resolution [26], [30], [37], [48]. The
imaging probe is placed 6 cm above the focus of the HIFU
transducer. The lateral axis of the imaging probe is parallel
to the x-axis, and points toward the HIFU transducer. The
ultrasound images are reconstructed in the xz-plane.

3) Optical imaging: Ombroscopic imaging of the cavita-
tion phenomenon was obtained using a fast optical camera
(Phantom v12.1; Vision Research Inc., USA) that recorded at
the rate of 10 000 frames per second, and an exposure time
of 99 µs, over 24 ms. The images obtained are in the same
xz-plane as the ultrasound images. The field of view is 1.5-
cm wide and 1.1-cm high (800×600 pixels), and contains the
HIFU focus.

4) Cavitation generation: The objective was to compare
optical images with the reconstructed passive ultrasound maps
of cavitation events that consisted of a few bubbles nucleated
with the HIFU bursts. Optical images are limited to a very
small region compared to the broad area where the cavitation
might be nucleated and within which this might move in
the water tank (not necessarily near the focus). To ensure
comparison with optical images, i.e., to trap the cavitation
within the field of view of the camera, a polyester wire
with asperities that provided nucleation sites along the wire
was placed at the HIFU focus (Fig. 1). In this way, the
cavitation was easier to image optically, as it occurs mainly
in the neighborhood of the intersection of the wire and the
HIFU focus. Also, the cavitation threshold was stabilized,
and essentially depended on the gas concentration (estimated
from the oxygen concentration). The cavitation threshold was
measured using spectrogram analysis of the signal passively
recorded with the central element of the ultrasound probe,
as was done with a hydrophone in [28], [49]. Two oxygen
concentrations were used: 2.5 mg/L and 6.0 mg/L, which
corresponded to the measured cavitation thresholds of 5 MPa
and below 0.7 MPa, respectively. This experimental set-up
allowed comparison of the optical and ultrasound imaging
modalities of a wide variety of cavitation events. In this paper,
we focus on the cavitation events that consisted of the few
nucleated bubbles that stayed at the wire surface. In a second
configuration, a second wire (wire #2) was placed 3-mm
downstream from the first one (wire #1); see Fig. 1. This
wire #2 was still located within the −3 dB focal volume,
although at a point where the HIFU field was less intense, and
thus this produced a second weaker source in comparison to
the first source created on wire #1, which constitutes a more
challenging scenario to be imaged, with artifacts of the strong
source spreading on the weaker one. In the results section, the
presence of inertial cavitation through the whole HIFU burst
was confirmed using spectrogram analysis, as in [28], [49].

5) Synchronization and registration of images: The control
system for the HIFU transducer generates a synchronization
signal 1 ms before the start of the HIFU shot. This signal
is received by the ultrasound scanner and launches passive
acquisition for a period of 24 ms. The same applies to
the optical camera. The ultrasound propagation and device
activation times are less than 100 µs. Thus, cavitation is
imaged before, during, and after the entire shot.

The ultrasound and optical images are spatially registered
using two nodes on the wire as markers. Before the HIFU
shot, these are localized by active ultrasound imaging. Their
coordinates are then assigned to the nodes visible in the optical
image. In this way, the optical images are described via the x
and z axes, as with the ultrasound images. Comparison is then
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Fig. 1: Experimental set-up showing the xz-plane view (a) and
the yz-plane view (b). Wire #1 is placed in the xz-plane, to
cross the acoustic axis at the theoretical focus of the HIFU
transducer. HIFUs propagate in the opposite direction to the
x-axis. When the HIFU transducer fires, a cavitation cloud is
created: the acoustic signal emitted by the bubbles is passively
received by the imaging probe. In the second configuration, a
second wire #2 is added 3 mm downstream of wire 1, and
parallel to it. In (a), white dots indicate the portion of the
xz-plane that is imaged by the high-speed camera.

possible with maps obtained by passive ultrasound imaging.
6) Reconstruction parameters: For passive ultrasound

imaging, spatio-temporal tracking of the cavitation is ensured
by dividing the total acquisition of 24 ms into 120 sub-
acquisitions of Trec = 200 µs, with each of these providing
a localization map. For each map, snapshot averaging is
achieved with K = 130 realizations and Tsnap ' 15 µs; i.e.,
with an overlap of pov = 90 % (as the parameters that provided
the best results in the simulation V-A3).

B. Simulation set-up

Simulations are conducted with probe parameters similar
to those described in section IV-A2, except for the frequency
response of the probe, which is not simulated. Four simulated
configurations are considered, as summarized in Figure 2.
All of the configurations consider sources that emit random
Gaussian noise to mimic cavitation noise, as proposed in [29],
through the whole acquisition, which lasts for Trec = 200 µs.
To mimic the measurement noise, white Gaussian noise is
systematically added, independently to each sensor, with a
varying signal-to-noise ratio (SNR).

Configuration 1 is designed to investigate the evolution of
the common image quality metrics (i.e., lateral and axial main
lobe widths, contrast, and error position, as detailed in section
IV-C) with respect to the SNR varying between −15 dB and
+15dB. To do so, a single source is placed at ~r1 = [5, 60] mm.

Configurations 2 and 3 are carried out to illustrate the
superiority of adaptive beamformers to resolve two closely
spaced sources for the lateral and axial directions, respectively.
To do so, a first source is placed at ~r1 = [5, 60] mm, and
a second one is added, for configuration 2 with 0.4 mm
lateral spacing (about one wavelength λ = 0.31 mm), and
for configuration 3 with 3.5 mm axial spacing (about 11
wavelengths). In both configurations, the two sources have the
same transmitting amplitude, with a SNR of 10 dB.

Configuration 4 is simulated to highlight the influence of
CSM averaging on cavitation maps; namely, in a complex sce-
nario where three sources coexist. Moreover, configuration 4

Fig. 2: Descriptions of the four simulated configurations
and their respective goals. Note that the wavelength is
λ = 0.31 mm.

investigates the interest in the use of FD adaptive beamformers
to reduce the side lobes of a strong source that hides two
weaker sources. To do so, three sources are simulated, with
the first high-intensity source at ~r1 = [5, 60] mm. The second
source is placed in the side lobes generated by the FD-DAS
at ~r2= [6, 63] mm, with a power of 10 dB less than the first
one. The third source is placed close to the second source,
at ~r3= [6.7, 63] mm (with an approximately two-wavelength
spacing), and also with 10 dB less power than the first one.
The SNR is 10 dB.

C. Beamformer performance metrics

The benefits of the CSM formalism are assessed through
qualitative and quantitative comparisons of the imaging meth-
ods. Simple metrics commonly used in the context of ultra-
sound imaging are considered, to characterize the resolution
and contrast of the images obtained for both the simulated and
experimental data.

The full-width at half-maximum of the main lobe is mea-
sured in millimeters, as Rax in the axial dimension and Rlat
in the lateral dimension. This is a simple metric measured on
single-source configuration (or isolated source), as commonly
used to reflect the resolution of two sources by a beamformer.

The gap measurement between two close sources represents
a more relevant metric to quantify the resolution performance
of a beamformer, although this is more complex. It is com-
puted as (before log-compression of the map values):

Gap = 10 log10

max
(
P̂ (~r1), P̂ (~r2)

)
P̂ (~r1+~r22 )

 . (28)

The cavitation-to-artifact ratio (CAR) is defined as the ratio
of the maximum value from the map over the averaged pixel
values in an artifact region (before log-compression of the map
values). The CAR measurement is a value with no physical
meaning, but that aims to provide a relative comparison of the
rejection of artifacts by each beamformer (e.g. side lobes, main
lobe extension under −3 dB). The CAR reflects the contrast,
and thus the unmasking of weak sources by the beamformer in
the presence of stronger sources. The position and the extent of
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the artifact region do not favour a beamformer (except maybe
in a very pathological case, as very far from the target, or
including the main lobe above −3 dB).

The position error Errpos is the distance in millimeters
between the actual position of a simulated point source and the
maximum pixel value in the map (for a single source scenario).

The running time for the reconstruction is measured to
reflect the complexities of the beamformers. All of the recon-
structions are carried out in Matlab (R2016b, The MathWorks,
Natick, MA, USA), on the same computer, which has 32 GB
memory and an Intel(R) Core(TM) i7-6600 CPU at 2.60 GHz.

V. RESULTS

We first present the data for the simulations, to introduce
the performances of the four beamformers and the influence
of the robust CSM estimation for the different point source
configurations (Fig. 2). Then, the experimental data for small
cavitation clouds are described. According to the guidelines
given in the literature, the adaptive parameters for FD-RCap
[15], [21] and FD-Pisa [43] are empirically chosen to satisfy
the compromise between resolution and contrast (as indicated
for each configuration), as they are not easily physically
interpretable. For FD-Music, the choice of Ks is more guided
(as it corresponds to the number of uncorrelated sources,
which is easy to know in simulation, and also due to the
EV plots, as described in configuration 4). It should be noted
that all of the maps do not represent the same quantity. On
the one side, the power-estimate-based beamformers (i.e., FD-
DAS, FD-RCap, FD-Pisa) are compared to each other. On the
other side, the noise space projection-based beamformer FD-
Music requires separate comment (namely, when comparing
metrics on a dB scale, as for CAR or Gap).

A. Simulation results

The four configurations (Fig. 2) are analyzed with the same
reconstruction frequency at 5 MHz (i.e., the center frequency
of the probe used for the experiments), and with similar pixel
spacing of 0.02 mm for the lateral dimension and 0.1 mm for
the axial dimension.

1) Simulation, configuration 1: influence of the SNR:
Configuration 1 investigates on a single source the evolution
of Rlat, Rax, CAR, and Errpos with respect to the SNR,
for the four beamformers FD-DAS, FD-RCap with ε = 1 and
ε = 10, FD-Pisa with p = 50 and p = 100, and FD-Music with
Ks = 1 and Ks = 3. The parameters for the CSM estimation
are the same through all of the results for this configuration:
K = 130, with pov = 90%, which corresponds to the optimal
parameters described in V-A3. The image quality metrics are
shown in Figure 3.

The error positions on Fig. 3d are negligible as they are
equal to or smaller than 0.2 mm (i.e., mainly due to one or
two pixel errors in the axial dimension, which is consistent
with the observations in [50]) for SNRs above -10 dB, except
for FD-RCap with ε = 1. Indeed, ε = 1 corresponds to a
relatively small tolerance value for error models. Thus, in the
high-noise scenario (SNR below 0 dB), increasing ε up to 10
reduces the error position to 0.2 mm for SNRs above −10 dB.

In the very-high-noise scenario for SNR = −15 dB, the maps
are not reliable for FD-RCap and FD-Music any more, which
leads to high position errors (i.e., greater than or equal to
0.7 mm).

For the main lobe size (Fig. 3a, b), the axial width is larger
than the lateral width (i.e., about 10-fold), as is commonly
seen in passive cavitation imaging [26]. For all beamformers,
both of the widths evolved with very similar trends with
respect to the SNR. For SNRs above −5 dB, the three adaptive
beamformers provide thinner main lobe widths (regardless of
the adaptive parameter values), which are almost halved, at
least. For FD-RCap, as ε reflects the tolerance to uncertainties,
a larger value of ε is required for the low SNR, while a
smaller value of ε in the high-noise scenario allows very thin
main lobes to be assessed. However, FD-Pisa appears stable
even for high p values, and also FD-Music, with slightly
overestimated Ks, whatever the SNRs. FD-Pisa (for both p
values) provides intermediate performances between FD-DAS
and FD-RCap, with the latter appropriately tuned with ε. Very
similar observations are established for CAR in Fig. 3c (the
artifact region is set as in Figure 2, to enclose the FD-DAS
upstream side lobes).

This joint analysis on four image quality metrics in the
single-source scenario leads to the conclusion that following
the guidelines from the literature, the appropriate tuning of
the adaptive parameters is not a difficult task for better image
quality metrics than for FD-DAS, even for the high-noise
scenario (SNR = −5 dB). The two following subsections
illustrate the consequences of improved Rax, Rlat and CAR,
in terms of enhancement of source localization.

2) Simulation, configurations 2 and 3: closely spaced
sources: Configurations 2 and 3 are designed as a proof
of concept,with the aim to illustrate the superiority of FD
adaptive beamformers for the resolution of two closely spaced
sources. The four beamformers are considered: FD-DAS, FD-
RCap with ε = 1 (i.e., low-noise scenario), FD-Pisa with
p = 50, and FD-Music with Ks = 2 (i.e., two sources).
The parameters for the CSM estimation are the same for both
configurations: K = 130 with pov = 90%, which corresponds
to the optimal parameters described in V-A3. Lateral slices
(at z = 60 mm) for configuration 2 and axial slices (at
x = 5 mm) for configuration 3, are shown in Fig. 4a, b,
respectively.

In both configurations, FD-DAS does not separate the two
closely spaced sources, but the adaptive beamformers do.
Using FD-Pisa, a slight gap appears between the two sources:
lateral Gap = 1.0 dB, and axial Gap = 0.4 dB. FD-
RCap provides the best performance among these power-based
beamformers, with lateral Gap = 6.1 dB and axial Gap =
3.0 dB. Also, FD-Music clearly detects both sources (as the
map units are not the same as the power-based beamformers,
we cannot indicate any resolution superiority for FD-Music).
As commonly observed in passive cavitation imaging, the axial
resolution is worse than the lateral resolution (with source
spacing of 0.4 mm on the x axis, and 3.5 mm on the z
axis). For FD-Pisa and FD-RCap, even if both of these sources
nominally transmit the same power, a small difference in the
power map estimates is observed for a single reconstruction
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Fig. 3: Performances of the four beamformers, considering the four image quality metrics of (a) Rax, (b) Rlat, (c) CAR,
and (d) Errpos versus the SNR, for the single-source simulation (configuration 1). Two adaptive parameters are used for each
adaptive beamformer. As FD-Music is not a power-based beamformer, it is set apart for the CAR plots.

frequency. Indeed, the assumption of white noise is true from
a statistical point of view; thus at a single frequency, from
one realization to the other, fluctuations of the power spectral
density of each source up to 2 dB can be observed. Also, this
is potentially due to interference between sources. It should be
noted that these configurations are challenging cases that are
chosen to highlight the potential of FD adaptive beamformers
to resolve two closely spaced sources where the nonadaptive
scenario fails.

3) Simulation, configuration 4: influence of estimation qual-
ity of the CSM: Configuration 4 is designed to highlight
the necessity for CSM averaging when using FD adaptive
beamformers; namely in a multiple-source scenario. The data
for configuration 4 are presented in Figure 5, to provide a
strategy to select the parameters for CSM averaging and also
to illustrate their influence on the maps. The four beamformers
are considered: FD-DAS, FD-RCap with ε = 5 (more sources,
more noise, so increased ε compared to the three previous
configurations), FD-Pisa with p = 50, and FD-Music with
Ks = 3 (i.e., three uncorrelated sources).

The strategy to choose the parameters for the CSM av-
eraging is as follows. First, the recording duration Trec is
usually imposed by the hardware capacity or the duration of
the observed phenomenon. Moreover, K is constrained by
the condition of inversion of FD-RCap (i.e., K > N ; see
III-B). So, Fig. 5 first compares the use, or not, of snapshot
averaging (i.e., K = 1 or K = 130), and then it illustrates

the effects of pov (directly linked to Tsnap via Equation (12)).
Thus, four cases are considered: K = 1, i.e., without snapshot
averaging (Fig. 5a-d); K = 130 without overlap, which leads
to Tsnap = 1.5 µs (Fig. 5e-h); K = 130 with pov = 50%,
which leads to Tsnap = 3.1 µs (Fig. 5i-l); and K = 130 with
pov = 90%, which leads to Tsnap = 15.4 µs (Fig. 5m-p).

a) Effects of cross-spectral density matrix averaging on
cavitation maps: Without snapshot averaging (K = 1), as
in Fig. 5a, FD-DAS detects the strong source, although the
sidelobes it generates hide both of the weak sources. In
Fig. 5b, FD-RCap does not detect any source, and the map
is completely unstable, as M̂(f) is ill-conditioned. In Fig. 5c,
FD-Pisa only detects the strong source, and misses both of the
weak sources, while in Fig. 5d, FD-Music barely detects the
strong source, and it has many artifacts. The second row in
Fig. 5 corresponds to a number of snapshots where K > N
(without overlap), to ensure the inversion of M̂(f) (see III-B).
In Fig. 5f, FD-RCap is stabilized. Both of the weak sources
emerge for FD-RCap and FD-Pisa (Fig. 5f, g, respectively).
However, as Tsnap is small, the spectral analysis is degraded,
so the main lobe of the strong source is affected (Fig. 5e, g, h),
in comparison to the first row (Fig. 5a, c, d). For the third row
of Fig. 5, a snapshot overlap is introduced to maintain K > N ,
while increasing Tsnap with pov = 50% (Fig. 5i-l): the main
lobes are sharpened in the axial direction, with respect to the
case where pov = 0% (Fig. 5e-h). With pov = 90% (Fig. 5m-
p), this trend is enhanced. In Fig. 5m, FD-DAS still fails to
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Fig. 4: Lateral slices at z = 60 mm (a) and axial slices at x =
5 mm (b) for two closely spaced sources, as in configurations
2 and 3, respectively. Four beamformers are represented: FD-
DAS, FD-RCap with ε = 1, FD-Pisa with p = 50, and FD-
Music with Ks = 2. The actual source positions are plotted as
the dashed lines. The plots are normalized by their maxima.
As FD-Music is not a power-based beamformer, it requires a
specific y-axis.

detect both of the weak sources, although all of the sources are
detected with the three advanced adaptive beamformers: FD-
RCap, FD-Pisa, and FD-Music (Fig. 5n-p). The following
analyses compare the beamformers for enhanced weak source
detection, with a focus on the set of parameters that gives the
best performances (i.e., three detected sources for the three
FD adaptive beamformers), such that K > N , pov = 90 %
and Tsnap = 15.4 µs, which correspond to Fig. 5m-p.

b) Power-estimate-based beamformer comparison: The
performance is in line with the previous configurations 1,
2, and 3. FD-RCap offers the best performance in terms of
resolution (i.e., the thinnest main lobes) and contrast (i.e., the
best artifact rejection) (Fig. 5n). However, FD-RCap suffers
from the high computational cost (about 104.7 s versus 1.3 s
for FD-DAS; to compute one map composed of 35,140 pixels).
Again, FD-Pisa (Fig. 5o) offers intermediate performance
between FD-DAS (Fig. 5m) and FD-RCap (Fig. 5n), although
with an execution time of 1.4 s, so similar to FD-DAS. The
two weak sources are not distinguished with FD-RCap either,

although they are clearly revealed in comparison to FD-DAS.
c) Influence of Ks on FD-Music: The four maps ob-

tained with FD-Music are shown in Fig. 6, as: Ks = 1
(Fig. 6d) (with underestimated size of the signal subspace Es);
Ks = 3 (Fig. 6e) (with correctly estimated size of Es); and
Ks = 5 (Fig. 6f) or Ks = 10 (Fig. 6g) (with overestimated
size of Es). The EVs are shown in Fig. 6h. When the real
size of the signal subspace is underestimated, some of the
sources are missing, as in Fig. 6d. When Ks is the same as
the effective size of the signal subspace, all of the sources are
correctly detected (Fig. 6e) with the best performance metrics:
the Gap between the two weak sources is 8 dB. However,
when the effective size of the signal subspace is overestimated
(Ks = 5 Fig. 6f, or Ks = 10 (Fig. 6g), the maps are degraded
(i.e., with artifacts and main lobe extensions), with decreased
localization performance (Gap between the two weak sources
of 5.7 dB and 4.6 dB, respectively).

When the real size of the signal subspace is not known,
this can be estimated considering the EV plot (Fig. 6h) [47]. A
simple trial-and-error approach can be as follows. The sources
are decomposed on the first EVs, then they are followed by a
plateau for the EVs due to a spatially decorrelated noise; see
Equation (10) or [31]. Thus, the plateaus (e.g., EV 2 and 3) or
bends (e.g., EV 2 or 5) observed on the first eigenvalues before
a broad plateau or a slow decrease in EV, are potentially the
values for which the signal space and the noise space separate.
As underestimation of the signal space can miss the source
detection (Fig. 6d), it is better to slightly overestimate this
space (Fig. 6f), although not by too much, to avoid loss of
resolution or contrast (Fig. 6g). This approach is used to tune
Ks for the experimental results. More sophisticated methods
can be investigated, although they are application dependent
(e.g., see the exhaustive comparison of automated singular
value thresholding for ultrasound Doppler imaging in [51]).
Finally, whatever Ks is, the FD-Music running time is 1.4 s,
and so similar to that of FD-DAS.

d) Joint qualitative comparison of the four beamformers:
Figure 6 qualitatively compares the beamformers for enhanced
weak source detection. The maps from Fig. 5m-p are shown in
Fig. 6a-c, e with the specific dynamic ranges, from the lowest
intensity in their own background, up to 0 dB. The displaying
of these maps with different dynamic ranges is suitable to
compare the localizations of the different sources. Indeed, it
can be seen that FD-Music (Fig. 6e) provides a very smoothed
background with respect to FD-RCap (Fig. 6b) and FD-Pisa
(Fig. 6c). In this way, FD-Music is expected to be an excellent
tool to distinguish sources from artifacts.

B. Experimental results

1) Single wire configuration: Fig. 7 shows the maps ob-
tained with FD-DAS (Fig. 7a), FD-RCap (Fig. 7b) (ε = 10),
FD-Pisa (Fig. 7c) (p = 30), and FD-Music (Fig. 7d) (Ks = 3),
with the overlaying optical images. The configuration shown
in Fig. 7 to illustrate the performances of the beamformers for
the real cavitation events corresponds to an oxygen concentra-
tion of 2.5 mg/L, a measured cavitation threshold of 5 MPa
(i.e., a little smaller than the peak-negative pressure at the
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Fig. 5: Influence of the cross-spectral density matrix estimation
on the cavitation maps obtained with the four different beam-
formers, in simulation. The maps are reconstructed at 5 MHz.
Each column corresponds to a beamformer, as indicated.
For FD-RCap, ε = 5, for FD-Pisa, p = 50, and for FD-
Music, Ks = 3. Different parameters for CSM estimation
are tested for each row: (a-d) K = 1 (i.e., without snapshot
averaging); (e-h) K = 130 without overlap, which leads to
Tsnap = 1.5 µs; (i-l) K = 130 with pov = 50 %, which leads
to Tsnap = 3.1 µs; and (m-p) K = 130 pov = 90 %, which
leads to Tsnap = 15.4 µs. The actual bubble positions are the
centers of the white circles. All of the maps are normalized
and displayed with the same dynamic range, of 20 dB.

Fig. 6: Beamformer comparisons in simulation. The maps are
reconstructed at 5 MHz. All of the maps are reconstructed with
K = 130 and pov = 90 % for CSM averaging. The first row
corresponds to the power-estimate-based beamformers with
optimal settings for FD-DAS (a), FD-RCap with ε = 5 (b), and
FD-Pisa with p = 50 (c). The second row corresponds to the
maps obtained for FD-Music, with Ks = 1 (d), Ks = 3 (e),
Ks = 5 (f), and Ks = 10 (g). (h) The normalized eigenvalues
are plotted logarithmically. The actual source positions are the
centers of the white circles. (a, b, c, e) correspond to the maps
of Fig. 5m, n, o, p, respectively, with different dynamic ranges
for the displays. The maps are normalized and displayed with
their own full dynamic ranges: from the lowest intensity in
their own background, up to 0 dB.

focus of 7.2 MPa) in the middle of the shot at t = 10 ms.
Only a few bubbles are detected with the optical camera, and
they are all located on the wire, in the small area that is 1-mm
long and is circled by the white/ red dashed lines in Fig. 7. A
reconstruction frequency of 4.7 MHz was chosen, close to the
central frequency of the probe, to ensure that only inertial cav-
itation activity is mapped, and not the harmonic contribution
that results from nonlinear distortion of the acoustic pulse due
to the transducer itself, and potentially scattered by the wire
[26]. It should be noted that during the shot, the wire was
pushed away from the transducer a little, with the maximum
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axial displacement of 0.3 mm. This wire displacement was not
seen in the absence of cavitation, and results from the radiation
pressure on the bubbles. For all of the maps, the beamforming
methods succeed in localizing the cavitation activity with
a single main lobe that coincides with the area where the
bubbles are detected by the optical camera. This remains true
over the entire shot, with the main lobe following the slight
displacement of the wire. The characteristic hour-glass shape
of FD-DAS (Fig. 7a), which has no physical meaning, is
absent from the adaptive approach maps. FD-RCap (Fig. 7b)
shows a smooth, oval lobe, as already seen in the literature
for its time-domain version [15]. This is also the case for FD-
Pisa (Fig. 7c), while the main lobe of FD-Music (Fig. 7d) is
less homogeneous and appears to agglomerate several small
lobes. The localization performance statistics calculated on
the 100 maps reconstructed during the 20 ms of shooting are
shown in Fig. 7e for axial resolution Rax, Fig. 7f for lateral
resolution Rlat, and Fig. 7g for CAR. For the power-estimate-
based beamformers, while the lateral resolution Rlat is almost
identical from one method to another, the axial resolution
Rax is clearly better for the adaptive approaches, with an
average of 7.5 mm for FD-DAS, versus only 3.7 mm for FD-
RCap and 4.6 mm for FD-Pisa. The CAR (Fig. 7g) is also
greatly improved with the adaptive methods. Once again, FD-
Music cannot be directly quantitatively compared to the power-
estimate-based beamformers, as it does not represent the same
quantities. Nevertheless, the qualitative aspect for FD-Music
described above is reflected in the quantitative metrics with
relative considerations between the metrics. Indeed, the Rlat
metrics for FD-Music are very close to those of FD-DAS (less
than 0.08 mm difference, for mean values), while Rax and
CAR are clearly enhanced for FD-Music compared to FD-
DAS, with an enhancement of more than 5 mm and 5 dB for
the mean values, respectively.

2) Dual wire configuration: In the second configuration,
which included the two wires, the oxygen concentration was
increased to 6.2 mg/L, which reduces the cavitation threshold
to below 0.7 MPa while keeping the excitation HIFU signal
unchanged. This enabled the triggering of a second cavitation
spot on the second wire that was placed downstream from the
focus of the HIFU transducer. The maximum displacements
of the wires due to the radiation pressure on the cavitation
bubbles were 1.6 mm for the upstream wire and 0.6 mm
for the downstream wire. These values are higher than for
the first configuration, which is attributed to more sustained
cavitation activity detected on the wires in optical images in
the circled regions in Fig. 8a-d. As anticipated, the cavitation
activity observed in the optical images appears to be more
intense for the upstream wire, which was placed closer to
the focus of the HIFU transducer than the downstream wire.
Fig. 8 shows the representative maps of two cavitation sources
on the two separate wires for FD-DAS (Fig. 8a), FD-RCap
(Fig. 8b) (ε = 10), FD-Pisa (Fig. 8c) (p = 30), and FD-
Music (Fig. 8d) (Ks = 4) during the first part of the shot,
at t = 4 ms. The reconstruction frequency of 4.7 MHz was
chosen. For all of the maps, both cavitating regions correspond
to the two main lobes of the maps, which are centered on each
wire at about 59 mm in depth, where the cavitation activity was

Fig. 7: Representative experimental localization maps for a
single cavitation spot on a wire immersed in degassed and
filtered water, for FD-DAS (a), FD-RCap (b) (ε = 10), FD-
Pisa (c) (p = 30), and FD-Music (d) (Ks = 3), in the middle
of the HIFU shot (10 ms). The HIFU transducer is on the right
in the images. The maps are reconstructed at 4.7 MHz. The
bubbles detected with the optical camera are located within
the white/ red dashed lines. The dotted rectangle indicates the
artifact region for the CAR measurement, with respect to the
maximum amplitude of the map. The performance statistics
are calculated on the 100 maps reconstructed during the 20 ms
of shooting, and are shown for axial resolution (e), lateral
resolution (f), and CAR (g), with the median in red, the mean
in green, the first and third quartiles in blue, and the total extent
in black.

detected optically. For the power-estimate-based beamformers,
the source on the downstream wire is weaker. For FD-DAS,
its intensity hardly reaches the level in the characteristic
hourglass-shaped artifact from the strong source: this might
have been hidden in another geometric configuration, such as
in Fig. 5. For the adaptive beamformers FD-RCap and FD-
Pisa, the better resolution allows the detection of the weak
source more clearly. FD-Music gives a very different map, with
two clear main lobes at the positions of the cavitating regions,
whereby both emerge very clearly from a very smooth and
homogeneous background, which is similar to what was noted
in the simulation data. Again, the lobes appear to have a more
complex internal structure than for the other beamformers.
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3) Spatio-temporal monitoring: The projected maximum
map values on the x-axis versus time are shown for each
algorithm in Fig. 8e-h. This representation is interesting for
measuring the ability of each method to bring out the main
lobe of a source with respect to the background map, and to
ensure the spatio-temporal monitoring of the cavitation with
respect to the x-axis (similar to the spatio-temporal tracking
in [48]). The evolution of the local maxima of the maps was
correlated with the displacement of the wires on which the
cavitation bubbles were created (Fig. 8e-h, two dashed curved
lines). In all of the cases, two trails are observed. The right-
wing trace (at around x = 4 mm) was very energetic for
the first half of the shot, and corresponds to the main lobe
centered on the upstream wire (wire #1). The left-wing trace
(at around x = 1 mm) was less energetic, and corresponds to
the lobe centered on the downstream wire (wire #2). However,
for FD-DAS (Fig. 8e) up to about t = 10 ms, this left-wing
trace hardly emerges from artifacts from the more energetic
right trace, while the adaptive methods FD-RCap (Fig. 8f)
and FD-Pisa (Fig. 8g) efficiently reject these artifacts, and
show clear identification of the left trace, thus enhancing the
spatio-temporal monitoring of the cavitation activity. For FD-
Music (Fig. 8h), the cavitation cloud on wire #2 is raised to
almost the same level as the cavitation on wire #1. Again,
this observation is consistent with the lack of preservation of
the relative amplitudes of the sources using FD-Music, and
makes it possible to highlight sources with little power. The
absence of cavitation is detected on wire #1 beyond 10 ms
for all of the systems here (Fig. 8e-h). The growth of the
cavitation bubbles involves the recruitment of gas pockets
trapped on the wire surface, as well as gas dissolved in the
surrounding medium. As soon as larger-sized bubbles are
obtained, they are pushed away by the radiation force of the
acoustic wave, which degasses the wire and its surroundings,
so that cavitation on the wire would require a higher magnitude
of negative pressure. Finally, particularly with the adaptive
beamformers, passive ultrasound imaging allows good spatio-
temporal monitoring of complex scenarios of cavitation events.
This successfully detects the extinction of the first cavitation
spot around t = 10 ms, and the persistence of the second
cavitation spot through the whole burst. The specificity of FD-
Music can also be emphasized, as it unambiguously highlights
the weak source from the begining to the end of the burst.

VI. DISCUSSION

In this paper, the concept of robust CSM estimation is
introduced and its benefits for passive cavitation imaging
are illustrated for four beamformers, through both simulation
and experiments. In this way, we demonstrate that adaptive
beamformers, and the enhanced image quality they provide,
are compatible with low computational cost and frequency
selectivity provided by FD approaches.

1) Robust cross-spectral density matrix estimation is re-
quired: Fig. 5 shows the need for robust CSM estimation to
develop adaptive beamformers. As beamformer theory is de-
rived from the theoretical CSM M(f) expressed as an expected
value E〈.〉, it is not surprising that averaging observations

highly impacts upon the performance of the beamformers:
this ensures the required matrix inversion for FD-RCap and
a reliable EVD for the CSM for FD-Pisa and FD-Music.
In this way, the maps are stabilized and the sources are
correctly detected (Fig. 5). This result is well known in the
array-processing field, and in particular for DOA estimation
[21], [34]. Averaging with snapshots is often referred to
as the natural CSM estimation, although alternative or joint
strategies can be considered, such as diagonal loading [50]
and spatial smoothing [18]. Note that for the robust Capon
beamformer in the time domain [15], the spatial covariance
matrix is estimated from several observations, each of which
corresponding to one acquisition time sample.

2) Power-estimate-based beamformers comparison: The
CSM is the basis from which many beamformers can be
derived [31], [32], [35]. Three beamformers are chosen here
to illustrate the benefits of robust CSM estimation, and a
preliminary comparison can be drawn between the power-
estimate-based ones. The nonadaptive FD-DAS approach of-
fers equivalent performance to [26] (in the special case of
FD-DAS for which the CSM estimation is based on a single
observation). FD-DAS is used here as a nonadaptive reference
method, as useful for comparing more advanced approaches.
The FD-RCap method improves source localization in terms
of resolution and contrast, as already demonstrated in its time-
domain version (TD-RCap) [15]. FD-RCap is therefore an
excellent candidate for high-resolution localization of cavita-
tion. Its main disadvantage is the computational overload that
is required for the pixel-wise matrix inversion (see Equation
(20)), with respect to FD-DAS. Note that for TD-RCap [15],
the full set of the received signals y(t) has to be delayed for
each pixel, and then used to construct the spatial covariance
matrix, which is highly time consuming. In the FD, the CSM is
obtained directly from raw signals and efficiently steered with
fast matrix products. In this way, although the optimization
operation with the inversion of the matrix remains with a huge
amount of calculus, FD-RCap is a relative fast version for a
given frequency of TD-RCap (similar comparison as in [27]).
As a point of comparison, and to give an order of magnitude to
the time that can be saved, for the maps that are composed of
35,140 pixels, the low-complexity FD beamformers (i.e., FD-
DAS with or without snapshot averaging, or FD-Pisa) run in
the order of a few seconds, whereas the higher complexity FD
beamformer (FD-RCap) requires one or a few minutes, and the
time-domain beamformers (TD-DAS, TD-RCap) easily exceed
an hour, mainly due to the very time consuming delaying
step over 200 s of the integration time. Alternatively, the FD-
Pisa, as the Pisarenko class beamforming, offers intermediate
performance between FD-DAS and FD-RCap for a computing
load equivalent to FD-DAS. Finally, from a statistical point of
view, the CSM formalism developed for power-estimate-based
beamformers addresses the issue of quantitative power estima-
tion of cavitation, which is an active and challenging field of
research in terms of both numerical [26] and instrumentation
[52] aspects.

3) Focus on FD-Music, the nonpower-estimate-based ap-
proach: Apart from the power-estimate-based beamformers,
FD-Music is well known as a high-resolution localization
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Fig. 8: Representative experimental localization maps for the two cavitation spots on the two wires immersed in the filtered
water, for FD-DAS (a), FD-RCap (b) (ε = 10), FD-Pisa (c) (p = 30), and FD-Music (d) (Ks = 4), at t=4 ms. The HIFU
transducer is on the right of the images. The maps are reconstructed at 4.7 MHz. The bubbles detected with the optical camera
are located within the white/red dashed lines. Projected maximum map values on the x-axis versus time is shown for each
map, respectively (e-h). The projection considers the depth range 54 mm to 68 mm. The vertical dashed lines are the positions
of the wire centers throughout the shot.

method [31]. It has been demonstrated that FD-Music high-
lights the presence of sources, but does not provide a pixel-
wise power estimate: absolute quantification or relative quan-
tification of the power of a source is not possible. When
monitoring cavitation, weak power sources have to be detected
very early in their development if they are located in a non-
targeted area, to avoid undesirable effects like healthy tissue
ablation. The simulation results in Fig. 6 and the experimental
results in Fig. 8 show that FD-Music efficiently highlights
weak sources. A specific aspect of this beamformer is that
the background is smoother than that of the power-estimate-
based beamformers (i.e., FD-DAS, FD-RCap, FD-Pisa), and
therefore weak power sources are clearly identifiable. FD-
Music is thus an interesting tool for localization of weak power
sources, a situation where power-estimate-based beamformers
are not appropriate. Furthermore, FD-Music has a running
time similar to FD-DAS. Finally, unlike ε for FD-RCap or
p for FD-Pisa, which are chosen empirically [15], [43], the
adaptive parameter Ks of FD-Music can be adaptively chosen
in line with the number of sources. For this experimental study,
a very simple trial-and-error approach is used, as described
in simulation, as a trade-off between the correct number of
expected sources and the image quality metrics. However, the
deduced Ks values are slightly above our expectations (i.e.,
Ks = 3 for a single spot; Ks = 4 for two spots). This would
suggest that a single bubble spot should instead be looked upon
as several sources. Note also that for the sake of simplicity, we
consider a constant value for Ks that is relevant through the
whole HIFU shot duration. Automated and more sophisticated

EV thresholding can be investigated [47], [51].

4) Methodological perspectives :
The proposed formalism is based on second-order statistics

of CSM and its subsequent assumptions of ergodic and sta-
tionary signals. This assumption is often assessed with respect
to acquisition duration. This preliminary study illustrates that
in some simple cavitation scenarios, these assumptions are
verified, although further investigations are needed. For exam-
ple, a higher-order statistics beamformer has been proposed
for passive cavitation imaging in the time domain [53] that
overcomes the TD-RCap resolution. Also, the assumption
for uncorrelated sources should be investigated for extended
bubble clouds.

These results demonstrate that single-frequency imaging
provides accurate localization of cavitation, even if its spectral
signature is broad. In the passive cavitation imaging litera-
ture [26], [27], [54], due to the frequency selectivity of FD
approaches, single-frequency imaging is often considered to
enable discrimination of stable cavitation from inertial cav-
itation. However, composite multifrequency images can also
be considered by superimposing maps at different frequencies
(i.e., summing) to further reject incoherent noise on maps from
one frequency bin to another [26], [27], [54]. Note that the
computing load increases almost proportionally with the num-
ber of reconstructed bins [27]. Moreover, as the beamwidth
is frequency dependent [26], constant-beamwidth approaches
can be considered for better consistency of acoustic maps, even
for adaptive beamformers [55]. A specific aspect to adaptive
beamformers would be that the adaptive parameters can be
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frequency dependent, and as the error uncertainties might not
be constant over the full bandwidth of the probe, this would
potentially influence ε and p [43], [55].

This paper focuses on the enhancement of detection and
localization of possibly simultaneous cavitation events, but
to go further, the integration of maps over frequencies from
power-estimate-based beamformers might provide access to
power quantification within a given band, as in [21], [26], [44].
Nevertheless, this requires further challenging considerations,
which include fine numerical scaling [26], [56], and also
the appropriate calibration and acoustic modeling [15], [52],
which are beyond the scope of this paper.

Cavitation is a three-dimensional physical phenomenon.
Imaging this with linear arrays limits its localization into a
two-dimensional plane. The subsequent issues of this aspect
are that off-plane cavitation events might not only be missed,
but might also generate artifacts on the two-dimensional maps.
On the one hand, the potential for adaptive beamformers to
remove such artifacts has to be investigated. On the other
hand, the CSM-derived beamformers are good candidates to
deal with three-dimensional imaging. As these are intrinsically
formalised in the FD, they are very computationally effi-
cient [27]. This property is essential to efficiently process the
large volumes of data involved in three-dimensional imaging,
for which more than 1000 sensors can be used [57].

VII. CONCLUSIONS

This study has shown the potential of CSM-derived beam-
formers for spatio-temporal monitoring of cavitation. These
provide: (1) high quality maps in (2) shorter computational
times than needed for time-domain approaches, and with (3)
direct frequency selectivity. These three attractive properties
are gathered within the proposed CSM-derived formalism,
which is therefore expected to be a powerful tool to develop
passive ultrasound imaging. In the long term, these CSM-
derived beamformers can be expected to contribute to the
enhancement of spatio-temporal regulation of cavitation for
therapeutic applications [54].
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[12] M. Gyöngy and C. C. Coussios, “Passive spatial mapping of inertial
cavitation during HIFU exposure,” IEEE Transactions on Biomedical
Engineering, vol. 57, no. 1, pp. 48–56, 2010.

[13] S. J. Norton and I. Won, “Time exposure acoustics,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1337–1343, 2000.

[14] S. J. Norton, B. J. Carr, and A. J. Witten, “Passive imaging of
underground acoustic sources,” The Journal of the Acoustical Society
of America, vol. 119, no. 5, pp. 2840–2847, 2006.

[15] C. Coviello, R. Kozick, J. Choi, M. Gyöngy, C. Jensen, P. P. Smith, and
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