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Homography Estimation of a Moving Planar Scene
from Direct Point Correspondence

Simone de Marco, Minh-Duc Hua, Robert Mahony, Tarek Hamel

Abstract—Homography estimation is an important task in
robotics applications such as landing on moving platforms, dock-
ing and refueling, building inspection, etc. Non-linear observers
depend on an estimate of the group algebra velocity as a feed-
forward term to minimize lag in the filter response. When
both the camera and the scene are moving, and for perspective
image constructs such as the homography, it is often impossible
to directly measure the required group velocity. This paper
proposes a solution for the case where the motion is periodic,
or approximately periodic, with known period. The approach is
based on the internal model principle, where the internal model
can be expanded to include a sufficient harmonics of the desired
period in order to model complex periodic motions. The novelty
of the work lies in formalizing the internal model for observer
design to the non-compact Lie group SL(3) and providing a
demonstration of the effectiveness of the approach with real-
world examples.

Index Terms—Homography, Internal Model Observer, Non-
linear Observer.

I. INTRODUCTION

Recent years have witnessed an increase in the use of
autonomous robotic vehicles for a wide range of civilian
and commercial applications. There is a growing interest in
applications where the autonomous vehicle physically interacts
with the surrounding environment. These operations include
landing on moving platforms, docking and refueling, building
inspections and search and rescue missions. Obtaining a good
measure of the position of the vehicle during such missions
is a crucial to the system performance. Global Positioning
Systems (GPS) are widely used for navigation and control in
open areas, however, reliable and accurate GPS localization in
the applications of interest is not possible due to tall buildings,
urban canyons, dense material such as concrete and steel and
many other factors that can block or heavily degrade the GPS
signals. Moreover, many missions require localization with re-
spect to some particular features in the environment instead of
an absolute position. For these reasons, the study of alternative
localization systems has become popular in the robotics and
control community. Examples of such localization systems
are 2D laser scanner (LIDAR), radar, cameras (monocular,
stereo, RGB-D, event), etc. Active sensor systems such as
LIDAR are well suited for large-scale vehicles, however since
they are usually heavy, expensive and power hungry they
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cannot be used on small-scale vehicles. In contrast, cameras
are cheap, lightweight, small and convenient to mount and
provide an information rich measurement. Therefore, vision-
based systems remain one of the most promising technologies
especially for small-scale unmanned aerial vehicles (UAV).
Vision-based control algorithms are known in literature as
visual servoing [8], [9], [30].

Any two images of the same planar scene taken from two
different camera poses are related by a projective mapping
known as a homography. Homographies play a major role
in rigid-body pose estimation [10], [37], unmanned vehicle
navigation [32], [33], UAV autonomous approach and landing
[18], [39], to name only a few applications. Using homo-
graphies is effective when the surrounding environment is
composed mainly of planar surfaces for example in man-made
environments, urban scenes and also when the relief of the
scene viewed is negligible compared to the distance of the
camera from the scene. Estimating homography from pairs of
images has been extensively studied in the computer vision
literature [20]. Classical algorithms estimate homographies
by minimizing a suitable cost function given a set of image
feature (points, lines, conics) correspondences between image
pairs. For such algorithms, there is no difference whether
the images considered are generated by a temporal correlated
sequence (such as in a video) or are taken independently.
When a robotic vehicle moves, however, the camera captures a
temporal sequence of images for which the homography varies
continuously. This has lead to the development of a number
of non-linear continuous-time observers [19], [21], [22], [31]
that exploit the structure of the Special Linear group SL(3),
a Lie-group isomorphic to the group of homographies [4]. A
disadvantage of non-linear observers is that they rely on group
velocity measurements to propagate the state estimate with
time. Although robotic systems are usually provided with an
inertial measurement unit, and other velocity measurements
such as doppler GPS and optical flow, the homography ve-
locity depends also on scene parameters and is difficult to
reconstruct. Furthermore, if the scene itself is moving, such as
for landing on a moving platform, ego motion estimation of
the robot by itself cannot estimate the velocity of the relative
homography. The only algorithms the authors are aware of
that address this issue use an integral adaptive term [19], [22],
[31] to estimate ‘constant’ unknown velocity. This assumption
is restrictive since constant group velocity motions for the
homography group are not intuitive motions for a rigid-body
robotic system with a mounted camera moving over a moving
scene, and it may introduce significant lag in the filter response
when used in real-world scenarios [19], [22], [31].
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The problem of regulating the output of a system in or-
der to track an unknown reference trajectory while rejecting
disturbances is known as an output regulation problem (or
servomechanism problem) [11], [15]. The case where the
desired reference can be modeled as the solution to an ordinary
differential equation with unknown initial condition can be
solved by internal model-based regulators. This problem has
been extensively studied over the last thirty years in both linear
[11], [15], [16] and non-linear context [24], [6], [38], leading
to the so-called Internal Model Principle. The central part
of the regulator design incorporates an internal model unit,
which is a dynamical autonomous system that generates in
steady state the feed-forward input that keeps the tracking
error identically to zero. Recently, the theory of non-linear
observers has been shown to play a central role in the output
regulation problem. In particular, adaptive observers [2] and
high-gain observers [17], [1] have been successfully used for
the design of adaptive internal models [34] and robust internal
models [25], [5].

In this paper, we take advantages of recent results [13] on
output regulation for systems on matrix Lie-groups to develop
an internal model-based observer design for the homography
estimation problem. The unknown group velocity, that acts like
an unknown reference trajectory, is modeled as belonging to a
family of trajectories generated as solutions of an autonomous
linear system on the group Lie algebra. The proposed observer,
in the same spirit of linear internal model principle, embeds
a copy of the exogenous dynamics (posed on the Lie algebra)
and incorporates an innovation to synchronize these dynamics
with the exogenous plant providing a driving term for the
velocity reference of a standard kinematic observer on the
Lie group. The novelty of the paper, which is based on the
direct point formulation proposed in [19], is its ability to
learn complex feed-forward velocity profiles to reduce lag in
the homography tracking where motion is periodic. This has
application in a wide range of applications such as landing an
aerial robot on an oscillating platform or stabilizing periodic
camera shake. A preliminary version of the theoretical results
of this paper was presented in [12]. Here we provide a more
extensive stability analysis extending the local asymptotic
results in [12] to local uniform exponential results as well
as providing a more detailed experimental study and full
details of the derivations. The experimental results provided
demonstrate excellent performance and robustness in presence
of challenging conditions and outperform the state-of-the-art
results documented in [19].

The paper is organized into five sections including the
present introduction and an appendix. Section II introduces the
notation and formulation. The non-linear observer is detailed
in Section III. Simulation results are provided in Section IV.
Section V provides a detailed description of the software
implementation of the observer. In the same section an ap-
plication of the proposed approach for the tracking of an os-
cillating platform, with comparisons of the observer proposed
in [19], is presented. A video link of the experiment (https:
//goo.gl/9Y3KsB) is provided as supplementary material. The
Appendix contains proofs of some useful properties for the
observer design, a rigorous analysis of the local exponential

stability of the proposed observer, and an important lemma
that is not in the direct line of argument for the main result.

II. PROBLEM FORMULATION

A. Notation and mathematical identities

The set of all m×n matrices whose entries are real numbers
is denoted Rm×n. For any A ∈ Rn×n, det(A) and tr(A)
denote the determinant and the trace of A respectively.

The Special Orthogonal group is denoted SO(3). The Lie
algebra associated to the Special Orthogonal group, denoted
by so(3), is the set of 3× 3 skew symmetric matrices

so(3) :=
{

Ω× ∈ R3×3|Ω× + Ω>× = 0
}
.

The Lie algebra so(3) with the matrix commutator (Lie
bracket) [·, ·] is isomorphic to R3 with the cross product. Let
Ω = [Ω1,Ω2,Ω3]> ∈ R3, then the matrix

Ω× =

[
0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

]
is the skew symmetric matrix associated to the cross product
Ω×v = Ω× v, for any v ∈ R3.

The Special Linear group SL(3) and its associated Lie
algebra sl(3) are defined by

SL(3) :=
{
H ∈ R3×3|det(H) = 1

}
,

sl(3) :=
{
U ∈ R3×3| tr(U) = 0

}
.

For H ∈ SL(3) and U ∈ sl(3), the adjoint operator is a
mapping Ad : SL(3)× sl(3)→ sl(3) defined by

AdHU := HUH−1.

For any A,B ∈ Rn×n, 〈〈A,B〉〉 = tr(A>B) defines an
inner product on Rn×n, and the Frobenius norm ‖ · ‖F is
defined by

‖A‖F :=
√
〈〈A,A〉〉.

Let Psl3(·) denote the unique orthogonal projection of R3×3

onto sl(3) with respect to the trace inner product, one has

Psl3(A) =

(
A− 1

3
tr(A)I

)
∈ sl(3), ∀A ∈ R3×3,

with I the identity matrix.
Let ∧ denotes the mapping ∧ : R8 → sl(3) that maps the

vector v ∈ R8 to an element of sl(3)

v∧ :=

8∑
j=1

vjBj

where {B1, . . . , B8} is a basis of sl(3). For instance, denoting
by b1 = [1, 0, 0]>, b2 = [0, 1, 0]>, b3 = [0, 0, 1]>, the
following eight generators form a basis for the lie algebra
sl(3)

B1 := b1b
>
1 − I3, B4 = b1b

>
2 , B7 = b1b

>
3 ,

B2 := b2b
>
1 , B5 = b2b

>
2 − I3, B8 = b2b

>
3 ,

B3 := b3b
>
1 , B6 = b3b

>
2 .

(1)
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The operator vec∨ : sl(3) → R8 denotes the inverse of the
(·)∧ operator, namely

vec∨(v∧) = v, ∀v ∈ R8.

For any A ∈ Rn×n, vect(A) ∈ Rn2

denotes the column vector
obtained by the concatenation of columns of the matrix A as
follows

vect(A) = [a1,1, · · · , an,1, a1,2, · · · , an,2, · · · , a1,n, · · · , an,n]>.

The matrix representation of the composition of the linear
maps (vect ◦∧) : R8 → sl(3) → R9 is denoted by the full
columns rank matrix J∧K ∈ R9×8. Let Qsl3 ∈ R8×8 denote
the symmetric positive matrix Qsl3 := J∧K>J∧K.

For any p ∈ S2, the projection πp := (I − pp>) onto the
tangent space of the unit sphere S2 at point p satisfies πpp = 0.

B. Perspective Projection

Let B denote projective coordinates for the image plane of
a camera, and {B} its frame of reference. Let ξ ∈ R3 denote
the position of the body-fixed frame {B} with respect to the
inertial frame {I} expressed in {I}. The orientation of the
frame {B} with respect to the inertial frame {I} is given by
the rotation matrix R ∈ SO(3). Let T denote the projective
coordinates of reference image of the target plane, and let
{T} denote its right-hand frame of reference. Let (ξT , RT ) ∈
R3 × SO(3) denote the configuration of the frame {T} with
respect to the inertial frame {I}.

The coordinates of a single point in the inertial frame PI ∈
{I}, in the camera frame PB ∈ {B} and in the target frame
P̊ ∈ {T} (see Figure 1) are related by

PI = RT P̊ + ξT , (2a)

PI = RPB + ξ. (2b)

The orientation of the body-fixed frame {B} with respect
to the target frame {T}, is denoted by the rotation matrix
R̄ : {B} → {T}, while the relative position of the frame {B}
with respect to the target frame {T} expressed in the frame
{T} is denoted by ξ̄, one verifies that

R̄ = R>TR, (3a)

ξ̄ = −R>T (ξT − ξ). (3b)

Substituting (2a) into (2b) one has

PB = R̄>P̊ − R̄>ξ̄ (4)

as relation between the coordinates of the same point in the
target frame and in the body-fixed frame.

Considering the classical pinhole camera model [14], [29],
3D points can be projected on the image planes B and T .
Let p ∈ B denote the image of a point when the camera is
aligned with the body-fixed frame {B} and let p̊ ∈ T denote
the image of the same point when the camera is aligned with
the target frame {T}, then1

p̊ ∼= KP̊ , p ∼= KPB

1The notation “∼=” is defined in the homogeneous sense, i.e. up to a non-
zero scalar factor [29].

Fig. 1. Representation of a point of the planar surface in the inertial frame
{I}, body-fixed frame {B} and target frame {T}.

where K is the upper triangular camera matrix which depends
on intrinsic parameters of the camera, namely focal length,
pixels aspect ratio and principal point offset.

C. Homography matrix and the Special Linear Group SL(3)

Let η̊ denote the unit normal vector pointing towards the
target plane expressed in {T}, and let d̊ denote the orthogonal
distance of the plane to the origin of {T}.

Due to the fact that all target points P̊i for i = {1, . . . , n}
lie on a single planar surface one has

η̊>P̊i

d̊
= 1,

it follows from (4) that

PBi =

(
R̄> − R̄>ξ̄ η̊

>

d̊

)
P̊i, (5)

and thus, using the perspective projection, one obtains

p̊i ∼= K

(
R̄> − R̄>ξ̄ η̊

>

d̊

)−1

K−1pi. (6)

The projective mapping G : B → T that maps pixel
coordinates from B to T given by

G = ζK

(
R̄> − R̄>ξ̄ η̊

>

d̊

)−1

K−1,

where ζ represents a scaling factor, is known in literature as
homography matrix.

Let η (resp. ηI ) denote the normal to the target plane
expressed in the frame {B} (resp. {I}), and let d (resp. dI )
denote the orthogonal distance of the planar surface to the
origin of the body-fixed frame {B} (resp. inertial frame {I}).
One verifies that:

η = R>ηI = R̄>η̊, (7)

d = dI − η>I ξ = d̊− η̊>ξ̄. (8)

It follows that the homography matrix can be written as

G = ζK

(
R̄+

ξ̄η>

d

)
K−1.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. , NO. , MONTH YEAR 4

Fig. 2. The red, blue and green polygon represents the region of interest tracked by the proportional, proportional-integral and internal model-based filter
respectively.

If the camera is calibrated the homography matrix can be
scaled

H = K−1GK = ζ

(
R̄+

ξ̄η>

d

)
. (9)

This mapping is referred to as Euclidean homography since it
maps Euclidean coordinates of the scene’s points from {B} to
{T}. Indeed, the Euclidean homography contains the relative
pose information of the camera body-fixed frame {B} with
respect to the target frame {T}. From now on we restrict our
attention to the Euclidean homography H .

Since the homography H is only defined up to a scale factor,
it is possible to represent it uniquely as an element of the
Special Linear group SL(3) by choosing ζ such that det(H) =
1, namely

H ′ = H det(H)−
1
3 ∈ SL(3).

For the remainder of this paper, we assume that the cal-
ibrated homograpy is appropriately scaled in such a way
H ∈ SL(3).

D. Homography Kinematics and Measurements

Denote the angular velocity and linear velocity of the target
frame {T} with respect to the inertial frame {I} expressed in
the target frame {T} by ΩT and VT . The target kinematics of
(RT , ξT ) are given by:

ṘT = RT ΩT×, ξ̇T = RTVT . (10)

Let Ω denote the angular velocity of the body-fixed frame
expressed in {B} and let V denote the linear velocity of the
body-fixed frame {B} with respect to the inertial frame {I}
expressed in the frame {B}. The kinematics of (R, ξ) are
given by:

Ṙ = RΩ×, ξ̇ = RV. (11)

It follows that the kinematics of the relative attitude and
position of the body-fixed frame {B} with respect to the target
frame {T} expressed in {T} can be written as

˙̄R = R̄Ω̄×,
˙̄ξ = R̄V̄ (12)

where

Ω̄× = Ω× − (R̄>ΩT )×, (13a)

V̄ = R̄>ΩT×ξ̄ + V − R̄>VT . (13b)

Lemma 1. Consider a camera moving with kinematics (11)
viewing a moving planar scene whose kinematics are defined
by (10). Let H : {B} → {T} denote the Euclidean homog-
raphy matrix. The group velocity Ū ∈ sl(3) induced by the
relative motion between the camera and the target plane is
such that

Ḣ = HŪ, with Ū = Ω̄× +
V̄ η>

d
− η>V̄

3d
I. (14)

Proof: See Appendix A.
Note that the group velocity Ū induced by the relative

motion between the camera and the target plane depends on
the normal to the surface η and the orthogonal distance d, that
define the scene geometry at time t, as well as the angular
velocity of the target plane ΩT . The scene parameters and the
velocity of the target are usually unmeasurable and they have
to be taken into account during the observer design. To this
purpose we rewrite the group velocity as

Ū = Ω× + Γ∧, (15)

where Ω is typically the measurable part, which can be
obtained from the set of embedded gyros and can be directly
used in the observer as feed-forward term. While the remainder
of the group velocity Γ∧ represents the unmeasurable part that
has to be estimated.
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In order to cope with the unmeasurable group velocity, we
assume that Γ∧ can be immersed into a finite-dimensional and
observable linear system ([7], [26]) in such a way it can be
written in the form

Γ∧ = (Cγ)∧, γ̇ = Sγ (16)

where the known matrix C ∈ R8×m is a full row rank matrix
with m ≥ 8, γ ∈ Rm and the known matrix S ∈ Rm×m is
skew symmetric, namely S = −S>.

Remark. The eigenvalues of a real skew-symmetric matrix
are all purely imaginary and they come in conjugate pairs.
In case of odd dimension there is an additional unpaired null
eigenvalue. The system in (16) is stable in the Lyapunov sense.
Indeed considering the Lyapunov candidate L = ‖γ‖2, and
differentiating it along the solutions of (16) one obtains L̇ =
2γ>Sγ = 0. It follows that any autonomous observable system
of the form

ẋ = Ax, A ∈ Rm×m, x ∈ Rm

y = Cyx, Cy ∈ R8×m, y ∈ R8

is equivalent to (16) iff all eigenvalues of A have zero real
part and multiplicity one in the minimal polynomial. The
considered assumption on Γ∧ is of course not valid for
all types of relative motions between the camera and the
target plane. It, however, allows us to cover many possible
camera/target trajectories encountered in practice such as
(near) circular or sinusoidal motions.

We consider a set of n point measurements pi ∈ P2

associated to a group action of SL(3) onto the projective space
P2

pi =
H−1p̊i
|H−1p̊i|

, i = {1, . . . , n}, (17)

representing calibrated image points projected onto the unit
sphere.

III. NON-LINEAR OBSERVER DESIGN ON SL(3)

The goal of the non-linear filter is to provide an estimate
Ĥ ∈ SL(3) given a collection of n measurements pi to drive
the error H̃ := ĤH−1 to the identity element of the group.
To this purpose, we define the estimates p̂i ∈ P2 of pi as

p̂i :=
Ĥ−1p̊i∣∣∣Ĥ−1p̊i

∣∣∣ , i = {1, . . . , n}. (18)

The estimates ei of p̊i then is defined as

ei :=
Ĥpi∣∣∣Ĥpi∣∣∣ =

H̃p̊i∣∣∣H̃p̊i∣∣∣ , i = {1, . . . , n}. (19)

Definition 1. A set Mn of n(≥ 4) vector directions p̊i ∈ P2

is called consistent, if it contains a subset M4 ⊂ Mn of 4
constant vector directions such that all its vector triplets are
linearly independent.

Theorem 1. Let H denote the Euclidean homography (9) and
consider the kinematic system in (14) along with (15) and (16).
Consider the following nonlinear filter

˙̂
H = Ĥ(Ω× + Γ̂∧) + kp∆Ĥ (20a)

Γ̂∧ = (Cγ̂)∧ (20b)

˙̂γ = Sγ̂ + kIC
>Qsl3

n∑
i=1

ϕi (20c)

with kp and kI some positive gains and

∆ :=
n∑

i=1

πei p̊ie
>
i ∈ sl(3)

ϕi := vec∨
(
Psl3

(
(Ĥ>p̊i)(Ĥ

−1ei)
>
))

+

−e>i p̊i vec∨
(
Psl3

(
(Ĥ>ei)(Ĥ

−1ei)
>
))

.

(21)
Assume that the measured angular velocity Ω of the planar
target, the group velocity Γ (equivalently γ) in (16) and
homography matrix H are bounded.

Then, if the setMn of measured directions p̊i is consistent,
the equilibrium (H̃, γ̃) = (I, 0), with H̃ := ĤH−1, γ̃ :=
γ − γ̂, of the error system is locally exponentially stable.

The proof of Theorem 1 is given in Appendix B.
The positive gains kp and kI in (20) share the same effects

of a proportional gain and an integral gain for a linear system,
respectively. In particular kp directly relates the dynamics of
Ĥ to the innovation, while the gain kI represents the integral
term of the innovation projected into R8 in the inertial frame.

Remark. The constant image points p̊i represent known ref-
erence points which can be extracted from a stored reference
image of the planar scene or extracted directly during the
initialization process of the observer, namely the first image
taken by the camera. In the latter case one has p̊i =
pi(0), ∀i = {1, . . . , n}, whereas ei represent the estimates of
the reference points p̊i based on the current measurements pi.
Roughly speaking, in a classical linear Luenberger observer
the error

∑
i(p̊i − ei) would represent the output prediction

error (innovation).

IV. SIMULATION RESULT

In this section we illustrate the performance of the proposed
observer through simulations. The camera is assumed to be
a stationary camera. The target plane trajectory, depicted in
Figure 3, is chosen as a Lemniscate of Gerono with zero
angular velocity and linear velocity given by:

VT =

−12π sin(6πt)
12π cos(12πt)
24π cos(12πt)

 .
Note that the group velocity Γ∧ in (16) induced by the Gerono
trajectory cannot be immersed into a finite linear system.
However, due to the fact that Γ∧ is a periodic function it is
possible to decompose it into Fourier series (see Figure 4).

The initial homography H is initialized as

H(0) =

2.28 0 0
0 2.28 0
0 0 0.19
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Fig. 3. Target Plane Trajectory.

while the initial estimated homography Ĥ(0) is set to the iden-
tity element of the group. The filter parameters are kp = 50
and kI = 10.

Considering the spectrum of the group velocity induced
by the motion of the planar target, depicted in Figure 4, we
implemented in the internal model unit the first four harmonics
for the basis B1, B5, B7, B8 defined in (1).

For comparison purpose a second simulation was run con-
sidering the observer proposed in [19], using the same value
kp = 50 for the proportional term.
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Fig. 4. Frequency spectrum of the group velocity Γ∧.

The results reported in Figures 5-6 show respectively the
time behavior of the Frobenious norm ‖I − H̃‖F for the

observer presented in [19] and the proposed observer (termed
OSC in order to highlight the oscillatory nature of the terms
in the Lie algebra), the Frobenious norm ‖Γ∧ − Γ̂∧‖F , and
the group velocity vs. the estimated group velocity. Figure
5 clearly shows that the proposed observer outperform the
observer in [19]. Plots show that, in steady state, the velocity
Γ̂∧ of the observer practically converges to Γ∧ and the
estimated homography Ĥ practically converges to the real
homography H .
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Fig. 5. Time behaviour of the Frobenious norm ‖I−H̃‖F and ‖Γ∧−Γ̂∧‖F .
In red the proportional observer (P) proposed in [19] and in blue the observer
(OSC) proposed in this paper.

In Figure 7 it is shown the state of the internal model unit
relative to the basis B8 in order to track the desired group
velocity Γ∧.

V. EXPERIMENTAL RESULT

A. Experimental implementation aspects

The proposed non-linear observer has been implemented in
C++ with OpenCV library. Due to real-time constraint, the
time consuming image processing part of the observer has
been implemented taking advantages of modern GPU parallel
computing. In particular, in view of embedding the filter on
small-scale unmanned vehicles on the Jetson NVIDIA family,
CUDA API have been used. The algorithm, whose flowchart
is depicted in Figure 8, can be summarized as follows. The
process is initialized detecting feature and extracting the de-
scriptor of a reference image (red boxes Figure 8). As soon as
a new image arrives, it is transformed with a perspective trans-
formation (OpenCV’s cuda::warpPerspective) based on the
homography estimate. The algorithm detects key-points on the
current warped image and extracts the features’ descriptor. The
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Fig. 6. Estimated group velocity Γ̂∧ (blue lines) and true group velocity Γ∧
(red lines). Note that each plot represent an element of the group velocity
matrix.

descriptor of the current image is matched with the descriptor
of the reference image (Figure 9). Those matches, however,
may contain many outliers which are removed with the outliers
algorithm presented in [23]. The remaining inliers, that lie on
the image plane, are projected onto the unit sphere (17). From
these measurements the homography estimate is updated by
iterating the observer equations 250 times per video frame.
In this correction step, special attention has been paid on the
integration of the observer equations in (20). In particular a
leapfrog integrator has been implemented for the numerical
integration of the oscillators bank in the lie algebra sl(3) of
the observer. Note that feature detection and description are es-
sential components for the algorithm. Several feature detectors,
such as scale invariant feature transform (SIFT)[28], features
from accelerated segment test (FAST)[35], oriented FAST
and rotated BRIEF (ORB)[36], speeded-up robust features
(SURF)[3] and descriptors such as ORB, SIFT and SURF have
been proposed in literature. Choosing the detector-descriptor
combination depends on the particular application and is
usually a trade-off between accuracy, repeatability, robustness
and speed. Since the major constraint for this application is the
time it has been decided to use the combination FAST-ORB.

B. Experimental setup

In order to experimentally validate the proposed observer
we present an application for the homography estimate of
an oscillating cardboard target in challenging conditions such
as partial target occlusions, changing in light condition and
specular reflections. The platform used for the experiment,
depicted in Figure 10, is made of a cardboard box whose
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Fig. 7. Bank of oscillators relative to the eighth generator of the Lie algebra
sl(3). In blue the first four harmonics (6, 12, 18, 24 Hz) implemented in
the observer and in cyan the resultant.

Fig. 8. Flowchart of the implemented algorithm.

upper flap is actuated by a small servo motor via an Arduino
Mega 2560. The camera used is a Basler acA 1200-200uc
featuring a 6.1 mm × 4.9 mm sensor, maximum resolution
1280 px × 1024 px and maximum frame rate of 203 fps. An
Optitrack motion capture system is used together with markers
mounted to the camera and to the cardboard in order to
provide homography ground truth measurements starting from
the knowledge of the full pose of the camera and the planar
target.

C. Experimental results

The experiment has been performed using the Basler camera
which is held stationary recording at 50 fps while looking at
the oscillating target. In an ideal scenario, the target platform
should oscillate with a frequency of 0.83 Hz only on the pitch
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Fig. 9. Key-points detection, description and matching.

Fig. 10. Oscillating Target Platform.

angle. However, due to the simple design of the handmade
platform, the target oscillates along all the three axes, as
depicted in Figure 11. Since the platform is tracking the
desired sinusoidal trajectory by means of position feedback
only, and due to the fact that the center of mass of the target
is located slightly below the rotation axis, the rising and the
falling edge of the sinusoidal trajectory are not symmetrical.
As a consequence, the motion of the target is still periodical
but with a much richer frequency spectrum (see Figure 11,
cyan box).

We proceed by presenting a comparison of the homography
observer proposed in [19] with respect to the filter formulated
in this paper. In order to have a fair comparison between
the algorithms, the proportional term of the three observers
is chosen as kp = 80, the integral term of the proportional-
integral filter is chosen equal to the oscillator gain of the
internal model-based observer and set to kI = 80. In the
internal model-based observer only the nominal oscillation
frequency fn = 0.83 Hz of the target has been implemented
in the bank of oscillators defined on the Lie algebra sl(3). In
particular denoting by

S1 :=

[
0 −2πfn

2πfn 0

]
, C1 :=

[
0 1

]
,

the matrices of the implemented observer have the following
form

S = diag(S1, S1, S1, S1, S1, S1, S1, S1) ∈ R16×16,
C = diag(C1, C1, C1, C1, C1, C1, C1, C1) ∈ R8×16.

Figures 2-12 show the comparison between the three al-
gorithms: namely proportional (P), proportional-integral (PI),
and internal model-based (OSC). To this regard, we performed
an experiment where:
• From 0-25 seconds (Figure 2 frames 38-293) the con-

ditions are ideal, except for the presence of specular
reflections.

Fig. 11. Roll, pitch and yaw Euler angles of the oscillating platform.

• From 25-32 seconds (Figure 2 frame 1474-1526) the
target is partially occluded by hands.

• From 34-36 seconds (Figure 2 frame 1773, Figure 11
green box) the periodical assumption is violated.

• From 32-50 seconds (Figure 2 frame 2163) there is a
sudden change in light intensity conditions.

The video showing the above experiment is available in
the supplementary material and from the link https://goo.gl/
9Y3KsB.

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3
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0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

OSC

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4 PI

Fig. 12. Time behaviour of the Frobenious norm ‖I−H̃‖F of the proportional
observer (red line), proportional-integral observer (blue line) and internal
model based observer (green line).
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Figure 12 shows the time behavior of the Frobenious norm
‖I − H̃‖F for the three implemented algorithms. The figure
clearly shows better performance of the internal model based
observer with respect to [19] in all the conditions except when
the assumption on the periodicity of the target trajectory is
strongly violated.

APPENDIX A
PROOF OF LEMMA 1

Considering (9), the time derivative of the homography is
given by

Ḣ = ζ

[
˙̄R+

˙̄ξη> + ξ̄η̇>

d
− ḋ ξ̄η

>

d2

]
+
ζ̇

ζ
H.

Recalling (7), (8) it is straightforward to verify that

ḋ = −η>V̄ , η̇> = η>Ω̄×

and bearing in mind (13a), (13b) one has

Ḣ= ζ

[
R̄Ω̄× +

R̄V̄ η> + ξ̄η>Ω̄×
d

+
η>V̄ ξ̄η>

d2

]
+
ζ̇

ζ
H

=

[
ζ

(
R̄+

ξ̄η>

d

)
Ω̄× + ζ

(
R̄+

ξ̄η>

d

)
V̄ η>

d

]
+
ζ̇

ζ
H

= H

(
Ω̄× +

V̄ η>

d
+
ζ̇

ζ
I

)
.

(22)
Since Ū ∈ sl(3) it follows

tr

(
Ω̄× +

V̄ η>

d
+
ζ̇

ζ
I

)
= 0

which in turn implies

ζ̇

ζ
= −η

>V̄

3d
I.

APPENDIX B
PROOF OF THEOREM 1

We recall that the matrix representation of the composition
of the linear maps (vect ◦∧) is denoted by the full columns
rank matrix J∧K ∈ R9×8. Let Jvec∨K ∈ R8×9 denotes the
matrix representation of the inverse of the map (vect ◦∧),
namely

vect(v∧) = (vect ◦∧)(v) = J∧Kv,
vec∨(v∧) = (vect ◦∧)−1(vect(v∧)) = Jvec∨K vect(v∧),

(23)
for any v ∈ R8. The operator ⊗ denotes the usual Kroneker
product. Let us introduce the following properties which are
instrumental for the proof of the main theorem of this paper.

A. Property 1

For any H ∈ SL(3) and v ∈ R8, the matrix representation
of the composition of the linear maps (vec∨ ◦AdH)

vec∨(AdH(v∧)) := JAdHKv

is given by

JAdHK = Jvec∨K(H−> ⊗H)J∧K. (24)

Proof. From the definition of J∧K and Jvec∨K in (23) one has

vec∨(Hv∧H
−1) = Jvec∨K vect(Hv∧H

−1)
= Jvec∨K(H−> ⊗H) vect(v∧)
= Jvec∨K(H−> ⊗H)J∧Kv
= JAdHKv

B. Property 2

For any A ∈ R3×3, B ∈ R3×3, one verifies

J∧KJvec∨K(A⊗B)J∧K vec∨(U) =
= J∧KJvec∨K(A⊗B) vect(U)
= J∧KJvec∨K vect(BUA>)
= vect(BUA>)
= (A⊗B) vect(U)
= (A⊗B)J∧K vec∨(U)

which implies

J∧KJvec∨K(A⊗B)J∧K = (A⊗B)J∧K. (25)

C. Theorem 1 Proof

By considering the Euclidean homography (14), with kine-
matics (15), (16) along with the observer (20), the dynamics
of the error system are given by

˙̃H = −[AdĤ(Cγ̃)∧]H̃ + kp∆H̃

˙̃γ = Sγ̃ − kIC>Qsl3

n∑
i=1

vec∨(AdĤ>∆).
(26)

To prove that the origin of the error system (H̃, γ̃) = (I, 0) is
locally exponentially stable, it suffices to show that the origin
of the linearized error system is exponentially stable. The proof
is based on Theorem 1 in [27] which establishes sufficient
conditions for the uniform exponential stability of the origin
of a linear time-varying system having the following standard
form [

ẋ

θ̇

]
=

[
A(t) B(t)>

−C(t) 0

] [
x
θ

]
. (27)

In order to write the linearized system in the standard form
(27) we consider the following time-varying change of coor-
dinates

γ̃′ = Q̄γ̃, ˙̄Q = −Q̄S,

with Q̄ ∈ SO(m), yielding

˙̃H = −[AdĤ(CQ̄>γ̃′)∧]H̃ + kp∆H̃,

˙̃γ′ = −kIQ̄C>Qsl3

n∑
i=1

vec∨(AdĤ>∆).
(28)

Let us define x∧, with x ∈ R8, and θ ∈ Rm the first order
approximation of H̃ , γ̃′ around the equilibrium point (I, 0)

H̃ ' (I + x∧) = (I +

8∑
k=1

xkBk), γ̃′ = θ. (29)
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A first-order approximation of the output errors ei given by
(19), considering the equation above, can be written as

ei '
p̊i + x∧
|p̊i + x∧p̊i|

' (p̊i + x∧)
(
1− p̊>i x∧p̊i

)
and by neglecting high order terms one has

ei ' p̊i + x∧p̊i − p̊ip̊>i x∧p̊i. (30)

Substituting the expression of the output errors ei (30) in the
innovation term ∆ one obtains

∆ =
n∑

i=1

πei p̊ie
>
i =

n∑
i=1

(I − eie>i )p̊ie
>
i

'
n∑

i=1

[
(p̊ip̊

>
i + p̊ip̊

>
i x
>
∧ − p̊ip̊>i x>∧ p̊ip̊>i )+

−(p̊i + x∧p̊i − p̊ip̊>i x∧p̊i)(p̊i + x∧p̊i − p̊ip̊>i x∧p̊i)>
(p̊ip̊

>
i + p̊ip̊

>
i x
>
∧ − p̊ip̊>i x>∧ p̊ip̊>i )

]
' −

n∑
i=1

πp̊i
x∧p̊ip̊

>
i .

(31)
Thus, the first-order error dynamics for the error system are
given by

ẋ∧ ' −
(
AdĤ(CQ̄>θ)∧

)
(I + x∧) + ∆(I + x∧)

' −AdĤ(CQ̄>θ)∧ − kp
n∑

i=1

πp̊ix∧p̊ip̊
>
i

which in turn implies

ẋ '− vec∨
(
AdĤ(CQ̄>θ)∧

)
− kp

n∑
i=1

vec∨
(
πp̊i

x∧p̊ip̊
>
i

)
.

Bearing in mind Property 1 in (24), it yields

ẋ =−JAdĤKCQ̄>θ − kp
n∑

i=1

Jvec∨K vect
(
πp̊ix∧p̊ip̊

>
i

)
=−JAdĤKCQ̄>θ − kp

n∑
i=1

Jvec∨K(p̊ip̊
>
i ⊗ πp̊i

) vect(x∧)

=−JAdĤKCQ̄>θ − kp
n∑

i=1

Jvec∨K(p̊ip̊
>
i ⊗ πp̊i)J∧Kx.

Proceeding in a similar way, the first order approximation of
γ̃′ is given by

θ̇ ' −kIQ̄C>Qsl3 vec∨(AdĤ>∆)

= −kIQ̄C>Qsl3Jvec∨K vect(Ĥ>∆Ĥ−>)

= −kIQ̄C>Qsl3Jvec∨K(Ĥ−1 ⊗ Ĥ>) vect(∆)

= kIQ̄C
>Qsl3

n∑
i=1

Jvec∨K(Ĥ−1 ⊗ Ĥ>)(p̊ip̊
>
i ⊗ πp̊i

)J∧Kx,

and recalling the definition of Qsl3 and bearing in mind
Property 2 in (25) one obtains

θ̇ ' kIQ̄C>J∧K>
n∑

i=1

(Ĥ−1 ⊗ Ĥ>)(p̊ip̊
>
i ⊗ πp̊i

)J∧Kx.

It follows that the linearized system is in standard form (27)
with

A(t) := −kp
n∑

i=1

Jvec∨K(p̊ip̊
>
i ⊗ πp̊i)J∧K,

B(t) := −Q̄C>JAdĤK>,

C(t) := −kIQ̄C>J∧K>
n∑

i=1

(Ĥ−1 ⊗ Ĥ>)(p̊ip̊
>
i ⊗ πp̊i

)J∧K.

It is straightforward to verify that the matrices

P := kIJ∧K>
n∑

i=1

(p̊ip̊
>
i ⊗ πp̊i

)>J∧K,

Q := 2kIkpJ∧K>
n∑

i=1

(p̊ip̊
>
i ⊗ πp̊i

)
n∑

i=1

(p̊ip̊
>
i ⊗ πp̊i

)J∧K

are symmetric and they satisfy the required relations PB> =
C> and Q = −A>P − PA of Theorem 1 in [27]. It remains
to prove that the matrices P and Q are positive definite, to this
purpose note that the matrix P is associated to the quadratic
form ‖ei − p̊i‖2 at the origin, indeed one has

1

kI
x>Px = x>J∧K>

n∑
i=1

(p̊>i ⊗ πp̊i)
>(p̊>i ⊗ πp̊i)J∧Kx

= vect(x∧
>)

n∑
i=1

(p̊>i ⊗ πp̊i)
>(p̊>i ⊗ πp̊i) vect(x∧)

=

n∑
i=1

p̊>i x
>
∧πp̊ix∧p̊i =

n∑
i=1

‖ei − p̊i‖2
∣∣∣∣
H̃=I

,

which implies x>Px ≥ 0. We show that P is positive definite
by contradiction. Assume that there exists a non null vector x̄
such that

x̄ 6= 0 ∈ kerP, (32)

which in turn implies

πp̊i
x̄∧p̊i = 0.

It follows that for each i = {1, . . . , n} one has

x̄∧p̊i ∈ ker(πp̊i)

and recalling that πp̊i is a projector it yields

x̄∧p̊i = λip̊i.

Since the measurement set is consistent, one can consider
(without loss of generality) that (p̊1, p̊2, p̊3) are three non
collinear eigenvectors of x̄∧ associated with the eigenvalues
λi for i = {1, 2, 3}. Moreover due to the consistency of the
set it can be shown that there exists a constant direction p̊k
from the set {p̊4, . . . , p̊n} such that:

p̊k =
ẙk
|̊yk|

, where ẙk =

3∑
i=1

αip̊i, αi ∈ R/{0}, i = {1, 2, 3}

which implies that

x̄∧

3∑
i=1

αip̊i =

3∑
i=1

λiαip̊i =

3∑
i=1

λkαip̊i.

From the equation above it is straightforward to verify that
λ1 = λ2 = λ3 = λk.

Since x̄∧ ∈ sl(3) one has tr(x̄∧) =
3∑

i=1

λi = 0, which along

with the equation above implies λ1 = λ2 = λ3 = λk = 0,
which in turn implies x̄ = 0 and this contradicts x̄ 6= 0 in
(32). It follows that the kernel of the matrix P is trivial and
P is positive definite.
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For the matrix Q, one verifies

x>Qx
2kIkp

= x>J∧K>
n∑

i=1

(p̊ip̊
>
i ⊗ πp̊i

)>
n∑

i=1

(p̊ip̊
>
i ⊗ πp̊i

)J∧Kx

= vect

(
n∑

i=1

(πp̊ix∧p̊ip̊
>
i )

)>
vect

(
n∑

i=1

(πp̊ix∧p̊ip̊
>
i )

)

= tr(∆>∆)

∣∣∣∣
H̃=I

,

which implies x>Qx ≥ 0, and using the fact that the set Mn

is consistent one can ensure that Q is positive definite.
Finally, it is straightforward to verify that B is a full rank

matrix, which implies that B>B is positive definite which in
turn implies that the term B is persistent exciting. Therefore,
we conclude that all the conditions of Theorem 1 in [27] are
satisfied and thus the set S is locally exponentially stable. This
in turn completes the proof.
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